
A Practitioner’s Guide
to Using HashiCorp
Terraform Cloud with GitHub

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 2

Executive Summary

HashiCorp Terraform and GitHub’s integrations form the foundation for a DevOps workflow that moves

at the speed your organization desires. This speed is often a response to the velocity GitHub provides

the development teams they serve. Developers are now able to automatically integrate changes to

code from anywhere, and then deploy those changes in any environment on demand.

This presents a challenge for operations teams to have the required infrastructure ready at the time

that it is needed. While it is possible to meet this challenge by leaving instances active at all times,

the better and more cost-effective solution is to make the infrastructure a part of the versioning

process and add or remove resources on-demand. By tying application development to underlying

infrastructure, GitHub and Terraform solve the provisioning challenge to keep developer velocity up

and cloud costs down.

This guide illustrates the various approaches to configure a continuous integration and continuous

delivery (CI/CD) workflow using GitHub and Terraform Cloud to address the challenges of dynamic

DevOps environments. It covers repository management, setting up a CI/CD pipeline, available areas

of integration, and some of the security considerations when using Terraform.

For more information on how HashiCorp tools and the GitHub platform work together to enable

organizations to adopt a strong CI/CD workflow, see: Increasing Developer Velocity in the Cloud

Operating Model.

https://www.hashicorp.com/resources/increasing-developer-velocity-in-the-cloud-operating-model/
https://www.hashicorp.com/resources/increasing-developer-velocity-in-the-cloud-operating-model/

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 3

Understanding Terraform and
GitHub’s Role in a GitOps Workflow

Terraform and GitHub are central components of a GitOps workflow. Terraform enables teams to

codify infrastructure as configurations — a concept better known as “infrastructure as code”. GitHub

provides a central source of truth and version control for this infrastructure code in the same way

that it would for application code. This combination enables operations teams to work with the same

speed as the development teams they serve.

Deploy Infrastructure as Code with Terraform

Terraform provides a single workflow for building, changing, and versioning infrastructure safely and

efficiently. It connects to hundreds of cloud services as well as private infrastructure, and enables

automated provisioning. Terraform uses an easy-to-understand configuration language called HCL

that allows practitioners to provision and manage infrastructure as code, with cleaner syntax than

alternatives like YAML. Using just the Terraform CLI on their local machine, an individual practitioner

could manage something as simple as a single application or as complicated as your entire cloud

infrastructure.

HashiCorp offers two products that help Terraform users gain the full benefits of a GitOps workflow:

Terraform Cloud and Terraform Enterprise. Terraform Cloud is available as a fully managed service,

and Terraform Enterprise can be installed privately in an organization’s datacenter. These Terraform

editions execute runs, at scale, in a consistent and reliable environment. Plus, they include key team

collaboration and governance features.

Terraform Cloud is optimized for DevOps collaboration while also giving your organization

advanced and granular compliance features. We’ll be going over how their features enable best

practices throughout this white paper.

If you happen to be unfamiliar with Terraform Cloud, there is one particular concept which needs

to be defined ahead of time and that is workspaces. Workspaces, when it comes to the Terraform

CLI, are used in a way to create multiple state files based on similar Terraform configuration files to

reduce directory sprawl. As an example, these state files can differentiate based on which variables

are called as part of the Terraform operations. On the other hand, when dealing with Terraform

Cloud, workspaces are how Terraform configurations are organized and managed. These types

of workspaces contain all the requirements that Terraform will need to manage the declared

workloads.

https://www.hashicorp.com/products/terraform/

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 4

GitHub Provides a Source of Truth and Collaboration for Infrastructure

GitHub is a complete DevOps and collaboration platform that is best known for its version control

capabilities. Version control systems (VCS) are generally used to store a collection of software

files, making it possible to document, track, undo, and combine changes all made in parallel by

different users. Through discussions that take place in pull requests and issues, GitHub also acts

as a collaboration platform for millions of developers. In using GitHub for version control and for

collaboration, operators can more easily coordinate with application developers throughout the

software lifecycle.

Terraform users should store their configuration files in a VCS repository. Storing infrastructure as

code in a VCS allows them to version control, collaborate and continuously improve infrastructure

as code as a delivery pipeline.

Best Practices with Terraform Configurations
and GitHub

Terraform Cloud integrates tightly with GitHub. As changes are committed to a repository that

affects the attached Terraform organization, Terraform can automatically initiate a run and make

the necessary modifications to accommodate the change. Operators can also use this integration

to version their various infrastructure environments. If more VMs are required for a specific event or

test, these changes can be made to the Terraform configurations stored in GitHub. After the event

has completed or if an issue arises from the deployment, operators can roll back the infrastructure

to a previous, stable version.

