

SECTIGO®
 HashiCorp Vault Integration Guide

Version 1.0

December 2019

Sectigo HashiCorp Vault Guide

Copyright © 2008, 2019, Sectigo.

All rights reserved.

Primary Author: Sectigo

Contributing Authors: Mike Wakim, Jordan Clifford

The documentation contains proprietary information; it is provided under a license agreement containing restrictions
on use and disclosure and are also protected by copyright and other intellectual and industrial property laws.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to Sectigo in writing. This document is not warranted to be error-free.

Except as may be expressly permitted in your license agreement, the documentation may not be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose.

The documentation is produced for general use with a variety of information management applications. It is not
produced or intended for use with any inherently dangerous applications, including applications that may create a
risk of personal injury. If you use this documentation in conjunction with dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy and other measures to ensure its safe use. Sectigo
and its affiliates disclaim any liability for any damages caused by such use of the documentation.

Sectigo, CodeGuard, and Icon Labs are registered trademarks of Sectigo Limited and/or its affiliates. Other names
may be trademarks of their respective owners.

The documentation may provide links to websites and access to content, products, and services from third parties.
Sectigo is not responsible for the availability of, or any content provided on, third-party websites. You bear all risks
associated with the use of such content. If you choose to purchase any products or services from a third party, the
relationship is directly between you and the third party. Sectigo is not responsible for: (a) the quality of third-party
products or services; (b) fulfilling any of the terms of the agreement with the third party, including delivery of
products or services and warranty obligations related to purchased products or services. Sectigo is not responsible for
any loss or damage of any sort that you may incur from dealing with any third party.

Page 1

Sectigo HashiCorp Vault Integration
The Sectigo HashiCorp Vault integration provides a seamless solution for the enrollment,
collection, revocation, renewal, and replacement of SSL/TLS and client (S/MIME) certificates
issued by the Sectigo Certificate Manager (SCM). This integration is distributed as a custom
HashiCorp Vault (Vault) PKI plugin. It provides the following features:

• RSA 2048, 3072, and 4096-bit private key generation
• Certificate Signing Request (CSR)
• Storage and state tracking of certificates issued by SCM in Vault

The Sectigo Vault integration supports both the generation and storage of new SSL and client
certificates in Vault. The Sectigo Vault PKI plugin supports verifying the validity of certificates
that are being read from Vault; certificates that fall within a user-specified certificate expiry
window may (optionally) get automatically renewed. There are various types of SSL and client
certificates that can be requested by supplying the appropriate configuration options.

Note: The types of SSL/TLS and client certificates available to you are based on your account setup.

Page 2

This integration guide describes the following:

• Package Contents
• Understanding the Integration
• Understanding the Configurations
• Using the Sectigo Vault PKI Plugin
• Additional Notes

1 Package Contents
• sectigo-vault-pki:

o sectigo-vault-pki_<version> (binary): The Sectigo Vault PKI plugin that allows
users to store and manager certificates that get generated from SCM on Vault.

o sample_data_jsons: Sample JSON files that can be used by the user to interact
with the Sectigo Vault PKI plugin.

o README.md: A README file that includes example commands that showcase
how to use the Sectigo Vault PKI plugin.

• Sectigo HashiCorp Vault Integration.pdf: The integration user guide.

Page 3

1.1 Prerequisites
• HashiCorp Vault Version 1.2.3 or higher1
• jq (optional)
• shasum or equivalent
• SCM organization with Web API access enabled for both SSL and client certificates
• List of SSL and client types with associated terms for the organization
• Supported operating systems:

o Linux operating systems:
 Ubuntu Server 16.04 LTS
 Ubuntu Server 18.04 LTS
 Ubuntu Server 19.04
 Ubuntu Server 19.10
 CentOS 7.3

2 Understanding the Integration
Backend plugins in Vault are essentially separate, standalone applications that Vault executes
and communicates with over RPC. Each backend plugin acts as a server and exposes certain
API endpoints, which Vault would then interact with.

The Sectigo Vault PKI plugin is a custom secrets backend plugin which makes use of the Sectigo
Go library in order to send HTTP requests to the SCM APIs. The plugin exposes its own API
endpoints which each correspond to a specific path that builds on top of a starting base path
prefix. For the purpose of this document, the path prefix sectigo-vault-pki is used.

