HashiCorp

Modern-Day PKI
Management with
HashiCorp Vault

EEEEEEEEEE

Contents

1= =T 1
WAt 18 PRl 1
Common Uses for PKI i et et e i e 4
Securing CoMMUNICAtIONS e e e e e 4
Authenticating Users and Systems (SSH) i 5
Signing and ENCryptiono 6
Traditional PKI Managementttt ittt ittt s s s s i anin e aaassannns 7
PeopIe @Nd PrOCESS ...t 7
Lifecycle Management Patternso e e 7
Shortcomings with Traditional PKIc i e 9
=0] 9

Pr OGS - .t ittt 10
HashiCorp Vault Specializes in Internal PKI i i 11
PKI DeSIgN OVEIVIEWottt ittt et et e e et a e et aa s a s aae e aanaeesannens 12
Core Elements Of PRI ... 12
Improving Certificate Lifecycle and Security e 13
EXamMPle SCENAIIO ..o e 14
Designing the Vault PKI Solution e 16
Design Considerationso 16
One CA,One SeCrets ENGiNeot e e 16

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Configure CRL/OCSP iN AQVANCE\ttt e e et 17

Safe MINIUMS e 17
Token Lifetimes and Revocation 18
Patterns: Managing Root Certificatesc..oiiiiiiiiii i e 19
What is @ Root Certificate? 19
Vault PKI Root CA Anti-Patterns 19
External CA as a Public Signing Authority 19
The Root CA as an Issuing CA . e e 20
When Vault should Manage the ROOt CA(S) ... vuiut ittt 20
Lifecycle Management 21
PrEaratiON . 22
Root Certificate Generation i e 22
Certificate Expiration, Renewal, and Revocation i, 23
Securing the Vault CA using an HSM ... 24
Securing the Root Private Key Generation 25

Key Length and Algorithm Selection i 25
Root Certificate Validity Period e 26
Defining Root CA Constraints i e 27
Monitoring Recommendations i 28
Patterns: Managing Intermediate CA ittt et ettt 33
Integrating with EXisting CASt e 35

CA Hierarchy Design Recommendationsot 38

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Intermediate CA Anti-patternso 38

Common Intermediate CA Management Patterns ... 39

CA Lifecycle Managemento e e 49
CA Validity Time Periods e e 52

CA UGBS S ON ettt ettt e et e e e 55

1. Renew CA certificate TTL ONly ... i e 55

2. Replace CA without changing the private key ... i e 58

3. Replace CA and rotate the private /public key pair ...t 60

4. Replace Intermediate CA and Root CAS it e 63
Certificate Revocation Listand OCSP e 65
Revoking CA Certificatesot e e 67
Vault and SPIFFE /SPIRE ... 68
Monitoring /Audit ReComMmMENdationsttt 70
O At 0N .« . 70
Example path and data snippets 70
Patterns: Managing Leaf Certificateso e e e 73
ANTi=Pat erNS o 73
LifecyCle Management 74
PrEParAt ON .o 74
Certificate ISSUANCEo 74
Usage and Validation 78
Renewal /Rotationo i 79

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Deployment / AUTOMIEtION 83

Example Vault Agent Configuration 84

RV Ot ON . . 85
When do | need to revoke leaf certificates? 85
Revoking leaf certificates using the lease ID i 86
Revoking leaf certificates via certificate serial number 88
Revocation checking for clients 88
Viewing revoked certificates inthe CRL ... 90
Validating certificates via OCSP 90
YN oo 91
Common ConfigUuIatioNs e 92
Leaf Certificate Time-To-LiVe e 92
Time-To-Live HierarChy 93
Maximum TTL for the leaf certificate from highesttolowest. 93
Precedence (Nighest to IOWESL)t 93
Example Configuration 93
Other Leaf Certificate Considerationso 94
Monitoring / Audit Recommendationst 95
Generating a certificate i 95
Revoking a certificate 96
Secure INtrodUCHIoON i i 99
Securely Introducing Vault Clients i e 99

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Platform INtegration 99

Trusted OrChestrator 100
Automating Secure INtrodUCHIONo e 101
Vault Agent AUto-AULN ... 101

PKI Solution Architecture e i e 103
Deployment Reference Architecture i e 103
Hardware Considerations e 103
Consul Reference Architecture 106
Vault Reference Architecture e 108
Multi-Region Deployment Reference Architectureo it 110
Production Hardeningot 112
Scale and Performance Considerationsouiii e 114
Health Monitoring RecommendationsforVault.......... ... i 115
Deployment Anti-Patternso 116
Gathering Service Level Requirements e 116
Determining Service Level Objectives i 118
Mapping Service Level INdiCators i 118
PKI Use-Case Designiuiiiiii ittt e i it s a e a e anaas 120
(O =Y = T 120
AU ONS oo e 120
GO I QUIA ON L 120
(=T = 121

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

9= To] 0] (o o
N g atiONS ..
Hashicorp ConSULl e e e e

KU BN S ..ttt e

Request @ Certificate i

Revoke Certificates ...

Contributors: Dan Mcteer, Patrick Gryzan, Kawsar Kamal, Neil Dahlke, Fraser Pollack and Marc Chua.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Preface

As technology continues to improve at an increasingly rapid pace, so do the threats to the information
being managed by that technology. Because of these growing threats to information security, it is

necessary to protect sensitive data through all stages of management.

One of these critical data management stages is the “transit” stage. The “transit” stage involves moving
sets of data between infrastructure and services to allow various services to utilize that data in several

ways. Protecting data during this stage is just as necessary as protecting data at rest.

But how can secure communication be managed in the era of microservices, where thousands of even
tens-of-thousands of microservices need to share data? Manual certificate deployment is no longer
capable of meeting the growing demands of scale and speed. Automation must play a key role in

certificate management to meet these demands and ensure trust in the exchange of data.

The purpose of this document is to outline a more modern approach to PKI management that solves the
growing demand for scale and speed in an automated fashion, eliminating both security and operational

compromise that regularly come as a result of human intervention.

This document is intended to be used by technical staff tasked with deploying PKI management

solutions in greenfield environments.

What is PKI

A public key infrastructure (PKI) is a set of roles, policies, hardware, software, and procedures needed to

create, manage, distribute, use, store and revoke digital certificates and manage public-key encryption.

The purpose of a PKl is to facilitate the secure electronic transfer of information for a range of network

activities such as e-commerce, internet banking, and confidential email. - Source - Wikipedia

PKl is generally required and recommended when passwords or other authentication mechanisms
are considered insufficient to verify and validate the user’s identity. The components of a standard PKI

infrastructure are;

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/Public_key_infrastructure

= Certificate Authority (CA)

- A Certificate Authority (CA) is a company or organization that acts to validate the identities of
entities (such as websites, email addresses, companies, or individual persons) and bind them to
cryptographic keys through the issuance of electronic documents known as digital

certificates. [1]
= Registration Authority (RA)

- A Registration Authority (RA) is an authority in a network that verifies user requests for a digital

certificate and tells the CA to issue it.
= Chain of Trust (Chain)

- A Chain of Trust Is made up of a list of certificates that generally starts with a server’s certificate,
is followed by an intermediate certificate, and finally terminates with the Root certificate. Figure

1-X displays a simple chain of trust.

GlobalSign
s GTS CA 101

_ L B *google.com
| J

* google.com
Issued by: GTS CA 101

Expires: Tuesday, February 2, 2021 at 9:34:42 AM Eastern
Standard Time

@ This certificate is valid

ey
é)r‘/?’%(‘(!/f‘

Details

Certificate Chain of Trust

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

https://www.ssl.com/faqs/what-is-a-certificate-authority/

= Applicant
» An Applicant is an entity or user requesting a certificate
= Certificate Signing Request

- An applicant or requester for a certificate generates a certificate signing request. This request
is also paired with the public key and presented to the CA for signing. The CSR contains

information such as;
» Common Name
- Organization Name
+ Organization Unit

- Etc
* Signed Certificate

- A Signed Certificate is the data file that digitally binds a cryptographic key to organization detail.

This data file is the final entity in the chain of objects presented to the end client.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Common Uses for PKI

Securing Communications

When a certificate is installed on a web service, it allows the use of the HTTPS protocol to secure
communications between a web server to a client browser. The presence of HTTPS communications is
often indicated by a padlock or green fill in the URL bar. Communications through HTTPS are designed
to prevent an attacker from impersonating a valid organization or other entity, as well as protect the

exchange of data from being viewed by something or someone other than the intended parties.

WEB SERVER

Client requests SSL session
[e) [
(o TP o}

SSL certificate and public key sent back

v

Virtual Machine

WEB SERVER

Virtual Machine

The session key is shared

2 o » Q) o

v

WEB SERVER

Symmetric encryption takes over E
O o

Virtual Machine

)

SSL Client Handshake Process

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Authenticating Users and Systems (SSH)

When authenticating to a host, there are typically two forms of identification presented to the host to
verify the user; a username and password or an identity file. In the example below, the user passes
a -i flag, which allows the user to select a file from which the identity (private key) for RSA or DSA
authentication is read. This identity file has typically been signed by the CA and is validated by

the destination host against its own configured, signed certificate chain. Figure 1-X displays this
authentication process.

Is this a valid signature?

{

ssh -i ~/.ssh /id_rsa user@server2_hostname

Private Key — r9\ > E

Public Key

v

Root CA
Virtual Machine Intermediate CA

CSR End Entity Certificate

Sign CSR

A A

: ‘Bl

Certificate Certificate
Manager

Certificate Authentication Process

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Signing and Encryption

The simplest form of PKI consumption is signing and encryption. A plain text message is encrypted

using the recipient’s public key and produces a form of text known as ciphertext. That ciphertext is

then decrypted using the recipient’s private key producing the original plain text message again. This

cryptographic process is outlined in Figure 1-X.

PUBLIC KEY EXCHANGE

c-@-B- -

Client Encrypt Decrypt Service

SSL Communications Overview

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Traditional PKI Management

Outlined below are some of the everyday experiences and practices organizations have reported to
HashiCorp as part of our discovery process when trying to understand how those organizations

manage PKI.

People and Process

Typically enterprises employ a team to manage their PKI certificate infrastructure, another team to
process certificate requests, and an operations team to deploy certificates to the desired entity or
service. In some cases, developers may even be responsible for configuring their applications with the
certificates. A process such as this provides several different touchpoints where sensitive information is
being handled by several people throughout the organization. This process also creates many different

instances where a requestor must wait on a certificate to be provisioned and installed

Some organizations have attempted to optimize this experience by providing a front-end web portal for
processing certificate requests as long as the required approvals are provided. The requestor can then

self-serve a certificate to some extent as needed.

Lifecycle Management Patterns

Various patterns are exhibited in organizations when managing the lifecycle of PKI certificates. The three

patterns outlined below are the most common:

- Generating wildcard certificates that are extremely broad in their application (e.g. ".example.com)

and using that wildcard universally or as much as possible at the organization.

- This wildcard certificate is generated early on in the company’s domain footprint and is kept
in some object repository as a simple solution for those needing to secure traffic to a service.
Access to this certificate is controlled by a request portal, and almost every application, website,

and user consumes it in some way.

- When the wildcard certificate is about to expire, a centralized operations team or certificate

management team regenerates it for an extended period of time and goes about a company-

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

wide effort to contact all the stakeholders consuming it.

+ Generating exceptionally long-lived certificates in an effort to reduce renewals and outages due to

expiration.

+ A quick web search dictates that the most secure recommendation is that PKI certificates be

valid for no longer than one year.

- Although not publicly available, several reference customers anecdotally report many internal

certificates eclipsing this period by double or triple that duration.

+ Using tools and dashboards to report on certificate validity but then manually managing their

lifecycle and rotation

- There is a litany of tools that offer certificate endpoint monitoring and workflow management for

organizations.

+ The issue arises when organizations use the monitoring and reporting tools to transition to
manual management workflows. An alert is triggered that a certificate is expired, which is then
manually reviewed by a certificate management team. The certificate management team then
engages the stakeholders to go through a process of reviewing the entire ecosystem for the
consumption of that certificate and its associated dependencies, finally updating the certificate

upon the completion of necessary due diligence.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Shortcomings with Traditional PKI

Based on our discovery above, HashiCorp has identified several principle issues with traditional
enterprise PKI management practices. The value of reviewing these practices and making improvements

can be summarized in three points:

= Cost: Gartner reports that the average cost of application and network downtime is now $5,600 per

minute or over S300k p/hour - Source - The Cost of Downtime

= Risk: Digital Guardian reports that the average risk associated with a data breach or a lapse in
security (certificate expiration, compromise, or otherwise invalid) cost on average $8.19 million in
2018. - Source - What is the Cost of Data Breach?

= Speed: The Standish Group International, an independent research firm renowned for their analysis
of IT processes, found that organizations adopting Agile “people and process techniques” are six

times more successful with one-fourth of the cost. - Source - Aqile vs. Waterfall

With the return on investment of evaluating a PKI solution identified, it's helpful to map out concerns

along with validated improvements that will positively impact these shortcomings.

People and Process

In keeping with the typical approach of analyzing information technology systems using People, Process,
and Technology dimensions, it is evident in the case of PKl that the technology is stable and a widely-
adopted standard. In short, the core technology is not going to change. People and Process are the areas
of influence that can be used to close risk gaps while enabling efficiencies and opening doors to new

possibilities for PKI management.