Repository Management

Terraform configurations can be defined in a wide variety of ways. The most straightforward

Terraform configuration is a single root module containing only a single .tf file. A configuration can

grow gradually, as more resources are added, either by creating new configuration files within the

root module or by organizing sets of resources into child modules. Therefore, structuring these

repositories properly is important because it determines which files Terraform has access to when

the specified Terraform operations are executed.

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 5

Structuring Repositories for Multiple Environments

When each repository represents a manageable chunk of Terraform code, it is often still useful

to attach a single repository to multiple workspaces in order to handle multiple environments or

other cases where similar infrastructure is used in a different context. There are three primary ways

to structure the Terraform code in your repository to manage multiple environments (such as:

development, staging, and production).

Depending on your organization’s use of version control, one method for multi-environment

management may be better than another.

Multiple Workspaces per Repository

Using a single repository attached to multiple workspaces is the simplest approach. This enables

the creation of a pipeline to promote changes through environments without additional overhead in

version control. When using this model, one repository is connected to multiple workspaces such

as prod, stage, dev. While the repository connection is the same in each case, each workspace can

have a unique set of variables to configure the differences per environment.

To make an infrastructure change, a user opens a pull request on the specified repository. After the

pull request has been merged, they can then apply it in Terraform Cloud one workspace at a time.

First by starting with the dev workspace, progressing to stage, and ending the process with the prod

workspace.

This model will not work for a repository if there are significant environmental differences between

the Terraform configurations. For example, if the prod workspace has 10 more unique resources

than the stage workspace. They likely cannot share the same Terraform configuration and

thus cannot share the same repository. If this is the case for a given repository, one of the other

approaches may be better.

Single Workspace per Repository Branch

For those organizations with a preference for long-running branches, there is an option to create a

branch for each environment. When using this model, one repository could have three long-running

branches such as prod, stage, and dev. Using the branch strategy reduces the number of files

needed in the repository.

In the example repository structure below, there is only one main.tf configuration and one variables.

tf file. When connecting the repository to a workspace in Terraform Cloud, you can set different

variables for each workspace. This means there is one set of variables for prod, one set for stage, and

one set for dev.

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 6

├── README.md
├── variables.tf
├── main.tf
├── outputs.tf
├── modules
│ ├── compute
│ │ ├── README.md
│ │ ├── variables.tf
│ │ ├── main.tf
│ │ ├── outputs.tf
│ ├── networking
│ │ ├── README.md
│ │ ├── variables.tf
│ │ ├── main.tf
│ │ ├── outputs.tf

Each workspace listens to a specific branch for changes, as configured by the GitHub branch

setting. This means that plans will not occur in a given workspace until a pull request is opened or a

push event occurs on the designated branch. Therefore the prod workspace would be configured to

listen to the prod branch, stage to stage, and dev to dev. To promote a change to stage, open a pull

request against the stage branch. To promote to prod, open a pull request from stage against prod.

The upside of this approach is that it requires fewer files and runs fewer plans, but the potential

downside is that the branches can drift out of sync. It is imperative in this model to enforce

consistent branch merges when promoting changes.

Single Workspace per Repository Directory

For organizations that have significant differences between environments, there is an option to

create a separate directory for each environment. This option could also apply when short-lived

branches that are frequently merged into the master branch are preferred.

In the example repository structure below, the prod, stage, and dev environments have separate

main.tf configurations and variables.tf files. These environments can still refer to the same modules

(like compute and networking).

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 7

├── environments
│ ├── prod
│ │ ├── README.md
│ │ ├── variables.tf
│ │ ├── main.tf
│ │ ├── outputs.tf
│ ├── stage
│ │ ├── README.md
│ │ ├── variables.tf
│ │ ├── main.tf
│ │ ├── outputs.tf
│ ├── dev
│ │ ├── README.md
│ │ ├── variables.tf
│ │ ├── main.tf
│ │ ├── outputs.tf
├── modules
│ ├── compute
│ │ ├── README.md
│ │ ├── variables.tf
│ │ ├── main.tf
│ │ ├── outputs.tf
│ ├── networking
│ │ ├── README.md
│ │ ├── variables.tf
│ │ ├── main.tf
│ │ ├── outputs.tf

When using this model, each workspace is configured with a different Terraform working directory.

This setting tells Terraform Cloud which directory to execute Terraform in. The prod workspace is

configured with prod as its working directory. The stage workspace is configured with stage as its

working directory, and likewise for dev. Unlike in the previous section, every workspace listens for

changes to the master branch in the specified directory.

The potential downside to this approach is how changes have to be manually promoted between

stages. This means the directory contents can potentially drift out of sync.

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 8

GitHub Integrations with Terraform Cloud

Terraform Cloud integrates directly with GitHub. This integration provides a streamlined and

seamless workflow for practitioners to store and manage their code directly in GitHub while bringing

a new level of automated functionality to their process.