Note: You can rename this path prefix when you mount the Sectigo Vault PKI plugin into your Vault
server.

2.1 Components
The Sectigo HashiCorp Vault integration is based on the following two components:

• Go client library for the Sectigo API – handles the communication with the Sectigo
REST API.

• Sectigo Vault PKI Plugin – integrates with Vault and mediates the interaction between
the user, Vault, and the Sectigo REST API.

1 Vault version 1.2.3 has a known issue with reading the VAULT_CLIENT_TIMEOUT environment variable when executed
through the Vault CLI tool. This issue was rectified in Vault 1.3.0. For more information read the Dealing with Timeouts and Error
Codes section.

https://stedolan.github.io/jq/
https://linux.die.net/man/1/shasum

Page 4

2.2 Path Endpoints
The Sectigo Vault PKI plugin exposes several paths that users can interact with. Different paths
are defined for different use cases. Depending on the applicable functionality, each path accepts
different input parameters.

The following table lists all the paths that are supported by the Sectigo Vault PKI plugin and
displays the operations that are supported by each path2:

Path Operation
Write Read List Delete

configs
enroll
certs

revoke
replace
renew
fetch

You can retrieve in-code API help for each individual path in Vault by using the built-in path-
help CLI command. For more information on path-help, see
https://www.vaultproject.io/docs/commands/path-help.html.

In order to enroll and manage certificates on Vault through SCM, users must first create a
config entry in Vault; a config entry may be used for enrolling and managing multiple
certificates that correspond to the same SCM configuration. The following diagram illustrates a
typical certificate enrollment scenario using the Sectigo Vault PKI plugin:

2 Sample Vault CLI commands can be found in the Interacting with the Plugin section.

https://www.vaultproject.io/docs/

Page 5

3 Understanding the Configurations

3.1 Parameter Descriptions:
The Sectigo Vault PKI plugin can handle a multitude of parameters. The parameters required
are dependent on the applicable use case and they can be passed to Vault in two principal ways:

• Bundled together in a JSON file when interacting with Vault through a Vault CLI tool or
through cURL commands.

• Individually as a key/value pairs when interacting with Vault through the Vault CLI
tool.

3.1.1 Configuration and User Specific Parameters
Parameter Type Description

sectigo_cm_user Mandatory User ID to access your URI.

sectigo_cm_password Mandatory Password to access your URI.

Page 6

sectigo_config_type Mandatory The configuration type for your Vault-specific config
entry. This can either be ssl_cert or client_cert.

sectigo_cm_org_id Mandatory The Organization ID (numeric).

sectigo_cm_base_url Mandatory The base URL of the Sectigo Certificate Authority.

3.1.2 CSR Parameters
Parameter Type Description

sectigo_csr_domain Conditional Single value for a domain which is included in the
certificate Common Name (CN) field.
Required if sectigo_csr is not provided.

sectigo_csr_country Conditional The country name which is included in the certificate
Country (C) field.
Required if sectigo_csr is not provided.

sectigo_csr_state Conditional The state/private name which is included in the
certificate State (ST) field.
Required if sectigo_csr is not provided.

sectigo_csr_location Conditional The location name which is included in the certificate
Location (L) field.
Required if sectigo_csr is not defined.

sectigo_csr_organization Conditional The organization name which is included in the
certificate Organization (O) field.
Required if sectigo_csr is not provided.

sectigo_csr_organization_unit Conditional The organization unit which is included in the
certificate Organization Unit (OU) field.
Required if sectigo_csr is not provided.

sectigo_csr_email_address Conditional The email address which is included in the certificate
emailAddress field.
Required if sectigo_csr is not provided.

sectigo_csr_key_algo Conditional The private key algorithm to use to generate the
private key. Default: RSA.
Required if sectigo_csr is not provided.

sectigo_csr_key_size Conditional Size of the SSL/TLS key to generate.
Possible values:

• 2048-bit (default)
• 3072-bit

Page 7

• 4096-bit
Required if sectigo_csr is not provided.

sectigo_csr Conditional A certificate signing request PEM that users can
optionally provide if they don’t want to generate a
new one.

sectigo_private_key Conditional A private key PEM that users can optionally provide
if they want to generate a CSR by using it.