People

- Every person that is involved with the process to procure a certificate is handling sensitive material

- Orphaned key generation material is everywhere (local desktops, jump boxes, random virtual

machines used to run OpenSSL)

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
https://digitalguardian.com/blog/whats-cost-data-breach-2019#:~:text=In%20the%20U.S.%20a%20data,%2C%20%24242%2C%20is%20steeper%20too.
https://www.infoq.com/articles/standish-chaos-2015/

» Process management is slow with too many people involved; | request a certificate, it goes to the

next person, and so on until a ticket is passed between multiple teams.

- Separate teams to manage the certificate lifecycle, write policies, dictate regulations, and validate

certificates (security, ops, dev, etc.)

Process

- Companies report on expiring certificates but use a manual process to mediate.

- Manual processes typically involve maintenance windows for minor changes (put a new certificate in

place, restart the associated service(s)).

- Certificate consumption sprawl (one cert used in MANY MANY different places)

- Stakeholder fatigue leads to certificate expiration; in some cases, applications continue to work in an

“insecure” fashion.

- Long-lived certificates give additional time to a bad actor for penetration and infiltration of sensitive

data and communications.

- Long-lived certificates are given to more people within the organization, creating a larger attack

surface (the number of people or applications consuming the same certificate).

- Managing certificates is tedious work (endpoint management, consumption, auditing processes).

- Audits are challenging with manual certificate management as finding the trail of information

sometimes requires the auditor to look in many different places.

The remainder of this document explores how an organization can improve the People and Process

aspect of PKI management and how HashiCorp Vault can assist with that optimization.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

10

HashiCorp Vault Specializes in Internal PKI

HashiCorp focuses on internal PKI workflows because we can own the end-to-end lifecycle, objects (root
to leaf certificate), and policies. By managing the entire PKI lifecycle, we can optimize the experience and
provide a workflow regardless of the end technology. Read more about HashiCorp's design philosophy

and tao here.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

11

https://www.hashicorp.com/tao-of-hashicorp

PKI Design Overview

Core Elements of PKI

Several core components exist in every traditional PKI deployment and are critical to ensuring the service

operates in a secure and reliable manner. These components are outlined below:
= Private Key: Used as part of the client/service communication process.

= Public Key: Used in both the certificate request process and the client/service communication

process.

= Certificate Signing Request (CSR): Created on behalf of the service for the purpose of requesting a

certificate from the certificate authority.

= Certificate Authority (CA): Responsible for creating /signing certificates, validating certificate

authenticity requests, and managing certificate revocation lists.

= Certificate Revocation List (CRL): A list of certificates that have been issued by the certificate

authority but were revoked prior to their configured expiration date.
* Root Certificate Authority: This is the top-level certificate authority for all other certificates in the tree.

* Intermediate Certificate Authority: This is a certificate authority with authority to generate and sign
certificates on behalf of the root certificate authority. Intermediate certificate authorities are generally

used to protect the root certificate authority by handling the day-to-day certificate operations.

» Leaf Certificate: This is the generated and signed certificate that is used by a host or service entity to

establish trusted communications between a client and that entity.

As described in the previous section, the various portions of the certificate lifecycle involving the above
components are generally distributed across multiple teams, which usually causes significant delays

in the creation and renewal of certificates. Due to these delays, operational fatigue usually triggers the
decision to extend certificate expiration to unsafe levels. Additionally, this shift to longer expiry has an
added consequence of generating enormous CRLs because certificates with a longer lifetime generally

have a greater chance of needing to be revoked.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 12

Improving Certificate Lifecycle and Security

With a traditional certificate request process, there are manual steps. A requestor will create a keypair
and a certificate signing request (CSR), and will generally submit the CSR to a separate team to create
the certificate. Based on industry data, that request takes approximately three days and ten hours on

average to complete.

Keypair /CSR Support Request Certificate Service
Generated Opened (3 Days Returned Configured
10 Hours)
».. L
Certificate
Rotated

Traditional Certificate Request Process

With Vault, all actions in the process are instantaneous and can be handled through an API. This means
that the process can be shortened significantly as well as automated from beginning to end, removing

the need for human intervention and even preventing outages that occur due to expiring certificates.

g—>—>@—>

User Certificate Keypair / Cert Service
Authenticates Requested Returned Configured
\ X %
Certificate
Rotated

Vault Certificate Request Process

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 13

Vault PKI Secrets Engine

The pki secrets engine generates dynamic X.509 certificates. With this secrets engine, services can
request certificates without going through the usual manual process of generating a private key and
CSR, submitting to a CA, and waiting for a verification and signing process to complete. Instead, Vault's
built-in authentication and authorization mechanisms provide the necessary verification functionality.
Additionally, by allowing for relatively short TTLs, revocations are less likely to be needed, keeping CRLs
short and helping the secrets engine scale to large workloads. This combined functionality allows each
instance of a running application to have a unique certificate, eliminating sharing and the accompanying

pain of revocation and rollover.

Example Scenario

You need to provide self-signed certificates to multiple applications. There is a requirement for each
application development team to be able to manage their own SSL certificates. Each development team

has been assigned a DNS subdomain in your organization’s internal DNS domain.

In this recommended pattern, the example organizational layout would look something like this:
= root-admins

* Responsible for the central management of Vault, including management of the root PKI engine

and the setup of namespaces
+ This group exists either as an identity group in Vault or a mapped LDAP group.

» example.com - The root-level domain for the installation.

Application-A
- An application that serves the login.example.com sub-domain
= Application-B

+ An application that serves the subscribe.example.com sub-domain

Application-C

- An application that serves the news.example.com sub-domain

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 14

* App-Dev Team A

- Responsible for the development and integration of application-A

- Namespace-admins are those who have elevated namespace admin rights
* App-DevTeam B

- Responsible for the development and integration of application-B

- Namespace-admins are those who have elevated namespace admin rights
* App-Dev Team C

- Responsible for the development and integration of application-C

* Namespace-admins are those who have elevated namespace admin rights

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

15

Designing the Vault PKI Solution

Planning the PKI deployment is the most critical piece of building the full solution. Proper and careful

planning can help to ensure the solution is scalable and resilient for years to come.

Design Considerations

Before beginning the planning phase of the PKI solution, there are several considerations that should be

made. These considerations are outlined in detail below.

Root CA

Vault storage is secure but not as secure as a piece of paper in a bank vault. It is, after all, networked
software. If your root CA is hosted outside of Vault, don't put it in Vault as well; instead, issue a shorter-

lived intermediate CA certificate and put this into Vault. This aligns with industry best practices.

Since 0.4, the secrets engine supports generating self-signed root CAs and creating and signing CSRs
for intermediate CAs. In each instance, for security reasons, the private key can only be exported at

generation time, and the ability to do so is part of the command path (so it can be put into ACL policies).

If you plan on using intermediate CAs with Vault, it is suggested that you let Vault create CSRs and
do not export the private key, then sign those with your root CA (which may be a second mount of

the pki secrets engine).

One CA, One Secrets Engine

In order to vastly simplify both the configuration and codebase of the pki secrets engine, only one CA
certificate is allowed per secrets engine. If you want to issue certificates from multiple CAs, mount the pki

secrets engine at multiple mount points with separate CA certificates in each.

This also provides a convenient method of switching to a new CA certificate while keeping CRLs valid

from the old CA certificate; simply mount a new secrets engine and issue from there.

A typical pattern is to have one mount act as your root CA and to use this CA only to sign intermediate

CA CSRs from other pki secrets engines.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 16

Short Certificate Lifetimes

This secrets engine aligns with Vault's philosophy of short-lived secrets. As such, it is not expected that
CRLs will grow large; the only place a private key is ever returned is to the requesting client (this secrets
engine does not store generated private keys, except for CA certificates). In most cases, if the key is lost,

the certificate can simply be ignored, as it will expire shortly.

If a certificate must truly be revoked, the normal Vault revocation function can be used; alternately, a root
token can be used to revoke the certificate using the certificate’s serial number. Any revocation action
causes the CRL to be regenerated. When the CRL is regenerated, any expired certificates are removed

from the CRL (and any revoked, expired certificates are removed from secrets engine storage).

This secrets engine does not support multiple CRL endpoints with sliding date windows; often, such
mechanisms have the transition point a few days apart, but this gets into the expected realm of the actual
certificate validity periods issued from this secrets engine. A good rule of thumb for this secrets engine
would be to simply not issue certificates with a validity period greater than your maximum comfortable
CRL lifetime. Alternately, you can control CRL caching behavior on the client to ensure that checks

happen more often.

Often multiple endpoints are used to avoid an outage situation in the event where a single CRL endpoint
is down so that clients arent left without a response. Run Vault in HA mode, and the CRL endpoint should

be available even if a particular node is down.

Configure CRL/OCSP in Advance

The pki secrets engine serves CRLs from a predictable location, but it is not possible for the secrets
engine to know where it is running. Therefore, you must configure desired URLs for the issuing certificate,
CRL distribution points, and OCSP servers manually using the config/URLs endpoint. It is supported

to have more than one of each of these by passing in the multiple URLs as a comma-separated string

parameter.

Safe Minimums

Since its inception, the pki secrets engine has enforced SHA256 for signature hashes rather than SHAL.
As of 0.5.1, a minimum of 2048 bits for RSA keys is also enforced. Software that can handle SHA256

signatures should also be able to handle 2048-bit keys, and 1024-bit keys are considered unsafe and

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 17

are disallowed in the Internet PKI.

Token Lifetimes and Revocation

When a token expires, it revokes all leases associated with it. This means that long-lived CA certs
need correspondingly long-lived tokens, something that is easy to forget. Starting with 0.6, root and
intermediate CA certs no longer have associated leases to prevent unintended revocation when not

using a token with a long enough lifetime. To revoke these certificates, use the pki/revoke endpoint.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

18

Patterns: Managing Root Certificates

What is a Root Certificate?

As the backbone of a PKI infrastructure, a root certificate authority (CA) sits on the apex of the certificates’
trust hierarchy and is used to sign other certificates. A root certificate is a self-signed certificate
generated by the root CA that a) follows the X.509 standards in defining the public key certificate formats
and b) cryptographically signs intermediate and leaf certificates. This allows the capability to provide

a multi-level hierarchy in a chain of trust in an authentication model between clients /applications to

validate a trusted source for machine identity.

Vault PKI Root CA Anti-Patterns

External CA as a Public Signing Authority

Vault's PKI Engine aims to provide internal PKI certificate issuance only and is not meant for public web
applications in securing TLS traffic for applications that are externally accessible. Hashicorp recommends
leveraging publicly-trusted CAs (e.g. Geotrust, Verisign, Digitrust) to sign the application CSR to generate
external-facing certificates. Vault's pluggable framework allows integration to these external CAs using a

built in plugin like the Venafi Secrets Engine or writing your own using the custom plugin framework.

The benefit of having Vault broker certificates from external CAs is simplifying the DevOps process with a

single workflow to:
1. Allow a variety of authentication through different methods
2. Enable ACL policy templates to authorize on permissible certificates to be generate
3. Utilize a uniform set of APIs for for automation

4. Conform to a unified logging and auditing source of the certificate lifecycle trail for troubleshooting

and compliance

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 19

https://www.vaultproject.io/docs/secrets/venafi
https://learn.hashicorp.com/tutorials/vault/plugin-backends

The Root CA as an Issuing CA

While the Vault root CA (/pki/root/generate: type) can also generate leaf certificates without an
intermediate CA by setting the allowed domains=true to its assigned role, this is not a recommended
deployment as there’s no layered protection on the root CA certificate in the event of a compromise.
The recommendation is to separate the issuing CA to another Vault deployment or PKI path and only

leverage the root CA PKI path to sign the intermediate CSRs.

When Vault should Manage the Root CA(s)

In a production environment, the recommendation is to use an external Root CA to sign the intermediate

CA that Vault uses to generate certificates.

Hashicorp recommends using the pki secret engine’s root CA in non-production environments

such as development and staging that reflects as closely as possible your production CA setup. For
production environments, Hashicorp recommends leveraging an organization’s existing root/issuing CA
that leverages additional validation (e.g., Active Directory Domain Services), policy management, and

compliance management.

This is not to say that Vault is not used in production by organizations. On the contrary, there are
instances where Vault is used as the Root CA in tandem with the HSM and Entropy augmentation that

protects data both at rest and in-flight for compliance.

The pki engine’s root CA runs in standalone mode where it does not require domain services and is
mainly intended as a CSR signing authority to the pki Engine’s intermediate CAs to increase automation
in non-production environments. In most cases, requesting a CSR to be signed in production

environments requires manual policy approvals that limit the velocity.

The initial motivation for the Vault pki Engine was the generation of short-duration client and server
certificates for mutual authentication, rather than the generation of certificates for a larger purpose such
as PKl infrastructure. After receiving multiple requests from the Vault community, the feature was created

that allows an entity to generate an internal self-signed CA that allows:

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 20

1. A complete end to end automation in certificate generation and CSR Signing

2. Defining certificate constraints (e.g., Pathlength via BasicConstraints - which is the number of

allowed CAs in the path) as well as stronger protection exposing the private keys.