Configuring GitHub as a Version Control System

Connections between Terraform Cloud and GitHub can be established in several different ways. For

those accessing repositories through GitHub.com, Terraform Cloud offers both the configuration-

free GitHub App or an OAuth-based connection.

Through the GitHub App

The configuration-free GitHub App can be used in a wide variety of use cases and is considered

to be the most secure and flexible. It is also the easiest way to connect GitHub to Terraform Cloud.

Integrating with GitHub in this manner will require each Terraform Cloud user to authenticate and

authorize their GitHub account and resources for usage in the Terraform Cloud organization.

It should be noted how this may introduce some complexities for collaborative environments

where users may not have access to the same GitHub repositories. For example, a Terraform Cloud

user will not be able to run a plan operation if their GitHub connection does not have access to

the specified repository. It is also important to keep in mind how there may be some limitations,

or inaccessibility, when using this method with Terraform Cloud-based private module registries

(discussed below) and when attempting to create additional workspaces through the Terraform

Cloud API.

Through the OAuth Connection

The GitHub OAuth connection establishes a link at the Terraform Cloud organization level. The

GitHub OAuth connection also creates the link as one particular GitHub user. This helps provide a

consistent level of access and permissions for everyone in a given Terraform Cloud organization.

During the process of establishing the connection, a user will be asked to create a new GitHub-

based OAuth application and provide the Client ID and Client Secret to Terraform Cloud. Optionally,

an SSH keypair can also be configured where required.

On-premises instances of GitHub Enterprise will also use OAuth connections. However, while the

process is very similar to the prior option, there will be an additional setup step to provide the local

HTTP and API URLs of their Terraform instance.

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 9

Pull Request Integrations

Once you’ve established the integration between your Terraform Cloud workspace and your GitHub

repository, Terraform Cloud will automatically perform what’s known as a ‘speculative plan’ any time

a pull request is created against the connected repository. These speculative plans act as integrated

checks to your GitHub repository, and the results of these plan-only runs will be visible on the associated

pull request. From there, the results can be integrated into your existing GitOps workflows or simply

used to let you see exactly what happens if you merge the pull request. Speculative plans also take into

consideration the outcome from the applied Sentinel rules and policy sets and presents them back

through to the pull request system.

Committed Code Integrations

Terraform Cloud can also be notified any time the repository sees a successful code commit. By default,

each commit to the configured repository will result in a plan operation being performed. A Terraform Cloud

user with access to the workspace can then apply or cancel the run operation from being completed.

This action is due in part to the GitHub integration, but also due to the Apply Method configuration.

This configuration is applied at the workspace level and features two settings. The first, which is the

default, is Manual Apply. The second setting, Auto Apply, will track each commit to the repository, run

the plan operation, and, assuming all Sentinel rules and policy sets are successful, will apply the new

configuration automatically without any user intervention required.

GitHub Actions

GitHub Actions gives users the ability to configure custom workflows based on nearly any event in the

GitHub ecosystem, such as pull requests, comments within issues, and merges to repositories. This feature

can be used for Terraform modules managed in GitHub without having to rely on any external tooling.

GitHub Actions relies on a YAML workflow file to specify the steps to execute. A typical workflow for

a Terraform module includes terraform init and terraform validate commands. The init command

initializes the module and downloads any needed providers. The validate command helps validate the

configuration files in the module and is useful for general verification.

In addition to validating Terraform configurations, we can extend this workflow to incorporate automated

testing of any part of our configuration, including modules. This is especially important when multiple

developers are collaborating on a particular module, and helps continuously verify that it executes as

expected.

And finally, operators can use GitHub Actions to easily coordinate with application development teams.

For more, watch the webinar Unlocking the Cloud Operating Model with GitHub Actions.

https://docs.hashicorp.com/sentinel/
https://www.hashicorp.com/resources/unlocking-the-cloud-operating-model-with-github-actions/

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 10

Security Considerations

Terraform configurations could eventually be the single source of truth for the state of your entire

organization’s cloud infrastructure. It is important to carefully consider security implications,

particularly in a dynamic organization where infrastructure and possible staff changes could be a

regular occurence.

Like GitHub, Terraform Cloud features role-based access controls and advanced permissions. It is

important to consider all of the access levels available with Terraform.

Gitignore Considerations

One of the easiest ways to secure your Terraform configuration is to ensure files containing

potentially private information, such as API tokens, account information, cloud resources and their

identifiers, and so forth, are not inadvertently stored in your VCS repository. These sensitive files can

be excluded from version control through the usage of the gitignore file.

The gitignore file can be used to tell Git what files in the repository should not be tracked. Some

examples of items that should not be added to version control would be state files, variables files

with the .tfvars extension, the entire .terraform directory, and crash log files. An example gitignore file

is available on GitHub and should be added to every Terraform repository: Terraform.gitignore.