3.1.3 Certificate Issuance and Collection Parameters
Parameter Type Description

Common

sectigo_max_timeout Optional The maximum time in seconds before a
certificate download attempt will time out.
Default is 600 seconds.

sectigo_loop_period Optional The time in seconds between each attempt to
download the issued certificate. Default is 30
seconds.

sectigo_expiry_window Optional The period of days prior to expiration that a new
certificate enrollment process will be initiated.
Default is 7 days.

sectigo_auto_renew Optional A flag to determine whether certificates that fall
within the expiry window should get
automatically renewed. Default is True.

sectigo_read_renewed_cert Optional When this flag is set to True (default) and you
attempt to read a certificate from Vault, if the
certificate has the Renewed state, the newer
certificate is returned instead of the requested
one.
If you set this flag to False, then even if the
certificate had already been renewed, the
requested certificate is returned. Specifying False
may help avoid unwanted renewals.

SSL Certificates Only

sectigo_ssl_cert_type Mandatory Type of SSL certificate (numeric). This is the ID
of the SSL certificate type.

Page 8

sectigo_ssl_cert_validity Mandatory Certificate validity period in days (numeric).
The values available are dependent on the
selected sectigo_ssl_cert_type.

sectigo_ssl_cert_external_requester Optional A comma-separated list of emails.

sectigo_ssl_cert_format_type Optional Format type for SSL certificate.
The supported values are:

• x509—for X509, Base64 encoded (default)
• x509CO—for X509 Certificate only,

Base64 encoded
• x509IO—for X509 Intermidiates/Root

only, Base64 encoded
• base64—for PKCS#7 Base64 encoded
• bin—for PKCS#7 Bin encoded
• x509IOR—for X509 Intermediates/Root

only Reverse, Base64 encoded

sectigo_ssl_cert_comments Optional Comments for certificate enrollment.

sectigo_ssl_cert_num_servers Conditional The number of server licenses (numeric).

sectigo_ssl_cert_server_type Optional The server type ID (numeric).

sectigo_ssl_cert_subject_alt_names Optional A comma-separated list of subject alternative
names (SAN).

sectigo_ssl_cert_custom_fields3 Optional Custom fields to be applied to the requested
certificate.

Client Certificates Only

sectigo_client_cert_type Mandatory Type of client certificate (numeric). This is the ID
of the client certificate type.

sectigo_client_cert_validity Mandatory Certificate validity period in days (numeric).
The values available are dependent on the
selected sectigo_client_cert_type.

sectigo_client_cert_email Mandatory The user’s email. Must be a valid email.
Must be less than 256 characters.

sectigo_client_cert_first_name Conditional The user’s first name.

sectigo_client_cert_middle_name Conditional The user’s middle name.

sectigo_client_cert_last_name Conditional The user’s last name.

Page 9

The combined length of the first, middle, and last
name fields cannot exceed 64 characters.

sectigo_client_cert_custom_fields3 Optional Custom fields to be applied to the requested
certificate.

3.1.4 Other Parameters
Parameter Type Description

Common

sectigo_cert_unique_id Conditional The unique certificate ID is used as the
main identifier for certificates that are
stored in Vault.
For SSL certificates, the cert unique ID is
<ssl_id>_<customer_uri>.
For client certificates, the unique cert ID is
<order_number>_<customer_uri>.

sectigo_reason Mandatory The reason why an action is being taken.
• revoke—The reason why a

certificate is being revoked.
• replace—The reason why a

certificate is to be replaced.

SSL Certificates Only

sectigo_common_name Conditional Used in path replace.
Single value for a domain that is included
in the certificate Common Name (CN)
field.

Client Certificates Only

sectigo_client_cert_revoked_on_replace Mandatory Used in path replace.
Flag to determine whether a replaced
certificate should be revoked.

3 The expected format for custom fields is the following:
[{"name":"custom_field_1","value":"value_1"},{"name":"custom_field_2","value"
:"value_2"}]. If you are providing this input in a JSON String, make sure that the internal double
quotes are escaped properly using \.