The Vault Root PKI path acts as a standalone CA where it does not require any additional validations
like domain membership (e.g. Active Directory Domain Services) as part of the PKI infrastructure

management of certificates.

Lifecycle Management

The lifecycle of a root certificate goes through the following phases:
1. Preparation
2. Root Generation

3. Certificate Expiration, Renewal, and Revocation

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

21

Preparation

At a minimum, defining the Common Name (CN) is required. Optionally, gathering other Distinguished
Name fields like Organization (O), Organization Unit (OU) is considered best practice to accurately reflect
your registered organization information in the enrollment process. Please see recommendations below

on typical configurations referring to key length and cipher.

Root Certificate Generation

In this phase, the creation of the root CA involves a three-step process within Vault:

—$ vault secrets enable pki

—$ vault secrets tune -max-lease-tt1=8760h pki

—$ vault write pki/root/generate/internal \

common_name=hashidemos.com \
tt1=87606h format=pem_bundle \
private_key_format=pem \
max_path_length=1 \
other_sans="2.5.4.5;utf8:*" \

--format=json

Success! Enabled the pki secrets engine at: pki/
Success! Tuned the secrets engine at: pki/
{

“request id”: “aaalldf3-887c-blcf-55ee-1652fca709f2",

“lease id": “”,

“lease_duration”: 0,

“renewable”: false,

“data”: {

“certificate”: “----- BEGIN CERTIFR§GATEX- - --\nMIIDRjCCAi6gAwIBAgIUYco/sI5e5DT/

ICLzYyoT8PqChz4wDQYJKoZIhvcNA..

YE+HWoYzUWadTiM1A8/Gdw9zSevBolgn\nvjIppcHrscebsCX4ZMdJtVtiqd8jNmoC+04=\n

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 22

“expiration”: 1638389843,

“issuing ca”:
BRI BEGIN CERTIFICATE----- \nMIIDRjCCAi6gAwIBAgIUYco/sI5e5DT/
ICLzYyoT8PqChz4wDQYJKoZIhvcNA. .
YE+HWoYzUWadTiM1A8/Gdw9zSevBolgn\nvjIppcHrscebsCX4ZMdJtVtiqd8jNmoC+04=\n

“serial_number”:
“6l:ca:3f:b0:8e:5e:e4:34:ff:20:22:f3:63:2a:13:f0:fa:82:87:3e”
3
“warnings”: null

}

Another option is to create a self-signed certificate and private key outside of Vault (e.g. via OpenSSL,
cfssl, etc.) and import this through Vault via the pki/config/ca path. This would require a JSON
payload that concatenates both the cert and the private key. Please note that when parsing the certificate

from the JSON output, the newline “\n” escape character needs to be parsed correctly to maintain the

proper certificate format. For further details, please see the “Submit CA Information” section on Vault
PKI API.

Certificate Expiration, Renewal, and Revocation

Vault automatically revokes the generated root at the end of its lease period (TTL), and the CA certificate

signs its own Certificate Revocation List (CRL).

The root certificate can be renewed out-of-band by creating a self-signed certificate using the existing
private key and submitting the newly created PEM bundle through the /pki/config/ca path to replace

the existing one while maintaining the chain of trust.

Root CA certificates cannot be revoked and added to the CRL using the /pki/revoke path by virtue of
being self-signed and the topmost trusted identity of the entire chain. In the event that a revocation event
is required, replacing the CA information with a new CA bundle (via submit or through regeneration after

deleting the root) is recommended.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 23

https://www.vaultproject.io/api-docs/secret/pki#submit-ca-information

Common Configurations

Securing the Vault CA using an HSM

Vault supports the concept of “Seal Wrap,” which provides FIPS KeyStorage-conforming functionality

for Critical Security Parameters such as the CA key. Seal wrapping facilitates the concept of envelope

encryption, which simply provides another layer of encryption by the HSM on top of Vault's encryption

barrier via PKCS#11 version 2.20+. For the root PKI mount enabled in Vault, both the root certificate and

private key are re-encrypted and stored back into Vault's storage (e.g. Raft or Consul).

Encrypt side

Vault Cryptographic
Barrier

Decrypt side

Sent to HSM for Returned wrapped HSM
wrapping from HSM

Vault
Internal
Data

Vault
Internal
Data

Vault

Internal
Data

Stored in Vault
backend storage

Vault
encrypts

Sent to HSM Returned wrapped
to unwrap from HSM

Vault
Internal
Data

Vault

Vault
Internal
Data

Internal
Data

f

Retrieved from
Vault storage

Vault
decrypts

;,@_J

*In each secrets engine, some
values are explicity marked as
CSP (critical security parameters)
so they will be sealwrapped by
default, unless you turn it off.

Vault Backend
Storage

KEY

O Unencrypted data
O HSM seal wrap key encrypted
O Vault encryption key encrypted

Securing Vault with an HSM

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

24

https://www.vaultproject.io/docs/enterprise/sealwrap

In addition, if the HSM in use is FIPS 140-2 compliant, Vault stores Critical Security Parameters (CSPs)
for the root PKI mount in a manner that is compliant with the FIPS 140-2 guidance for both Key Storage
(FIPS 140-2 1G 7.16) and Key Transport (FIPS 140-2 |G D.9). For further details on the guidance for Key
Storage and Key Transport, please refer to the NIST Implementation Guidance for FIPS 140-2 and the

Cryptographic Module Validation Program guide.

Securing the Root Private Key Generation

Generating the root certificate and private key after the creation of the PKI mount provides the
administrator two options: using either the exported type, which returns the private key in the response,
or using the internal type, which doesn' return the private key in the response or later in response to
CLI or APl commands. Due to the highly sensitive nature of the cryptographic material and the impact
of the root private key, it is highly recommended to set the generation to internal and leverage the HSM

integration for seal wrapping.

As an example, Integrating an HSM such as Thales with Vault requires the following modification to

Vault's configuration file (config.hcl):

PKCS11 seal
seal “pkcsll” {
lib = “<path to cryptoki library>"
slot = “<slot number>"
pin = “<partition password>"
key label = “HashiCorp”

hmac_key label = “HashiCorp_hmac

generate key = “true”

Key Length and Algorithm Selection

The root generation endpoint (/pki/root/generate /:type) allows the capability to select a desired cipher
(RSA or ECDSA) with a corresponding key size. Per NIST recommendations for a CA asymmetric key

pair used to sign and verify certificates, the recommended key length and cipher are as follows:

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 25

https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://thalesdocs.com/dpod/integrations/hashicorp/hashicorp_integration/index.html

* When using RSA, recommended minimum key length are 2048 or 3072bits

vault write -field=certificate pki/root/generate/internal \
common_name="hashidemos.io” \

tt1=87600h \

key type=rsa \

key bits=3072

* When using ECDSA, recommended minimum key lengths are Curves P-256 or P-384

vault write -field=certificate pki/root/generate/internal \
common_name="hashidemos.io” \

tt1=87600h \

key type=ec \

key bits=384

Hashicorp recommends ECDSA cipher with the key length specified above as being a newer algorithm
(2005); it offers the advantage of better key complexity (useful against brute force attacks) and
performance as the key length is much smaller than that of RSA to offer the same protection. For
example, to provide 128-bit security, RSA needs a key length of 3072 while ECC provides the same
protection with 384 bits.

Root Certificate Validity Period

A root certificate’s validity period can be defined either through the PKI engine mount (/pki) or through

the root certificate generation endpoint:

Via secrets mount endpoint (sys/mount):
vault secrets tune -max-lease-tt1=8760h pki

Via the PKI Engine endpoint (/pki/root/generate):

vault write -field=certificate pki/root/generate/internal \
common_name="hashidemos.io” \
tt1=87600h \

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 26

https://www.vaultproject.io/api-docs/system/mounts
https://www.vaultproject.io/api-docs/secret/pki#generate-root

While Hashicorp recommends short-lived leaf certificates, root certificates generally have a longer
validity period since they are the top-most dependency in the verification of the chain. The primary
consideration for either a rekey or rotation of the certificate depends on an organization’s sensitivity to
the risk for potential malicious activity upon exposure of the CA’s corresponding private key. Vault can

mitigate the risks of longer-lived CA keys with the following safeguards:

1. Non-exposure of the private key upon generation by using the internal type.
2. Additional layered encryption with an HSM.
3. A defined policy to rotate both the root certificate and its private key upon expiration.

4. Provide additional gating capabilities for multi-approval access to the mount using Control Groups,

simulating an access pattern of an offline certificate authority.

Defining Root CA Constraints

Per best practices, CA constraints are typically delegated to the sub-CAs (e.g. policy CA). Basic
Constraints, CA Path Length, and Name Constraints are discussed in detail in section 3.2.3 for “Managing

Intermediate Certificates.”

Enabling Entropy Augmentation

Entropy augmentation allows Vault Enterprise to supplement its system entropy with entropy from

an external cryptography module. By definition, entropy is a measure of randomness for generating
cryptographic material in a system. By default, Vault sources its randomness via the underlying
operating system (/dev/urandom) via the GolLang crypto libraries and uses a cryptographically secure
random number generator. Hosts have a low entropy pool for a source of randomness and weaknesses,
such as utilizing pseudo-random generation that can potentially allow a compromise. With an external
source such as an HSM, we can now take advantage of a stronger variability with a much larger pool of
random data to leverage true random number generation when securing Vault crypto barrier as a whole
in the generation of keys such as Vault's master key, root tokens, and auto-unseal. For more information,

please refer to the list of Critical Security Parameters protected by this feature.

To enable entropy augmentation, the following conditions must be met:

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

https://www.vaultproject.io/docs/enterprise/control-groups
https://www.vaultproject.io/docs/enterprise/entropy-augmentation

1. The Vault Enterprise HSM binary is installed since both Seal wrapping (HSM) and Entropy

Augmentation are enterprise features
2. An existing HSM and Seal Configuration in Vault's server configuration

3. Enable the feature in the server configuration:

entropy “seal” {
mode = “augmentation”

}

4. Upon enabling the Root CA PKI mount, the -seal-wrap and -external-entropy-access flags

must both be set:

vault secrets enable \
-max-lease-tt1=8760h \
-seal-wrap \
-external-entropy-access \

pki

Monitoring Recommendations

We recommend monitoring Vault's audit log and alerting on the following key events. Set Signed and
Generate Intermediate operations should only happen once during the typical CA lifecycle; other

operations are infrequent admin actions.

Operation Example path and data snippets

Generate Root: “path”: “root ca vl/root/generate/internal”

This generates a
new public/private

key pair for the CA.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

28

Create /Update

Role:

This allows creating
new endpoints to
sign or generate
certificates. Some
of the attributes
could be unmasked
to ensure they are

expected.

Set URLs:

Configure URLs that
are encoded in leaf

certificates.

“path”: “pki/roles/example-dot-com”,
“data”: {

“allow subdomains”: “hmac-sha256:2a4d34b8b4cae8625b75f4d
38fa35e829d149649d22429cda5addbc204db5caf”,

“allowed domains”: “hmac-sha256:aeeb6c1d36b621d3d7a5302f
b1f8a417edf7c788188298fd2d9dalc19424e921",

“allowed domains template”: “hmac-sha256:2a4d34b8b4cae86
25b75f4d38fa35e829d149649d22429cda5addbc204db5caf”,

“allowed other sans”: “hmac-sha256:09408da5dc714fb83ac51
4dfd1aa618098fb5771832601fbebab277de461b814",

“max_ttl”: “hmac-sha256:ec4ad65694ac84acdlaa53035dc42118
6f6007899808764cef1354193a6174f5",

“policy identifiers”: “hmac-sha256:0e9e0148ce60b452956970
€c94f61886df36f3de892b72abd64f6b52291acldeb”

“path”: “pki/config/urls”,
“data”: {
“crl distribution points”: “hmac-sha256:47d4121e9ea32ebc
€66133243182a5956f76b979a43648cadcfc20fld342e41a”,
“issuing certificates”: “hmac-sha256:70288776790b039dfbf9
7¢368dbe851e52004649804a957c851631c47c85fd42”

}

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

29

Issue:

Generate an
intermediate or leaf

certificate

“path”: “pki/issue/example-dot-com”,
“data”: {
“--format”: “hmac-sha256:clad2434b3c0df12345d24bd12c5b03
8bf84319dc834cd445ec608c0el7d39ce”,
“common_name”: “hmac-sha256:e7d674718d78d627e25998c41495
c0334d8dfbbd7a8fb4a29e342cee8eachf84”
}

“response”: {
“mount_type”: “pki”,
“data”: {
“certificate”: “hmac-sha256:518814837cf3a7063b026927e3850
5f85dec25516fc5a2bec51e78b5a54f60ad”,
“expiration”: 1610658846,
“issuing_ca”: “hmac-sha256:365049ef56fela7d473524abdab70
8b7c8442027a18197f64f8b8558749183a2",
“private_key”: “hmac-sha256:e8824ef5el3c93e7abf9lec43b97
bf53ab74a938a6276c21db0152eb3aec8d7d”,
“private_key_type”: “hmac-sha256:0df8353207683e97ad685a6
ed1339bfdb328aa3eeleed77f52c522e7fcef2983”,
“serial_number”: “hmac-sha256:261d3a7b00c0e68ac0d77e877f
7391af4c704b56€4887445a92e7806299684 19"
}