Terraform State File Storage

A Terraform state file maps real world resources with the resource definitions within an

organization’s declarative terraform configuration files. It’s important to note that state files often

contain sensitive information which should not be shared publicly or stored in version control.

That said, there are numerous locations where state files may be safely stored, but each option has

different implications when it comes to access and security.

One of the easiest methods to secure state file storage is by leveraging remote state storage in

Terraform Cloud. Remote state storage allows an administrator to designate specific outputs to only

the teams that need to see them. Another benefit of remote state storage within Terraform Cloud is

state locking. This prevents any potential overlap where two teams may be accessing and changing

the same infrastructure at the same time.

https://github.com/github/gitignore/blob/master/Terraform.gitignore

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 11

Alternatively, remote backends can be used to collaborate and maintain sensitive information. These

backends can point to a wide variety of cloud-based storage services, like Azure Blob Storage.

When using remote backends, the accessibility and security over the state files are transferred from

Terraform to the storage services themselves.

The default method of state file storage when using Terraform CLI is known as a local backend.

This configuration stores the state in the same directory as the Terraform configuration itself. There

are security implications when configurations, especially with state files, are being stored in a VCS

repository.

Private Module Management

Private module management is an exclusive feature within Terraform Cloud. The private module

registry gives organizations a way to codify modular templates that can be used across their

environment. These templates, which are known as modules, are customized and validated based

on the organization’s particular requirements. These modules are published directly from their

GitHub repositories into the service catalog. Once in the service catalog, the modules are associated

with searchable metadata to make them easy to find and use throughout the environment’s

infrastructure. This workflow enables every team within an organization to safely and efficiently

provision infrastructure.

Permissions Management and Access Control

There have been numerous mentions of cases where users without access to Terraform Cloud and

Enterprise could perform updates to the infrastructure through updates to the GitHub repository.

This can also be applied to users without access to the GitHub repository, yet do have access to

Terraform Cloud. Therefore it is important to understand the levels of privilege throughout the

environment.

Terraform Cloud has three levels of access control: Users, teams, and organizations. Users are

individual accounts which are part of an organization. Teams are groups of users which have

particular access configured within an organization. Organizations are where users can collaborate

on a shared set of workspaces. Teams allow for two options of access within the organization. These

two options are read — which is set by default — and manage. Manage allows users to create, edit,

read, and remove Sentinel policies, workspaces, and VCS settings.

WHITEPAPER | A PRACTITIONER’S GUIDE TO USING TERRAFORM CLOUD WITH GITHUB 12

Each workspace has their own set of permissions that can be utilized. These permissions are

configured against the available teams as either fixed permission sets or through more granular

rights. The permission sets are listed as Read, Plan, Write, and Admin. Read allows members of the

specified team to read workspace information such as variables, runs, and state. The Plan set builds

on the read permissions with the ability to create run operations. The Write set continues from the

Plan set and allows the approval of runs, configuration of the workspace’s lock status, and the ability

to update variables and state versions. Lastly, the Admin set allows for full workspace capabilities

including the configuration of team access, deletion of the state, and execution mode.

On the other hand, when it comes to permissions on the GitHub repository, there is a certain set of

permissions to be aware of. Any permissions on repositories which result in code being committed

could potentially have unintended consequences. These include users having the ability to push

code directly to a repository or merge pull requests. These permissions are particularly important for

those Terraform Cloud workspaces using auto apply, though could also be important when manual

apply is in use.

Conclusion

There are many features within Terraform Cloud and GitHub that increase DevOps velocity while

also providing the required checks and guardrails for security and compliance. To set up your

own GitOps pipeline, start by signing up for Terraform Cloud for free. Find out more about version

control system integrations, see the webinar VCS + Terraform Cloud. To walk through an example

on organizing Terraform configurations, use the Learn Guide for Organize Configuration. For more

information about automating workflows with GitHub Actions, see the blog Automate Infrastructure

Provisioning Workflows with the GitHub Action for Terraform and the webinar Unlocking the Cloud

Operating Model with GitHub Actions.

https://terraform.io
https://www.hashicorp.com/resources/vcs-terraform-cloud-azure-devops-gitlab-github-and-bitbucket/
https://learn.hashicorp.com/terraform/modules/modules-overview
https://www.hashicorp.com/blog/automate-infrastructure-provisioning-workflows-with-the-github-action-for-terraform/
https://www.hashicorp.com/blog/automate-infrastructure-provisioning-workflows-with-the-github-action-for-terraform/
https://www.hashicorp.com/resources/unlocking-the-cloud-operating-model-with-github-actions/
https://www.hashicorp.com/resources/unlocking-the-cloud-operating-model-with-github-actions/