Page 10

4 Using the Sectigo Vault PKI Plugin

4.1 Configuring the Plugin Directory
In order to use the Sectigo Vault PKI plugin, you must place the custom sectigo-vault-
pki_<version> binary in your Vault plugins directory (for example,
/etc/vault/custom_plugins/). Make sure that the custom plugin binary has the proper
execute permissions enabled. On Linux, this can be done using the following command:

$ chmod +x /etc/vault/custom_plugins/sectigo-vault-pki_<version>

Additionally, your Vault server’s configuration must have the plugin_directory field
configured and pointing to the path of your plugins directory. For more information on the
plugin_directory field, see https://www.vaultproject.io/docs/configuration/#plugin_directory.

4.2 Setting Up Environmental Variables
Whether you are planning on using the Vault CLI tool or cURL commands, you may want to
export the following environment variables to facilitate your interactions with your Vault
server:

$ export VAULT_ADDR='http://<vault_ip_address>:<vault_port_number>'

$ export
VAULT_API_ADDR='http://<vault_ip_address>:<vault_port_number>'

$ export VAULT_TOKEN='<token_goes_here>'

$ export VAULT_CLIENT_TIMEOUT='600'

Note: The address environment variables are shown for http. Make sure to use https instead of http
on your production server.

4.3 Enabling the Plugin
Assuming you have a Vault server that is (1) running and unsealed, (2) configured to point to a
plugin directory where the sectigo-vault-pki binary is located, and (3) accessible through
the environment variables that you have exported, you may enable the Sectigo PKI plugin by
running:

$ SHA256=$(shasum -a 256 <path_to_plugin_directory>/sectigo-vault-
pki_<version>| cut -d' ' -f1)

$ vault write sys/plugins/catalog/secret/sectigo-vault-pki_<version>
sha_256="${SHA256}" command=sectigo-vault-pki_<version>

$ vault secrets enable -path=sectigo-vault-pki -plugin-name=sectigo-
vault-pki_<version> sectigo-vault-pki_<version>

https://www.vaultproject.io/docs/configuration/#plugin_directory

Page 11

4.4 Interacting with the Plugin
Users may interact with Vault directly through the Vault CLI tool, or they may interact with the
exposed API endpoints through a tool such a cURL. In this section we describe how to interact
with the Sectigo PKI plugin using the Vault CLI tool. Please consult the README.md file for
sample cURL commands.

In the downloaded package, you have a directory named sample_data_jsons which
contains two subdirectories: ssl_cert and client_cert. Each of these subdirectories
contains JSON files which correspond to the paths that are supported by the custom plugin. The
commands below refer to the ssl_cert JSON files. For client certificates, simply use the
client_cert JSON files instead.

Make sure to customize the variables in the applicable JSON files to match your SCM settings /
certificate requirements.

Action Command

Creating a Config Entry $ vault write sectigo-vault-pki/configs/<config_name>
@ssl_cert_config.json

Enrolling and Collecting
a Certificate4

$ vault write sectigo-vault-pki/enroll/<config_name>
@ssl_cert.json

Reading a Certificate $ vault read sectigo-vault-
pki/certs/<config_name>/<sectigo_cert_unique_id>
@ssl_cert.json

Revoking a Certificate5 $ vault write sectigo-vault-
pki/revoke/<config_name>/<sectigo_cert_unique_id>
@ssl_cert_revoke.json

Replacing a Certificate $ vault write sectigo-vault-
pki/replace/<config_name>/<sectigo_cert_unique_id>
@ssl_cert_replace.json

Fetching an Existing
Certificate from SCM6

$ vault write sectigo-vault-
pki/fetch/<config_name>/<cert_id> @ssl_cert_fetch.json

Deleting a Certificate
from Vault

$ vault delete sectigo-vault-
pki/certs/<config_name>/<sectigo_cert_unique_id>

Deleting a Config Entry
from Vault

$ vault delete sectigo-vault-pki/configs/<config_name>

4 This step can take a few minutes to complete and may be subject to different types of timeouts. For more information read the
Dealing with Timeouts and Error Codes section.
5 Revoking a certificate does not automatically delete it from Vault.
6 For path fetch, <cert_id> is the SSL ID in the case of SSL certificates, or Order Number in the case of client certificates.