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

30

Other CA-related events not listed here, such as Generate Certificates, should be logged, but an alert

does not need to be generated every time. Below is an example Audit snippet from Intermediate set-

signed:

{
“time”: “2021-01-11T21:09:52.86336Z",
“type”: “response”,
“auth”: {

“client_token”:
“hmac-sha256:4021fb2a3d2d9f58d262182a4fabff76a187ba2923cdc3d626a52c4df3cfaz2dl”,

“accessor”:
“hmac-sha256:dffafb11324d0ad5db2ac8b732f8a27caab3abc62b58cac8fce8446¢cbcd9412f”,
“display name”: “token”,

“policies”: [
“root”
I,
“token policies”: [
“root”
I,
“token_type”: “service”,
“token_issue time”: “2021-01-11T16:07:57-05:00"
}
“request”: {
“id”: “9775cf64-bf2b-91dd-e503-b357c679ffbc”,
“operation”: “update”,
“mount type”: “pki”,
“client_token”:
“hmac-sha256:4021fb2a3d2d9f58d262182a4fabff76a187ba2923cdc3d626a52c4df3cfa2dl”,
“client token accessor”:
“hmac-sha256:dffafbl11324d0ad5db2ac8b732f8a27caa63abc62b58cac8fce8446cbcd9412f”,

“namespace”: {

“id”: “root”
I
“path”: “pki/root/generate/internal”,
“data”: {

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

“--format”:
“hmac-sha256:clad2434b3c0df12345d24bd12c5b038bf84319dc834cd445ec608chel7d39ce”,
“common_name” :
“hmac-sha256:5cf75da92d5529865c8b7549d0d3a7d41eff35ca%9a4776aa9b4a2b7c6dc907fc”,
“format”:
“hmac-sha256:¢c3d1265d9907e963317853¢c3d14d7951890728addbleae7346027409db43950 ",
“max_path_length”:
“hmac-sha256:e6e896a7fab41914aac7cac0e79d096d49bba53f801f308e46b6d581cf0463fbe”,
“other_sans”:
“hmac-sha256:09408da5dc714fb83ac514dfd1aa618098fb5771832601fbeba6277de461b814",
“private key format”:
“hmac-sha256:47a63f2ed3ec3ef88ce95571f9bd4f7967f1d2cdac5e514ab303cebael50018 ",
“ttlr:
“hmac-sha256:3dal6e92e062617194ac5a28e2321e6cd48691869292f5e9761f8c6155fddd16”
3
“remote_address”: “127.0.0.1"
I
“response”: {
“mount_type”: “pki”,
“data”: {
“certificate”:
“hmac-sha256:365049ef56fela7d473524abdab708b7c8442027a18197f64f8b8558749183a2",
“expiration”: 1641935392,
“issuing ca”:
“hmac-sha256:365049ef56fela7d473524abdab708b7c8442027a18197f64f8b8558749183a2",
“serial_number”:
“hmac-sha256:eef7f137329081f565723755413104d67f24cfa516e60c2b3581499719581c45"”
}

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 32

Patterns: Managing Intermediate CA

An Intermediate CA is an authority that has its certificate signed by a parent CA. It follows the X.509
standards in defining the public key certificate formats and cryptographically signs other sub-CA
certificates, and generates leaf certificates. When used for the latter, an Intermediate CA is also an Issuing

CA. This section covers patterns for managing Intermediate CAs with the Vault PKI Secrets Engine.

CA Hierarchy and Recommendations
How many levels of intermediates are necessary?
+ Things to consider to make this decision if not a prescriptive opinion on layer numbers.
+ Topology and Subordinate CA Roles in Vault.
+ Cross-signing for two intermediates, failover for the root of trust, and related topics.
* Root CA as the issuing CA.

A CA Hierarchy entails having a Root CA and one or more levels of Intermediate CAs. We review some
of these design patterns below, starting with all CAs being inside Vault and also integrating with existing
CAs outside Vault.

1. Two CA Levels: For simple use-cases, having the root CA and one level of Intermediate CA is
sufficient. In this case, the Intermediate CA also becomes an issuing CA since it can generate leaf
certificates. Generally, there are multiple Issuing CAs - each corresponding to a project, LOB, or other

defined purpose.

2. Three CA Levels: For large organizations, two CA levels can be challenging to scale since each
Issuing CA must be configured correctly to enforce organizational security policies. Adding another

layer of Intermediate CA allows for better flexibility.

With this approach, one or more intermediate policy CAs can be introduced to allow central security
teams to configure X.509 policies such as Basic Constraints, Key Usage, and Extended Key Usage.
Another important configuration is the Path Length which enforces the CA hierarchy depth of valid
certificate paths. We recommend that security policies be established for CA Path Length and

enforced via CA configuration.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 33

We examine the above options further in the section Common Intermediate Certificate Management

Patterns. Issuing CA management can be delegated to LOB Admins.

These approaches are shown in the example below; each CA is a new instance of the PKI| Secrets

Engine mounted on a different path. As shown in the next section, often the Root CA, and sometimes

the Intermediate Policy CA, reside outside of Vault in an existing PKI system.

ROOT CA

Organization Root
CA V1 path:
root_ca_vl/

INTERMEDIATE CAS

LOB 1 Issuing CA
key ID: AAAA
*lob1.hashidemos.io
path: lobl_ca_vl/

LOB 1
Leaf cert

LOB 1 Issuing CA
key ID: BBBB
*lobl.hashidemos.io
path: lobl_ca_vl1/

LOB 2
Leaf cert

ONE LAYER OF INTERMEDIATE CA

ROOT CA

Organization Root
CA V1 path:
root_ca_vl/

INTERMEDIATE CAS

Organization Policy
CA V1 path:
root_ca_vl/

T

LOB 1 Issuing CA LOB 1 Issuing CA
key ID: AAAA key ID: BBBB
*lob1.hashidemos.io *lobl.hashidemos.io
path: lobl_ca_vl/ path: lobl_ca_vl1/

I I

LOB 1 LOB 2
Leaf cert Leaf cert

TWO LAYERS OF INTERMEDIATE CA

Two and Three-Level CA Hierarchy Examples

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

34

https://docs.google.com/document/d/167_5d3UxQNpqQcNF2v6yYj0O4RxSr5SEXswTftdlM2o/edit#heading=h.mlysktbut2yn
https://docs.google.com/document/d/167_5d3UxQNpqQcNF2v6yYj0O4RxSr5SEXswTftdlM2o/edit#heading=h.mlysktbut2yn

3.Issuing from a Root CA: In this design, there is a single self-signed CA which is both the Root and
the Issuing CA. While we do not recommend this pattern for production use, Vault does support
it. Similar to Intermediate CAs, one or more Roles can be defined under the Root CA for certificate
issuance. This pattern may be used for simple use-cases that are limited in scope, such as a

development environment for a single project.

As a best practice, Root and Issuing CAs should have different security policies which cannot be
implemented in this design. Unlike a tiered approach where Issuing CAs are limited to administrative
boundaries, the blast radius of a private key compromise event with this pattern is greater. Therefore

when promoting to UAT, we recommend using one of the tiered approaches discussed earlier.

Other designs may include additional CA levels to allow for further separation of security controls and

administrative tasks. Note that each additional level of CA will introduce more administrative complexity.

Integrating with Existing CAs

Some use-cases require that the root of trust is anchored within an existing company Root CA outside of
Vault. For example, often the Root CA has key protection controls that require the CA and its key pair to

be offline. Vault Intermediate CAs can be integrated with existing company Root or Intermediate CAs.

+ One benefit of this design pattern is that the organization Root and Intermediate CA certificates are
likely to be present in application truststores already. Only the Vault Intermediate CA needs to be
added to complete the chain of trust. Clients will benefit from rapid certificate issuance using Vault's

APl and Authentication framework.

- If integrating with company CAs, there may be additional security requirements placed on your

overall Vault deployment.

Generally there are two patterns for integrating with existing CAs depending on where in the trust chain
this integration happens: the Root CA outside Vault, or multiple CAs outside Vault. These are shown in the

diagram below.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 35

External CA Intergration Workflow

TWO INTERMEDIATE
CAs IN VAULT

Root CA

T

Intermedia CA
policy_ca_vl

T

Issuing CA
inter_ca_vl

T

Leaf Certificate

\4

ONE INTERMEDIATE

CA IN VAULT
Root CA
Organization root CA
signs CSR for Vault

intermediate CA

Intermedia CA

T Organization intermediate
CA signs CSR for Vault
intermediate CA
Issuing CA
inter_ca_vl
Leaf Certificate

la. If creating a new CA in Vault: Use the Generate Intermediate endpoint to create the RSA key pair

and the CSR. In the snippet below, we have specified the key type to be internal; therefore, the

private key is not returned.

ENRNEN

Mount Secret Engine, generate Keys and CSR

vault secrets enable -path=inter ca vl pki

vault write -format=json inter_ca vl/intermediate/generate/internal \

common_name=dev.hashidemos.io > inter ca vl.json

cat inter_ca vl.json | jgq -r .data.csr > inter _ca vl-csr.pem

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

https://www.vaultproject.io/api-docs/secret/pki#generate-intermediate

1b. Or, if using an existing Vault CA: Use the previously generated CSR from the Generate Internal
API call, or use openss1 to generate a new CSR. The example below shows how to generate a
new CSR using openss1 and the private key.

openssl req -new -key inter ca vl-privatekey.pem -out inter ca vl-csr.pem

[NENEN

2. Sign the CSR using the existing parent CA. These steps vary depending on the existing PKI in use

and are out of scope for this whitepaper.

3. Use the Set Signed Intermediate endpoint [link] to associate the CA certificate with Vault CA. We are
assuming that the signed certificate was saved to the file: inter_ca_vl.certpem.

[NENEN

Use set Signed Intermediate to associate the CSR

vault write inter ca vl/intermediate/set-signed certificate=@./inter ca vl.cert.pem

[NENEN

4. Display the CA certificate to validate all that all the fields are correct

curl -s “$VAULT ADDR/vl/inter ca vl/ca/pem” > inter ca vl ca.pem \

&& openssl x509 -in inter ca vl ca.pem -text -noout

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
21:81:69:el:5c:c2:f9:5a:04:2f:66:b1:89:ad:2f:d4:8b:0a:75:62
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=hashidemos.io
Validity
Not Before: Dec 14 03:16:12 2020 GMT
Not After : Dec 10 02:16:12 2021 GMT

Subject: CN=dev.hashidemos.io

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 37

https://www.vaultproject.io/api-docs/secret/pki#set-signed-intermediate

CA Hierarchy Design Recommendations

* Root CA usage: We recommend limiting the Root CA for only signing Intermediate CSRs. Following

this recommendation minimizes the chance of the Root CA private key is exposed.

» If using Vault as the Root CA, when possible, the CA type should be internal - this means that
the private key is never revealed or exported. This setting also implies that during CA succession,

the private key must be replaced with the new CA. Please see the CA Succession section for

more details.

= Security of the CA hierarchy: A compromise within the CA chain can compromise the entire chain of

trust. Vault provides multiple ways to ensure the security of the CA hierarchy:
+ Access to configure the Root and Intermediate CAs should be controlled via Vault ACL Policies.

» The Root CA and first levels of Intermediate CAs may be placed in a Vault Namespace separate
from Issuing CAs. This ensures a degree of isolation from the Issuing or LOB CAs used by

applications.

- Consider applying Vault Enterprise Control Groups for major lifecycle milestone operations such
as Set Signed Intermediate, Generate Root, Generate Intermediate, and Sign Intermediate to

mitigate potentially destructive operations.

* Multiple Issuing CAs: Issuing CAs should serve their own functional domain; there may therefore
be many of them present within an Organization based on Administrative boundaries such as Lines
of Business. This limits the blast radius of the affected chains of trust in case of a compromise or
misconfiguration. Vault has a range of CA configuration options to customize each CA with a precise

security policy. These are further examined in section Common Intermediate Cert Management

Patterns.

Intermediate CA Anti-patterns

» Short-lived CAs: CA certificates are usually valid for one or more years. Using short-lived CA
certificates that are valid for days or months will incur additional operational overhead. We
recommend establishing organization policies on CA certificate lifetimes. Below are some example

CA lifetimes from Let's Encrypt [link |

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 38

https://www.vaultproject.io/docs/enterprise/control-groups
https://letsencrypt.org/certificates/

* Root ISRG Root X1 and ISRG Root X2 have validity periods of 20 years.

- Intermediate issuing CAs RSA Let's Encrypt Authority X3, Let's Encrypt R3 and Let’s Encrypt E1

all have validity periods of 5 years.

PKI use cases for internal communication may have shorter Issuing CA lifespans. For Issuing
CAs, you would want to start issuing from the new CA at a duration before the previous expires.
If the private key of the Issuing CA changes, then there is an additional burden of updating client

truststores with new certificate chains.

Common Intermediate CA Management Patterns

Continuing from the patterns mentioned in earlier sections, the following configurations define how
to enable Vault features that correspond to the X.509 specification to control how an intermediate CA

functions when issuing additional sub-CAs or Leaf certificates.

= Basic Constraints

- Basic Constraints is an X.509 extension in a certificate that defines whether the certificate itself is

a certificate authority or a leaf /end entity.

- For intermediate certificates, generating a certificate signing request (CSR) for the root CA

automatically embeds a Basic Constraints with the value CA:true

X509v3 extensions:
X509v3 Key Usage: critical
Certificate Sign, CRL Sign
X509v3 Basic Constraints: critical

CA:TRUE, pathlen:1
- If another CA is expected below the current intermediate CA in a multi-tier PKI configuration, the
CSR signing process automatically assumes that the certificate should be used as a certificate

authority and adds the Basic Constraints.

+ On the issuing CA for the leaf certificates, the certificates generated will not have an explicit
Basic Constraints defined in the extension created through the role. In order to define this in the

certificate, set the flag basic_constraints_valid _for_non_ca to true. This will allow validation for

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 39

the non-CA certificate to issue child certificates:

vault write pki int/roles/hashidemo-dot-com \
allowed _domains=hashidemos.com \
allow subdomains=true \
max_tt1=4380h \

basic_constraints valid for_non_ca=true

Expected Result:

X509v3 Basic Constraints: critical
CA:FALSE

- Path Length, by definition, is the number of Certificate Authorities allowed in the chain of trust.
In the PKI hierarchy, this is typically set on the first sub /intermediate CA that is signed by the
root CA. The Path Length is not defined on the Root CA in more complex environments to allow

flexibility.

+ The parameter max_path_length indicates the CA depth encoded in the certificate; the
default is -1, which means there is no limit. A path length of 2 means that a sub-CA can have a
maximum of two CAs underneath it in the hierarchy, while a path length of O means that it can

only issue leaf certificates.

Encoded certificate:

X509v3 Basic Constraints: critical
CA:TRUE, pathlen:2

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 40

- If the CA has a path length of O, a CSR request for this CA will result in an error:

URL: PUT http://localhost:8200/v1/pki_int_a/root/sign-intermediate
Code: 400. Errors:

* signing certificate has a max path length of zero, and cannot issue further

CA certificates

Example: basic constraint in sub-CAs

External or
self-signed by Vault Root CA Per RFC 5280, path length is defined
(seperated via ACLs oo on the sub-CA below the root CA
and /or namespaces
CA: true
Pathlen: 1 sub-CAl
CA: true
sub-CA2
Pathlen: 0 Code 400 Error: signing certificate
has a max path length of zero, and
cannot issue further CA certificates
CA: false Leaf/End entity Leaf/End entity CA: true
’ certificate certificate Pathlen: nil

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

» Key Usage and Extended Key Usage

+ By definition, Key Usage defines the cryptographic operations that a certificate can do. Extended

Key Usage allows the security team to define the certificate’s purpose.

« Vault configures Key Usage for “DigitalSignature’, ‘KeyAgreement’, and “KeyEncipherment” by
default. Extended Key Usage defines both TLS Web Server and Client authentication

- Alternatively, we can also specify the Extended Key Usage through its corresponding object

identifier (OID). For example:

Server authentication - 0ID 1.3.6.1.5.5.7.3.1
Client Authentication - 0ID 1.3.6.1.5.5.7.3.1

+ Please refer to the Object Identifier Repository for further information

+ Key Usage and Extended Key Usage is defined in Vault through the corresponding PKI mount

role name, e.g., pki_int/roles/hashidemo-dot-com
+ Key Usage in Vault
+ To define an extended key, the key_usage needs to be supplied as part of the parameter:
vault write pki _int/roles/hashidemo-dot-com \

allowed_domains=hashidemos.com \

key_usage="DigitalSignature,KeyEncipherment

For reference on the list of Key Usage, please see the golang KeyUsage type.

+ Extended Key Usage in Vault

- To define an extended key, the ext _key usage orthe ext_key usage oids needs to be

supplied as part of the parameter:

vault write pki_int/roles/hashidemo-dot-com \

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 42

http://oid-info.com/
https://golang.org/pkg/crypto/x509/#KeyUsage

allowed domains=hashidemos.com \

ext_key_usage="0CSPSigning”

-or-

vault write pki_int/roles/hashidemo-dot-com \
allowed domains=hashidemos.com \
ext_key usage_oids="1.3.6.1.5.5.7.3.9"

For reference on the list of Extended Key Usage, please see the golang ExtKeyUsage type.

+ TLS Web Server Authentication and TLS Web Server Client Authentication are enabled by
default. In order to remove them from the certificate, the server_flag (TLS Web Server) and
client_flag (TLS Client Server) needs to be disabled.

vault write pki_int/roles/hashidemo-dot-com \
allowed domains=hashidemos.com \
server_flag=false \

client_flag=false

- Additionally, we can use email _protection_flag and code_siging_flag to enable the Email

Protection and Sign Executable Code extended keys, respectively.

- These flags are additive, which means we can selectively turn on the Extended Key Usages

individually or all together to encode in the certificate.
= Certificate Policy Identifier

- This section defines how to declare policies about PKI usage using Policy Identifiers.

vault write pki/roles/example-dot-com \

allowed domains="hashidemos.com” \
max_ttl=72h \
policy_identifiers="1.3.6.1.4.1.8072.2.1.1, 1.3.6.1.4.1.8072.2.1.2"

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 43

+ Currently, there is no facility to include policy qualifiers, either the Certificate Practice Statement

(CPS) Pointer or User Notice, as part of the policies extension.

= Name Constraints

» Name Constraints policies provide restrictions in a PKI| to control subject names in issued
certificates. Vault PKI provides a simple implementation of Name Constraints to restrict the
DNS Name:

X509v3 Name Constraints: critical
Permitted:
DNS:hashidemo.io
DNS:vault.io

+ The primary purpose is to allow a sub-CA to issue a CSR with a constraint to allow it to restrict

issued /signed certificates with domains /subdomains within its scope.

- Name Constraints can be defined during generation of a root CA or through signing a CSR

request using the permitted dns_domains parameter:

vault write pki int/root/sign-intermediate \
csr=@pki_int a child intermediate.csr \
permitted_dns_domains="hashidemos.io,vault.io” \
format=pem bundle tt1=43800h

* The permitted dns domains parameter needs to be set on the issuing CA generating the

certificate. In a multi-level PKI environment, this setting is not propagated to the lower sub-CAs.

- If a certificate is issued outside the scope of the Name Constraint, the following error occurs:

vault write pki int child/issue/new leaf \

common_name=blah.nomad. com

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 44

error 47 at 0 depth lookup:permitted subtree violation

- More complex Name Constraints syntax and components (multi-level subtrees, other SANS

extension, Processing rules) are currently out of scope.

* HashiCorp recommends setting Name Constraints when requesting a CSR to attest the validity
of the scope of the CA. This setting can be layered with other controls to restrict domains/
subdomains on the role via allowed_domains and allow_glob_domains when issuing end-

entity certificates.

* Subject Name and Subject Alternative Name extension

- We can define the SANs in the pki/role before issuing an X.509 certificate as alt_name
(Hostnames and email addresses SANs), ip sans oruri_sans (e.g. spiffe//trust-domain/

ns/test-namespace/svc/...)

* When defining issuing policies for the CA, the following attributes in the role provide a proactive
approach to governing the scope of certificates issued. Note as well that each of the properties

can be stacked when defined:

- A CA administrator can specify a list of allowed domains for the issuing role and create a
wildcard certificate using allow_subdomains on the list. Enabling these flags determines
the extent of the certificate’s scope, either as a wildcard which allows multiple hosts to
leverage the same certificate template or a SAN certificate, capable of being deployed

across domains.

+ We can further refine the list of domains to use glob patterns such as

‘web-*.hashidemos.io".

- Before restricting the certificates to the desired domain pattern, a permissive policy like
allow_any name can be used to test other parameters first (e.g. keyUsage). We can also

use this parameter as a means of troubleshooting as needed.

+ Other controls like enforce _hostnames and allowed ip sans are enabled by default and
can be turned off as needed for further refinement. Reversely, we can specify a value for the

allowed uri_sans to limit what's allowed in the uri_sans.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 45

https://github.com/begin/globbing/blob/master/cheatsheet.md

- In some scenarios, additional attributes or policies are needed to be satisfied in the certificate
in order for an application that needs to be defined either in the Subject or SANs extension.

Examples are:

- To add an OID attribute for ElasticSearch Search Guard to determine valid trusted

connections incoming nodes
- Additional serial numbers
- Additional email addresses

Vault can accommodate these requirements by defining the respective OIDs of the desired

attributes using the allowed other sans field:

Example of adding additional 0IDs for User Principal Name and Serial Number

vault write pki/roles/example-dot-com \
allowed domains="hashidemos.com” \
max_ttl=72h \
allowed_other_sans-"1.3.6.1.4.1.311.20.2.3;utf8:1.2.3.4.5.5,
2.5.4.5;utf8:ff:ee:dd:cc:bb:aa:99:88:77:66:55:44:33:22:11:00"

Hashicorp advises that you verify your application requirements and how it implements
certificates as part of its overall workflow. The Search guard example above can be referenced

under the “TLS for Production” section of the Search Guard documentation.

* Inclusion of the Root Certificate in the CA Chain

+ To verify the chain of trust, the verification process requires the entire certificate chain to the CA
cert file. The public root certificate is not included in the chain since the best practice is to add it
separately in the end entity's truststore. For example, popular browsers like Chrome, Firefox,

and Safari have root certificates installed by default in the System Roots keychain:

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 46

https://docs.search-guard.com/latest/tls-in-production

Keychains
@ login
iCloud
{5 System

Corertificate

o

. :m /Library/Keychains/System.keychain

Category
A All ltems
/.. Passwords
Secure Notes
[=l My Certificates
I Keys
2 certificates

Name

il i s i o i

=

2] E-Tugra Certification Authority

=

=] EE Certification Centre Root CA
=] Entrust Root Certification Authority

D-TRUST Root CA 3 2013

D-TRUST Root Class 3 CA 2 2009
D-TRUST Root Class 3 CA 2 EV 2009
Developer ID Certification Authority

DigiCert Assured ID Root CA
DigiCert Assured ID Root G2
DigiCert Assured ID Root G3
DigiCert Global Root CA
DigiCert Global Root G2
DigiCert Global Root G3

DigiCert High Assurance EV Root CA

DigiCert Trusted Root G4
DST Root CA X3

Echoworx Root CA2

AAA Certificate Services
Root certificate authority
Expires: Sunday, December 31, 2028 at 6:59:59 PM Eastern Standard Time
@ This certificate is valid

~ Kind
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Expires

Sep 20, 2028 at 4:25:51...
Nov 5, 2029 at 3:35:58 AM
Nov 5, 2029 at 3:50:46 AM
Feb 1, 2027 at 5:12:15 PM
Nov 9, 2031 at 7:00:00 PM
Jan 15, 2038 at 7:00:00...
Jan 15, 2038 at 7:00:00...
Nov 9, 2031 at 7:00:00 PM
Jan 15, 2038 at 7:00:00...
Jan 15, 2038 at 7:00:00...
Nov 9, 2031 at 7:00:00 PM
Jan 15, 2038 at 7:00:00...
Sep 30, 2021 at 10:01:15...
Mar 3, 2023 at 7:09:48 AM
Oct 7, 2030 at 6:49:13 AM
Dec 17, 2030 at 6:59:59...
Nov 27, 2026 at 3:53:42...

Example of Root CAs in an OS X System Root KeyChain (truststore)

- The CA cert file can be deployed through one of the following methods:

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

- An out-of-band process upon the root cert generation using deployment (e.g., Terraform,

Packer) and configuration management tools (e.g., Ansible, Puppet) and deploying this

upon resource creation in the application truststore. An example would be to import the

CA Cert to the Java Key Store using the “keytool -import -keystore clientkeystore’

command.

- Another option is to add the CA Cert as part of the ca_chain when issuing a certificate. By

default, the CA Cert is omitted from the ca_chain of intermediate and leaf certificates. This

property can be set using the following:

vault write pki_int/config/ca \

pem bundle=@ca_ bundle.pem

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

47

where the pem_bundle file contains the concatenated root certificate and private key.

Constructing a unified CA chain pem file

Root CA
CN=hashidemos.io

T

Intermediate CA (Level 1)
CN=policy.hashidemos.io

T

mount: /pki

mount: /pki_int

Insert Root CA here

cat pki_int_child_private__key.pem Intermediate CA (Level 2) mount: /pki_int_child
intermediate _pki_int_child.cert.pem CN=issuing.hashidemos.io) -
cacert.pem > ca_bundle.pem
vault write pki_int_child /config /ca
pem_bundle=@ca_bundle.pem

Leaf Cert

CN=web.hashidemos.io

+ The deployment of the CA Cert depends on the application deployment process and revocation
methods. In the event that a root certificate is compromised in the first method, a separate
deployment push of the CA cert to the trust store and delivery of the new certificate is required
to establish the chain of trust. The second method provides a more streamlined deployment
through a unified ca_chain (as shown in the diagram above) but may violate an institution’s
security requirements to export the policy /issuing CA private key to install in a pem_bundle in

the intermediate CA configuration.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

48

CA Lifecycle Management

Each Intermediate CA typically has the following lifecycle stages.