Page 12

Listing All Certificates
Under a Config Name

$ vault list sectigo-vault-pki/certs/<config_name>

Listing All Config
Entries Stored in Vault

$ vault list sectigo-vault-pki/configs/

Reading a Config Entry $ vault read sectigo-vault-pki/configs/<config_name>

Manually Renewing a
Certificate

$ vault write sectigo-vault-
pki/renew/<config_name>/<sectigo_cert_unique_id>
@ssl_cert_manual_renew.json

Automatically
Renewing a Certificate

The certificate validity check takes place each time a user reads a certificate
that is stored in Vault. Automatic certificate renewal gets triggered when
the following conditions are met:

• The sectigo_auto_renew flag is set to True7.
• The number of remaining days until certificate expiry falls within

the user-specified sectigo_expiry_window field.
For more information, see Certificate Renewal Flow Diagram.

4.5 Output
Using the Vault CLI tool, users may read entries from Vault using three different formats:

• Table
• JSON
• YAML

All cURL responses are returned using only the JSON format. For regular SSL certificates8, the
output for a typical certificate entry that is stored in Vault will have the following key/value
pairs9:

7 By default, the sectigo_auto_renew field is set to True.
8 Client certificates have a very similar output to SSL certificates; client certificates do not have an ssl_format field. Moreover,
instead of ssl_id, client certificates use order_number.
9 This output is shown using the JSON format. The certificate-related data appears under the data JSON array. Fields outside of the
data JSON array are internally set and used by Vault. The Sectigo Vault PKI plugin does not currently support Vault leases.

https://www.vaultproject.io/docs/commands/read.html

Page 13

4.6 Logs
The Sectigo Vault PKI plugin prints operational logs directly on the Vault server logs. These
logs are typically accessible through the STDOUT of the running Vault server. Users may
increase/decrease the log level as per their requirements. For more information on Vault server
logs and on changing the log level, see
https://learn.hashicorp.com/vault/operations/troubleshooting-vault#vault-logs.

4.7 How to Use Existing CSRs and/or Private Keys
When enrolling a certificate, users have the option to provide an existing private key and/or an
existing CSR. If either of these two values are provided, the Sectigo Vault PKI plugin will use
them instead of generating new ones.

There are two main techniques to enroll a certificate using input from existing CSRs and/or
private key PEM files10:

• Passing CSRs/Private Keys as PEM Files
• Passing CSRs/Private Keys as Strings

10 These techniques also apply to paths other than enroll that can handle taking a CSR or a private key as input (e.g. path
replace).

Sample JSON Output

{
 "request_id": "<request_id>",
 "lease_id": "",
 "renewable": false,
 "lease_duration": 0,
 "data": {
 "cert_unique_id": "<ssl_id/order_number>_<customer_uri>",
 "certificate": "<certificate>",
 "certificate_type": "<ssl_cert>/<client_cert>",
 "csr": "<csr>",
 "domain": "<domain>",
 "private_key": "<private_key>",
 "renew_id": "<renew_id>",
 "ssl_format": "<ssl_format>",
 "ssl_id": <ssl_id>
 "state": [
 {
 "status": "<state>",
 "time_stamp": "<time_stamp>"
 }
]
 },
 "wrap_info": null,
 "warnings": null,
 "auth": null
}

https://learn.hashicorp.com/vault/operations/troubleshooting-vault#vault-logs

Page 14

4.7.1 Passing CSRs/Private Keys as PEM Files
1. Customize the entries in ssl_cert.json to match your requirements. Do not include the

sectigo_csr and sectigo_private_key variables in the JSON input11.
2. Execute the following (one-line) command. Make sure to provide a valid config_name,

and point to the csr.pem and private_key.pem files that exist on your machine.

$ vault write sectigo-vault-pki/enroll/<config_name>
sectigo_csr=@csr.pem sectigo_private_key=@private_key.pem
@ssl_cert.json

4.7.2 Passing CSRs/Private Keys as Strings
1. Customize the entries in ssl_cert.json to match your requirements.

• Provide the input for sectigo_csr and/or sectigo_private_key variables in the
applicable JSON file.

• Ensure that the PEM strings are escaped properly (use \n instead of separate lines for
each individual line from the PEM String; see the sample JSON CSR).