Action

1. Create CA by
mounting the Vault

PKI Secrets Engine

2. Establish a chain

of trust

Steps

vault secrets enable -path=inter ca vl pki

- Generate key pair and the CSR

vault write -format=json inter ca vl/intermediate/generate/

internal common name=dev.hashidemos.io > inter ca vl.json
cat inter ca vl.json | jgq -r ‘.data.csr’ > inter ca vl.csr

- Sign CSR by the parent CA. This action depends on whether the parent CA is
in Vault or external (if Root CA, it signs itself)

vault write -format=json \
root ca vl/root/sign-intermediate \
csr=@./inter ca vl.csr \
common_name=dev.hashidemos.io tt1l=175206h | tee \
>(jq -r .data.certificate > inter ca vl.pem) \

>(jq -r .data.issuing ca > issuing ca.pem)

continued..

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

49

- Set the signed certificate for this CA

vault write inter ca vl/intermediate/set-signed certificate=@./

inter _ca vl.pem

- Distribute CA certificate to client trust stores
3. Configure the CA - Create one or more Roles that can be used to issue certificates or sign a CSR.

and create Rolesto Security policies are applied by configuring the CA. Use the Create /Update Role

Issue certificates endpoint

- Adjust TTLs for the CA. Please see the next section for more details on TTLs.

Create the appl Role

vault write inter ca vl/roles/appl \
allowed domains="dev.hashidemos.io” \
allow subdomains="true” \
max_ttl=24h

Adjust the default and max TTL for this role
vault secrets tune \

-default-lease-ttl=24h \

-max-lease-tt1=48h inter ca vl/roles/appl

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 50

https://www.vaultproject.io/api-docs/secret/pki#create-update-role
https://www.vaultproject.io/api-docs/secret/pki#create-update-role

4. Use CA to issue
leaf certificates or

sign certificates
(CSR)

5. CA Succession

- Clients log in to Vault and use the Sign Certificate or Generate Certificate
endpoints. The Generate Certificate endpoint encapsulates multiple steps:
generating the public and private key pair, the CSR, and signing the certificate by
the CA:

ENENEN

Generate a new certificate
vault write inter ca v1/issue/appl \

common_name=appl.dev.hashidemos.io

ENENEN

We recommend using the Generate Certificate endpoint where possible as there
are fewer steps for the client. In contrast, if the client has pre-created the key
pair and the CSR, the Sign Certificate endpoint can be used to sign the CSR and

generate the leaf certificate:

ENENEN

Sign certificate with existing CSR
vault write inter ca vl/sign/appl \
csr="$(cat appl-csr.pem)”

ENENEN

- At approximately 50% of the current CA lifetime, we begin signing using a
new CA certificate. To achieve this, we can either use a new CA or replace the

certificate for the existing CA.

- If using a new CA, we create and configure a new pki secrets engine and

increment the version or generation number.

ENENEN

vault secrets enable -path=inter ca v2 pki

ENENEN

continued...

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

51

- When using the existing CA, we replace the CA certificate using the Set Signed
API call.

vault write inter ca vl/intermediate/set-signed certificate=@./

inter _ca new ttl.cert.pem

- For more detailed steps and considerations for which type of strategy to use,

please see the CA Succession section.

- Follow steps 3 and 4 as before.

6. Start issuing or Same as step #4
signing certificates

from the new CA.

7. Disable accessto = Once all application truststores have been updated with the next generation

old CA CA certificate, disable application access to the old CA using Vault ACLs.

CA Validity Time Periods

We recommend carefully planning the validity period for the entire CA hierarchy. Per RFC 5280, an X.509
certificate cannot be valid past that of its Signer/Issuer. Therefore, at each level of the CA hierarchy, the

validity period is shorter than its parent.

We provide an example below of a two-tier CA hierarchy, where each tier has twice the lifetime of its
child. The CA renewal workflow begins at approximately half the validity time period remaining. This

method is a fairly common strategy, although it varies per organization.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 52

Example CA and certificate validity periods

YEAR 1 YEAR 2 YEAR 3

Root CA V1 (path: root_ca_v1), TTL: 2 years

Root CA V1 (path: root_ca_v1), TTL: 2 years

= Update truststores |
= Start signing intermediate CACSRs using V2

Intermediate CA V1, TTL: 1 yr

Intermediate CA V1, TTL: 1 yr

= Update truststores
= Start issuing leaf certificates using V2

Intermediate CA V1, TTL: 1 yr

= Update truststores
= Start issuing leaf certificates using V3

Leaf Leaf Leaf
certificate certificate certificate
TTL: 1 wk TTL: 1 wk TTL: 1 wk

When issuing certificates, Vault caps the Not After date of an issued certificate to the max-ttl setting
of the Secrets Engine or the Role. We recommend explicitly setting the maximum TTL on each CA.

Otherwise, Vault uses the system max TTL setting (default 32 days), which may result in unexpected Not

After dates on certificates.

Using the example scheme in the diagram, we adjust the default and maximum TTLs as shown below.

Note that only seconds and hours work as arguments for the TTL parameter.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Root CA V1
vault secrets tune -default-lease-tt1=8760h -max-lease-ttl=17520h root ca vl

Intermediate CA V1

vault secrets tune -default-lease-tt1=168h -max-lease-tt1=336h inter_ca vl

Intermediate CA V1 - Role
vault secrets tune -default-lease-tt1=168h -max-lease-tt1=336h inter_ca vl/roles/appl

There are some scenarios where the effective Not After date can end up being past that of the signer.

Vault handles these conditions as follows.

- If issuing a leaf certificate results in a Not After date later than the date associated with CA, an error

is thrown. This outcome applies to the Generate Certificate and Sign Certificate endpoints.

ENENEN

Error writing data to inter _ca vl/issue/appl: Error making API request.

URL: PUT http://127.0.0.1:8200/v1/inter ca vl1/issue/appl
Code: 400. Errors:

* cannot satisfy request, as TTL would result in notAfter 2021-01-12T17:35:24.828704-
05:00 that is beyond the expiration of the CA certificate at 2021-01-12T22:07:32Z

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 54

https://www.vaultproject.io/api-docs/secret/pki#generate-certificate
https://www.vaultproject.io/api-docs/secret/pki#sign-certificate

- When signing the CSR for Intermediate CA (Sign Intermediate endpoint), Vault allows the TTL to go

past that of the Signing CA and issue a warning.

“warnings”: [
“The expiration time for the signed certificate is after the CA’s expiration time.
If the new certificate is not treated as a root, validation paths with the certificate
past the issuing CA’s expiration time will fail.”
]

ENENEN

CA Succession

When the CA certificate expiration time is near, we need to replace it with a new certificate containing a
later expiration date. We will review some common approaches to handling CA succession. One major
decision is whether to also change the public /private key pair. We cover both scenarios below. If keeping
the same key pair, then it is possible to simply update the same CA with a new certificate containing

a later expiration date. We recommend planning for and testing CA succession well in advance of the

actual CA certificate expiry date.

Please see a few considerations below:

1. We recommend implementing a versioning method for the CA name and mount path name in
Vault, such as inter_ca_v1 orinter_ca_v2. This naming scheme provides predictable paths for Vault

clients to request leaf certificates from the Vault server.

2. The examples below assume that the Intermediate CA is signed by a Root CA in Vault. Alternatively,
if signing with an existing parent Intermediate CA, use the Sign Certificate API. Or, you may be

signing with an existing external CA.

3.If the Intermediate CA type was internal when it was created, then the private key is inaccessible. In

that case, the private key must be changed during CA succession.

1. Renew CA certificate TTL only

This step is the easiest in the CA succession strategy. We replace the CA certificate with a later TTL and

continue to issue leaf certificates from the same CA. There is no need to mount a new Intermediate CA

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

https://www.vaultproject.io/api-docs/secret/pki#sign-intermediate
https://www.vaultproject.io/api-docs/secret/pki#sign-certificate

or update client truststores. A disadvantage is that the CA private key is not rotated, and the CA version

number stays the same.

CA CHAIN: V1
Root CA V1
root_ca_vl/ l
Request to sign CSR Replace CA
with updated certificate with
NotAfter date newly signed cert
‘ HashiDemos
Intermediate CA
key ID: AAAA

* hashidemos.io
inter_ca_vl/

Leaf Certs will
continue to be valid
as long as parent
CAs are valid

Leaf cert

Workflow Steps:

1. Locate the original CSR for Intermediate CA V1, or create a new CSR using openss| and the private

key.

openssl req -new -key inter ca vl-privatekey.pem -out inter ca vl-csr.pem

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 56

2. Sign the CSR with the existing Root CA using the Sign Intermediate API.

3. Use the Set Signed Intermediate API to associate the newly signed certificate with this CA.

Sign CSR using Root CA

vault write -format=json root ca vl/root/sign-intermediate \
csr=@./inter _ca vl-csr.pem \
common_name=dev.hashidemos.io \
tt1=8766h \

| jg -r ‘.data.certificate’ > inter_ca new ttl.cert.pem

Set Signed Intermediate
vault write inter_ca_vl/intermediate/set-signed certificate=@./inter_ca new ttl.

cert.pem

4. Verify that the CA TTL has been updated

ENRNEN

curl -s “$VAULT ADDR/vl/inter ca vl/ca/pem” > inter ca vl ca.pem \

&& openssl x509 -in inter ca vl ca.pem -text -noout

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
21:81:69:el:5c:c2:f9:5a:04:2f:66:b1:89:ad:2f:d4:8b:0a:75:62
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=hashidemos.io
Validity

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

57

https://www.vaultproject.io/api-docs/secret/pki#sign-intermediate
https://www.vaultproject.io/api-docs/secret/pki#set-signed-intermediate

Not Before: Dec 14 03:16:12 2020 GMT
Not After : Dec 10 02:16:12 2021 GMT

Subject: CN=dev.hashidemos.io

5. Continue to issue leaf certificates from the same Intermediate CA

2. Replace CA without changing the private key

This action is an extension of the previous strategy. Here we create a new CA and cross-sign it with the
existing Root CA. The public /private key pair for the CA is identical; therefore, clients can validate leaf

certificates issued from either CA. This process is shown in the diagram below.

CA CHAIN: V1 CA CHAIN: V2

Root CA V1
root_ca_vl/

HashiDemos HashiDemos
Intermediate CA Intermediate CA
key ID: AAAA key ID: AAAA
*hashidemos.io *.hashidemos.io
inter_ca_v1/ inter_ca_v2/
% I Both Leaf : %
certificates

signatures are
valid with either

CA chain
Leaf cert 1 Leaf cert 2

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 58

Workflow Steps:

1. Mount a new CA, incrementing the version number in its path.

vault secrets enable -path=inter ca v2 pki

2. Locate the original CSR from Intermediate CA V1, or create a new CSR using openssl and the private

key.

openssl req -new -key inter ca vl-privatekey.pem -out inter ca vl-csr.pem

ENENEN

3. Sign the CSR with the existing Root CA using the Sign Intermediate API.

4. Use Submit CA information to associate the private key and newly-generated certificate with this CA.

Sign CSR

vault write -format=json root ca vl/root/sign-intermediate \
csr=@./inter ca vl-csr.pem \
common_name=dev.hashidemos.io \
tt1=8766h \
| jg -r ‘.data.certificate’ > inter ca v2.cert.pem

Concatenate the private key and CA certificate

cat inter ca vl-privatekey.pem inter ca v2.cert.pem > inter ca v2.pem

Submit CA information for CA V2

vault write inter ca v2/config/ca pem bundle=@inter ca v2.pem

ENENEN

5. Issue leaf certificates from the new CA going forward.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 59

https://www.vaultproject.io/api-docs/secret/pki#sign-intermediate
https://www.vaultproject.io/api-docs/secret/pki#submit-ca-information

Create the Appl Role for CA V2

vault write inter _ca v2/roles/appl \
allowed domains="dev.hashidemos.io” \
allow subdomains="true” \
max_ttl=24h

Issue leaf cert from new CA

vault write -format=json inter _ca v2/issue/appl common name=appl.dev.hashidemos.io

| jg -r ‘.data.certificate’ > leaf certificate v2.pem

Validate leaf cert issued by Intermediate CA V2
openssl verify -verbose -CAfile root ca vl.pem \

-untrusted inter ca v2.cert.pem leaf certificate v2.pem

leaf certificate v2.pem: OK

ENENEN

6. Update client truststores with the new CA chain containing the v2 CA certificate.

The advantage of this method is that new leaf certificates issued from v2 CA are usable immediately.

Over time client truststores should be updated with the new Intermediate CA.