2. Execute the following (one-line) command. Make sure that the config_name that you
created in the previous step is passed in the enroll path.

$ vault write sectigo-vault-pki/enroll/<config_name> @ssl_cert.json

4.8 Dealing with Timeouts and Error Codes
The certificate issuance process on SCM can often take a few minutes to complete. It is therefore
important to properly handle possible timeout situations to prevent unwanted loss of newly
enrolled, replaced, or renewed certificates.

11 The Vault CLI tool does not allow you to override the value of a variable that’s specified in a JSON input file with a non-JSON
value. If you include the variables for sectigo_csr and sectigo_private_key in your JSON file and attempt to override the
input using non-JSON input, you will get a failed to parse error message from Vault.

 Sample JSON CSR

Page 15

There are three types of timeouts that you may encounter when attempting to collect a
certificate that is in the Applied state on SCM:

• Timeouts that are related to the sectigo_max_timeout parameter that’s configured in
your applicable JSON file.

• Timeouts that are set on the configured listener on your Vault server. See full list of
listener parameters here.

• Timeouts that are related to the client tool that you are using (such as, Vault CLI tool or
cURL). For the Vault CLI tool, the VAULT_CLIENT_TIMEOUT environment variable can
be used. Vault 1.2.3 had a bug that prevented the Vault server from picking up that
environment variable, that bug was fixed in Vault 1.3.0 (the changelog details for that
release can be accessed here).

To avoid issues due to timeouts, make sure to either increase your Vault server and client
timeouts, or to reduce the sectigo_max_timeout in your applicable JSON file such that it is
smaller than your existing Vault server and client timeouts. In case your download timed out
due to it requiring more time than specified in sectigo_max_timeout, and your certificate
result contained TimedoutStateSaved, re-reading the certificate will make the Sectigo Vault
PKI plugin re-attempt to collect it from SCM. If a Vault server or client timeout occurs and you
are not sure if your certificate got stored in Vault, use the vault list sectigo-vault-
pki/certs/<config_name> command to see all certificates that are stored under your
given config name.

In some cases, it is possible to successfully enroll, replace, or renew a certificate on SCM and
still face an issue when attempting to collect it (for example, if you are required to provide
further manual approval for the certificate). In such cases, the certificate result will be set to
ErrorCode along with the description that’s given by SCM. When this happens, read the given
ErrorCode and try to fix the shown issue. Once you have fixed the applicable issue, re-reading
the certificate will make the Sectigo Vault PKI plugin re-attempt to collect it from SCM.

5 Additional Notes

5.1 Understanding Path Certs and Path Fetch
The certs path implemented in the Sectigo Vault PKI plugin allows you to read, delete, or list
certificates that are already stored in Vault under the given config name. The fetch path gives
you the ability to download certificates, that are not already stored in Vault, from SCM and to
store them on your Vault server. If a user attempts to fetch a certificate that already exists in
Vault, the behavior of the command will be the same as reading a certificate through path
certs.

https://www.vaultproject.io/docs/configuration/listener/tcp.html
https://github.com/hashicorp/vault/blob/master/CHANGELOG.md

Page 16

5.2 Certificate Renewal Flow Diagram

	Sectigo HashiCorp Vault Integration
	1 Package Contents
	1.1 Prerequisites

	2 Understanding the Integration
	2.1 Components
	2.2 Path Endpoints

	3 Understanding the Configurations
	3.1 Parameter Descriptions:
	3.1.1 Configuration and User Specific Parameters
	3.1.2 CSR Parameters
	3.1.3 Certificate Issuance and Collection Parameters
	3.1.4 Other Parameters

	4 Using the Sectigo Vault PKI Plugin
	4.1 Configuring the Plugin Directory
	4.2 Setting Up Environmental Variables
	4.3 Enabling the Plugin
	4.4 Interacting with the Plugin
	4.5 Output
	4.6 Logs
	4.7 How to Use Existing CSRs and/or Private Keys
	4.7.1 Passing CSRs/Private Keys as PEM Files
	4.7.2 Passing CSRs/Private Keys as Strings

	4.8 Dealing with Timeouts and Error Codes

	5 Additional Notes
	5.1 Understanding Path Certs and Path Fetch
	5.2 Certificate Renewal Flow Diagram