3. Replace CA and rotate the private /public key pair

In this scenario, the public/private key pair for the Intermediate CA has to be rotated, often due to a
security requirement. Leaf certificates issued by the newer CA cannot be validated by the original issuing

CA as shown in the diagram below.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

60

CA CHAIN: V1 CA CHAIN: V2

Root CA V1
root_ca_vl/

HashiDemos HashiDemos
Intermediate CA Intermediate CA
key ID: AAAA key ID: BBB
*.hashidemos.io *.hashidemos.io
inter_ca_v1/ inter_ca_v2/

bromi?

signatures are
only valid with
its issuing CA

Leaf cert 1 Leaf cert 2

Workflow Steps:

1. Mount a new Intermediate CA
vault secrets enable -path=inter ca v2 pki

2. Generate a new key pair and a CSR using Generate Intermediate.

3. Sign the CSR with the existing parent CA using the Sign Intermediate.

Generate Keys and CSR

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

61

https://www.vaultproject.io/api-docs/secret/pki#generate-intermediate
https://www.vaultproject.io/api-docs/secret/pki#sign-intermediate

vault write -format=json inter ca v2/intermediate/generate/internal \

common_name=dev.hashidemos.io > inter_ca_v2.json

Sign CSR with existing Root CA

cat inter_ca v2.json | jq -r .data.csr > inter ca v2.csr

vault write -format=json root ca vl/root/sign-intermediate \
csr=@./inter _ca v2.csr \
common_name=dev.hashidemos.io \
tt1=8760h \

| jg -r ‘.data.certificate’ > inter_ca v2.cert.pem

Set Signed Intermediate for Intermediate CA V2

vault write inter _ca v2/intermediate/set-signed certificate=@inter_ca v2.cert.pem

4. Update client truststores with CA chain V2.

5. Issue leaf certificates from the new CA for clients with updated truststores (please see previous

workflow steps for command snippets).

Leaf certificates issued from the new CA can only be used with TLS clients that have updated their
truststores. Therefore there may be a period of overlap where the original CA continues to issue

certificates until all truststores can be updated.

Updating truststores is a complex operation since there may be many applications to update, and some
may need to be restarted for them to pick up the changes. Therefore these steps should be carefully

planned in advance of CA rotation to minimize application downtime.

Ideally, these steps can be achieved in an automated manner with configuration management tools or
through service configuration from Consul. Certain clients may be able to use the Authority Information

Access section of the X.509 leaf certificate to download the new CAs automatically.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

4. Replace Intermediate CA and Root CAs

The previous examples cover one layer of CA rotation. Depending on how CA TTLs align, multiple
CAs may need to be rotated. We provide an example below of moving to a new Root CA and a new
Intermediate CA. For simplicity, we keep the Intermediate private CA the same as before, similar to the

first strategy. Below is a diagram showing this arrangement.

CA CHAIN: V1 CA CHAIN: V2
Root CA V1 Root CA V2
key ID: 1111 key ID: 2222
root_ca_vl/ root_ca_v2/
HashiDemos HashiDemos

Intermediate CA Intermediate CA
key ID: AAAA key ID: BBB

*.hashidemos.io *.hashidemos.io
inter_ca_vl/ inter_ca_v2/

brommi?

valid within the
CA chain where
it was issued

Leaf cert 1 Leaf cert 2

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 63

Workflow Steps:
This workflow combines steps from the previous two examples.

1. Mount a new Root CA, incrementing the version number. Generate the key pair and CA certificate

using the Generate Root endpoint.

ENENEN

vault secrets enable -path=root ca v2 pki
vault write root ca v2/root/generate/internal \
common_name=hashidemos.io \
tt1=17520h format=pem bundle \

private key format=pem --format=json > root ca v2.json

cat root ca v2.json | jq -r ‘.data.certificate’ > cacert-v2.pem

2. Mount a new Intermediate CA

vault secrets enable -path=inter ca v2 pki

ENENEN

3. Locate the original CSR from Intermediate CA V1, or create a new CSR using openssl and the private

key.

ENRNEN

openssl req -new -key inter ca vl-privatekey.pem -out inter ca vl-csr.pem

ENENEN

4. Sign the CSR with the new Vault Root CA using the Sign Intermediate API. Use Submit CA

Information to associate the private key and new certificate with this CA.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 64

https://www.vaultproject.io/api-docs/secret/pki#generate-root
https://www.vaultproject.io/api-docs/secret/pki#sign-intermediate
https://www.vaultproject.io/api-docs/secret/pki#submit-ca-information
https://www.vaultproject.io/api-docs/secret/pki#submit-ca-information

Sign CSR with the new Vault Root CA

vault write -format=json root ca v2/root/sign-intermediate \
csr=@./inter ca vl-csr.pem \
common_name=dev.hashidemos.io \
tt1=8760h \

| jg -r ‘.data.certificate’ > inter ca v2.cert.pem

Concatenate the private key and CA certificate

cat inter_ca vl-privatekey.pem inter ca v2.cert.pem > inter ca v2.pem

Submit CA information

vault write inter ca v2/config/ca pem bundle=@inter ca v2.pem

ENRNEN

5. Issue leaf certificates from the new CA going forward (please see previous workflow steps for

command snippets).

6. Update client truststores with the new CA chain containing V2 CA certificate.

Similar to the previous example, application truststores must be updated before certificates issued from
the new CA can be used. Updating the truststore entails adding both Root CA V2 and Intermediate CA
V2.

Certificate Revocation List and OCSP

In this section, we review the CRL and OCSP related configuration of the CA. A more extended discussion

on revocation is provided in the Leaf Certificate Revocation section.

Vault CAs publish a Certificate Revocation List (CRL) to allow for revocation checking by clients.
Currently, Vault does not operate an OCSP responder; therefore, a separate OCSP server infrastructure
must be deployed. This server can periodically query Vault for revoked certificates via CRLs /Vault APIs,

or a push-based solution can be implemented.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 65

By default, any Vault CA publishes a CRL at the Read CRL endpoint. To disable this behavior, the Set CRL
Configuration endpoint can be used. Below is an example display of the CRL from an Intermediate CA

using openssl. Note that the CRL is an unauthenticated endpoint (similar to viewing the CA certificate).

Write the CRL to a file for CA inter ca

curl -s \
--header “X-Vault-Token: $VAULT_TOKEN" \
“http://127.0.0.1:8200/v1/inter_ca/crl” \

--output inter_ca.crl

Display full CRL via openssl:
openssl crl -inform DER -text -in inter_ca.crl
Certificate Revocation List (CRL):
Version 2 (0x1)
Signature Algorithm: sha256WithRSAEncryption
Issuer: /CN=hashidemos.io
Last Update: Nov 30 20:41:35 2020 GMT
Next Update: Dec 3 20:41:35 2020 GMT
CRL extensions:
X509v3 Authority Key Identifier:
keyid:5C:10:6C:2C:1D:F5:D7:05:CB:EA:E6:C8:EE:1F:3F:A5:69:3F:81:DE

Revoked Certificates:
Serial Number: 0B5167CE491380C09D59ED16D656BD2COF16FOE7
Revocation Date: Nov 27 15:10:53 2020 GMT
Serial Number: 508DAAFFEAB939DC38E96FA3693E75DF7BE9BF78
Revocation Date: Nov 30 20:41:35 2020 GMT
Serial Number: 5FAEEC765A225B8ECB4FE73BBB88D08D591568F0
Revocation Date: Nov 28 18:45:26 2020 GMT

<truncated>

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 66

https://www.vaultproject.io/api-docs/secret/pki#read-crl
https://www.vaultproject.io/api-docs/secret/pki#set-crl-configuration
https://www.vaultproject.io/api-docs/secret/pki#set-crl-configuration

It's important to note that each Vault CA maintains its own CRL, and the CRL is not replicated across Vault
Performance Secondary clusters. Therefore, we recommend encoding the CRL endpoint(s) into X.509

certificates via the Set URLs endpoint.

Below is an example of configuring both the CRL and OCSP endpoints. Each URL field is optional, so you

only need to set whichever ones are relevant for your organization.

vault write inter_ca/config/urls \
issuing certificates="https://vault.example.org:8200/vl/inter ca vl/ca” \
crl distribution points="https://vault.example.org:8200/vl/inter ca v1/crl” \

ocsp_servers="https://ocsp.example.org”

The above information will be encoded in X.609 leaf certificates that are issued by the CA. If needed,

multiple URLs can be encoded.

Revoking CA Certificates

Similar to leaf certificates, a CA certificate can be revoked by sending the revocation request to its parent
CA. Note that this also effectively revokes all leaf certificates issued by the Intermediate CA. Clients
consider the trust chain as invalid if a revoked CA is present anywhere in the chain. Below is an example

of revoking an Intermediate CA using the Revoke Certificate API.

ENENEN

Attempting to revoke a CA’'s own certificate will result in an error

cat <<EOF >payload.json

{ “serial number”: “7c:bd:10:4b:97:f5:d7:4a:78:20:5d:99:a8:4a:d4:86:96:¢c6:75:69" }
EOF

CA Certificate revocation request should be sent to the Root CA
curl --header “X-Vault-Token: ${VAULT TOKEN}" \
--request POST \

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 67

https://www.vaultproject.io/api-docs/secret/pki#set-urls
https://www.vaultproject.io/api-docs/secret/pki#revoke-certificate

--data @payload.json \

${VAULT ADDR}/v1l/root_ca/revoke
{“request_id”:”501819cb-2ca3-fd18-eabd-7eacb59c2b6c”,"lease_
id”:"",”"renewable”:false,”lease duration”:0,"data”:{“revocation
time”:1607926251, " revocation time rfc3339”:72020-12-14T06:10:51.622027Z2"},"wrap_

info”:null,”warnings” :null, "auth”:null}

Vault and SPIFFE/SPIRE

A popular and fast-growing concept in the workload identity space is the adoption of the Secure

Production Identity Framework for Everyone (SPIFFE), which provides a framework for service identities

across workloads or environments. The SPIFFE Runtime Environment (SPIRE) is an implementation of

this framework and standards to perform attestations by providing identities to the designated workloads.

As a pluggable module, SPIRE can use an external Certificate Authority to sign and create an
intermediate certificate and ca_bundle using its custom Authority plugin. As of version 0.10.1, SPIRE
now has Hashicorp Vault as an Upstream Authority target. The Vault Authority Plugin authenticates with
a provided method of authentication such as a certificate, token or Approle credential in order to submit
a CSR to Vault. For further details on the project, please review the Upstream Authority “Vault” Plugin

repository.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

68

https://spiffe.io/docs/latest/spiffe/overview/
https://spiffe.io/docs/latest/spiffe/overview/

; v

Server Authority Plugin Vault

———_
MintX509CA

v

/<your_path> /root /sign-intermediate
Request

P
<

= Certificate
= Bundles (CA Cert,
4«—— | CA Chain Cert)
= Certificate
* Bundle Certificates

(CA Cert, CA Chain Cert)

Reference: https: //github.com /zlabjp /spire-vault-plugin by Tomoyo Usami

Outside of Vault being the Intermediate CA for SPIRE, Vault itself has a workflow that has been
production ready for the past couple of years that provides the same end-state in securing workload
identity using Vault Agent. When it comes to SPIRE attestation, Vault Agent can use auto-auth (Vault
Agent authentication to Vault) to register the node /virtual machine using a cryptographic identity (e.g.
GetCallerldentity query using the AWS Signature v4 algorithm via the AWS IAM Auth Method) that would

perform secure introduction without storing a secret to authenticate to Vault to get a secret.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 69

https://github.com/zlabjp/spire-vault-plugin

Monitoring/Audit Recommendations

We recommend monitoring Vault's audit log and alerting on the following key events. Set Signed and
Generate Intermediate operations should only happen once during the typical CA lifecycle; other

operations will be infrequent admin actions.

Operation Example path and data snippets

Set Signed “path”: “inter_ca/intermediate/set-signed”
Intermediate:

This overwrites

the CA certificate.

An incorrect

certificate could

break the chain of

trust, resulting in

application outages.

Generate Root: This “path”: “root ca vl/root/generate/internal”
generates a new

public /private key

pair for the CA.

Generate “path”:"”inter ca vl/intermediate/generate/internal”
Intermediate: This

generates a new

public /private key

pair for the CA.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

70

Create /Update
Role: This allows
creating new
endpoints to

sign or generate
certificates. Some
of the attributes
could be unmasked
to ensure they are

expected

Set URLs: Configure
URLs that are
encoded in leaf

certificates.

Tidy: Delete
expired or revoked
certificates from
Vault's storage
backend

“path”:"”inter _ca vl/roles/appl”,”data”:{ “allow_subdomains”:
“hmac-sha256:57379a3b26e972e866c6b8b911d0bb51ebb346bbbcba72d86c32
9316e54e9727", “allowed domains”:
“hmac-sha256:b90ebe31b59f7ff1800e7be42f18a9b138eb309€918404eff52e
ab2f440622e5”, “generate lease”:
“hmac-sha256:57379a3b26e972e866c6b8b911d0bb51ebb346bbbcba72d86c32
9316e54€9727", “max_ttl”:
“hmac-sha256:7d9dcad5d9014488edae69e48896e6ee128ff97c6f91815f88cf
517ee2fcad43d” }

“path”:”inter ca vl/config/urls”,”data”: {

“crl distribution points”:
“hmac-sha256:9118438101abf78fee011b5b17d7f73e2b1669516ac54bbde545
1c3df9637cdc”, “issuing certificates”:
“hmac-sha256:d00789f531a4b6438296a073a91f04c3b976708013c0478a7266
e8626ae237a8"”, “ocsp servers”:
“hmac-sha256:b771569ba2b5065b35db3488f3115f0c2c4ada3485552446fed7
echbe2deb6a2a”}

“path”:"”inter ca vl/tidy”,”data”: {“safety buffer”:”hmac-sha256:9
65d91fd3afb2d7805b8de0a78f118e8613bce4373eb9ceaecOeadc5e24c33e4”,
“tidy cert store”:"hmac-sha256:57379a3b26e972e866c6b8b911d0bb51eb
b346bbbcba72d86c329316e54e9727",

“tidy revoked certs”:”hmac-sha256:57379a3b26e972e866c6b8b911d0bb5
lebb346bbbcba72d86c329316e54e9727"}

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

71

Other CA-related events not listed here, such as Generate Certificates, should be logged, but an alert
does not need to be generated every time. Below is an example Audit snippet from Intermediate set-

signed:

“request”: {

“id”: “71db2b4c-db98-6bcb-e140-99aa2b163c69”,

“operation”: “update”,

“mount_type”: “pki”,

“client_token”: “hmac-sha256:ab3382cd72cal3813e1d9659898b8e3f86bd53b897e5a7535b68
€82372f5991a",

“client token accessor”: “hmac-sha256:250f3fab6a425945fcf2fea28ab1050b9598747483d
6978f69a73987e1ded883",

“namespace”: {

“id": “root”
}
“path”: “inter_ca/intermediate/set-signed”,
“data”: {

“certificate”: “hmac-sha256:6640556feaab3eb2aaffc3ee8b63029d51635f7904d5925ed769
f0e2a5b1l06ee”
b
“remote_address”: “127.0.0.1"
i
“response”: {

“mount_type”: “pki”

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

Patterns: Managing Leaf Certificates

The Vault PKI secrets engine allows clients to request X.509 certificates from an issuing CA configured
within Vault. It is a dynamic secrets engine in which Vault manages the lifecycle of the secrets, in this
case, X.509 leaf certificates. In this section, we review how we can use Vault for common tasks associated

with the leaf certificate management, including provisioning, distribution, and revocation.

Anti-Patterns

- Long-lived leaf certificates: Having long-lived leaf certificates can result in a higher risk of the
certificate leaking. Vault's PKI secrets engine streamlines the certificate issuance process, commonly
called enroliment, into a single API call. This concept is discussed in greater detail below in the

Common Configurations section.

+ Using manual processes: Manual distribution and rotation of certificates hampers productivity, limits
scale, and greatly impacts the speed of application delivery. Manual processes also conflict with
the best practice of having short-lived certificates. Automation is discussed further below in the

Deployment/Automation section.

+ Sharing leaf certificates: We recommend that a separate leaf certificate be provisioned for each
application and instance. E.g, if there is an application being served by multiple VMs, a separate
certificate should be generated by Vault for each VM. Sharing a leaf certificate increases the
blast radius if the private key is compromised and the certificate needs to be revoked. In addition,
when the certificate expires, updates for multiple instances must be coordinated carefully. When

architected correctly, a Vault cluster can issue certificates at a high velocity and scale.

()

- Using wildcard subdomains (*) excessively: Having globbed subdomains for the certificate CN can
reduce the number of leaf certificates needed and reduce overall certificate management overhead.
While this may be acceptable for certain environments, audit considerations should be reviewed
carefully. For example, it can be more challenging to understand how leaf certificates are actually
being used since they can be applied to any application /use-cases covered by "“*." Limiting the
leaf certificate CN and/or SANs to well-defined sub-domains prevents reusing /sharing certificates

which is an anti-pattern.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 73

Lifecycle Management

The lifecycle of a leaf certificate generally includes the following phases. We will review how the Vault PKI

Secrets Engine can help with each of these.

1. Preparation
2. Certificate Issuance (Enrollment)
3. Usage and Validation

4.Renewal / Rotation

Revocation and auditing are asynchronous lifecycle events covered in the sections Revocation and

Monitoring / Audit recommendation.

Preparation

The Vault PKI secrets engine configuration and role configuration are performed during this phase.
As with other Vault secrets engines, these steps are usually completed in advance by an operator or

configuration management tool.

Often, the preparation phase also includes generating a key pair and then creating a Certificate Signing
Request (CSR) with the appropriate identity information and other certificate properties. With Vault, those

steps are streamlined as part of the issuance process covered in the next section.

Certificate Issuance

This phase is also referred to as Certificate Enrollment. In this phase, the issuing CA verifies the
requester’s identity and sign the CSR to issue a valid certificate. Often this is a manual or ticket-driven

process that slows down application delivery.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

https://docs.google.com/document/d/1P2SULFHEBaw6EGPgOqbGQ3fB77xcUIxz82v7TzM5GFI/edit#heading=h.vb6c1gnd9oy7
https://docs.google.com/document/d/1P2SULFHEBaw6EGPgOqbGQ3fB77xcUIxz82v7TzM5GFI/edit#heading=h.7ubfthxlfrbz

Vault already has a mature authentication model to establish the identity of a client (user or application)
via one of its authentication methods. A Vault client authenticates to Vault, then performs an API call to
the Generate Certificate endpoint. Thus, Vault encapsulates the actual certificate issuance workflow in a
single REST API call.

The Generate Certificate APl endpoint has the path, /pki/issue /<role-name>, where pki is the path on
which the PKI secrets engine for the Intermediate CA is mounted. The client's ACL Policy must allow the
request of a certificate via the full path, which includes both the intermediate CA mount path and the role

name. Below is an ACL snippet showing an example path and the relevant permissions.

Allow generating leaf certificate from inter_ca secrets engine and role appl
path “inter ca/issue/appl” {

capabilities = [“create”,”update”]

Below are some examples of generating a certificate for the role name appl1-hashidemos. (The output is
truncated for brevity.) Note that the private key can no longer be displayed after the certificate is issued
and that it is up to the application to store the private key securely. With short certificate lifetimes, often,
the private key is treated as ephemeral and never written to disk. Each application receives a unique

certificate (and public /private key pair) to use during its lifetime.

As shown below, the CA chain is provided in the ca_chain field as part of this API call. Typically, the CA
chain is pre-distributed to TLS client truststores by configuration management tools or other methods.

Note that when CA certificates are updated, new CA chains are pushed to client truststores.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 75

https://www.vaultproject.io/api-docs/secret/pki#generate-certificate

Via the CLI

$ vault write inter_ca/issue/appl common_name=appl.dev.hashidemos.io

Key Value

lease id inter_ca/issue/appl/6bOCVuI9cVgU686bziPpmm3B
lease duration 8h

lease_renewable false

ca_chain [----- BEGIN CERTIFICATE-----

MIID0zCCAi0gAwIBAgIUTKBEXzgk/Ckfsc7x303PciPSKfEwDQYJKoZIhvcNAQEL
BQAwWGDEWMBQGA1UEAXMNaGFzaGlkZWlvcy5pbzAeFwOyMDEXMTkxOTAINDdaFwOy

.. .bTFLVVWOWQOgPsvbek3b
----- END CERTIFICATE-----]
certificate ----- BEGIN CERTIFICATE-----

MIID2TCCAsGgAwIBAgIUJ4v8VizelZ5+IkFF5GMH+0CI+7YwDQYJKoZIhvcNAQEL
BQAwWGDEWMBQGA1UEAXMNaGFzaGlkZWlvcy5pbzAeFwOyMDEXMTkxOTA4MDVaFwOy
.. .N1kiVRgfd1GVwtMGCQsLbhb7AAa5dyFw+6/MckU=

expiration 1605841715

issuing_ ca = ----- BEGIN CERTIFICATE-----
MIIDOzCCAiOgAwIBAQIUTKBEXzgk/Ckfsc7x303PciPSKfEwDQYJKoZIhvcNAQEL
BQAwWGDEWMBQGA1UEAXMNaGFzaGlkZWlvcy5pbzAeFwOyMDEXMTkx0TAINDdaFwOy
.. .bTFLVVWOwWQOgPsvbek3b

private key ----- BEGIN RSA PRIVATE KEY-----
MITEogIBAAKCAQEA®TIu8a0ORGYErwjMi7ugamtiqME+Pvzq6YDXRr66eDhv5a072
cc9UhCjI1X27tP2jKcsvvaMOEixPVzVakWwjPIId3CKIBy822kLjH6EOGUUEPRGN
...CZzTobvPIPrhsdqsSty2siWn7n3iY7pTt0ClledgbqSZGHim20I=

private key type rsa
serial_number 27:8b:fc:56:2c:de:95:9e:7e:22:41:45:e4:63:07:fa:80:88:fb:b6

API invocation via curl

$ cat <<EOF >payload.json

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

“common_name”: “appl.dev.hashidemos.io”

}

EOF

$ curl \
--header “X-Vault-Token: <vault-token>" \
--request POST \
--data @payload.json \
http://127.0.0.1:8200/v1/inter_ca/issue/appl

“request _id”: “0d2e7ea8-ed58-2cla-2ale-dd97c9cafc67”,
“lease_id"”: “inter ca/issue/appl/Xovs9D85LFJgc8240nIgRBAu”,
“renewable”: false,

“lease _duration”: 28800,

“data”: {

“ca_chain”: [

I,
“certificate”: “----- BEGIN CERTIFICATE----- \nNMIID2TCCAsGgAWIBAgIUGStM4. . ..

tnSYp4Tr8n\ni5hk7r/160yZjDfZ5eARcsjsq9Jo3aLxFSgi5xY=\n----- END CERTIFICATE----- ",
“expiration”: 1605842327,
“issuing ca”: “----- BEGIN CERTIFICATE----- \
nMIIDOzCCAiOgAwIBAQIUTKBEXzgk. ...2qfZ1CCErThtZI7E7V\nbTFLVVWOwWQOgPsvbek3b\n----- END
CERTIFICATE----- ",
“private key”: “----- BEGIN RSA PRIVATE KEY----- \nMIIEowIBAAKCAQEAVkIiu31Y2mRgHVuo
Gxpc....40exRmSu90i17nnnr33wghT5WjE9+1Y7pfrQ\n----- END RSA PRIVATE KEY----- ",
“private key type”: “rsa”,
“serial number”: “19:2b:4c:e2:d8:8b:5c:36:47:7e:95:57:be:c9:62:3b:54:a6:c1:31"
i
“wrap_info”: null,
“warnings”: null,
“auth”: null

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

v Secrets Access Policies Tools ® Status v

inter_ca ¢ creds < appl

Issue Certificate

Common Name

appl.dev.hashidemos.io

Format

<>

pem

v Options

Screen snippet of generating a certificate from the Vault Ul

Usage and Validation

X.5009 leaf certificates are issued for a range of use-cases, including encrypted communication channels
(TLS, IPSec), authenticating servers and clients (applications, users, or loT devices), and code signing.
TLS communication is the most commonly-observed use case for Vault PKI. During the TLS handshake
process, the leaf certificate is validated by the client’s cryptographic library to ensure that a proper chain
of trust is present up to the root CA. Below is an example snippet showing manual validation of a Vault-

issued leaf certificate and CA chain.

ENRNEN

Issue leaf cert from Intermediate CA
vault write -format=json inter ca vl/issue/appl common name=appl.dev.hashidemos.io |

jqg -r ‘.data.certificate’ > leaf certificate v1.pem

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 78

Validate leaf cert issued
openssl verify -verbose -CAfile root ca vl.pem \

-untrusted inter ca vl.cert.pem leaf certificate vl.pem

leaf certificate vl.pem: OK

As part of certificate validation, clients may use the OCSP protocol or view the CRL to check that a

certificate has not been revoked. This process is covered more in the Revocation section.

If the leaf certificate is lost and needs to be reread, we can retrieve it via the certificate serial number as

shown in the example below.

Read certificate via serial number
$ vault read inter_ca/cert/52:91:db:ef:bf:a4:a3:f2:f8:b1:c9:1b:d5:10:4f:1b:be:c3:76:bd

Key Value

certificate ----- BEGIN CERTIFICATE-----
MIIEDTCCAVWgAWIBAGIUUpPH ..
qg2xkP0Izn5ZF2SIUrQnhHTvxulI1l3zGyv4I+23740UI

revocation_time 0

Renewal /Rotation

When a leaf certificate is approaching its expiration time, it must be either renewed or rotated. Both
actions result in a new certificate with an updated expiration date. Renewal does not change the public/

private key pair, whereas rotation entails generating a new key pair.

The Vault PKI Secrets Engine allows easy certificate rotation by generating a new certificate using the
same issuing CA and role name used to generate the original certificate. We recommend this strategy

over a renewal to lower the chances of the private key getting compromised.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 79

https://docs.google.com/document/d/1P2SULFHEBaw6EGPgOqbGQ3fB77xcUIxz82v7TzM5GFI/edit#heading=h.vb6c1gnd9oy7

Looking Up Expiration Time
In this section, we discuss a few ways for viewing the expiration time for a leaf certificate.

- When the leaf certificate .pem file is readily available, we can view its expiration time using the
openssl tool. If needed, we can obtain the .pem file for a previously issued certificate using its serial

number with the Read Certificate endpoint.

ENRNEN

(Optional) Read a certificate using the serial number and save the pem file
serial number=73:10:0d:14:8f:90:c8:1f:08:ad:72:46:94:be:13:a9:ea:7f:64:14

vault read -field=certificate inter _ca vl1/cert/$serial number > cert.pem

Display certificate using openssl
openssl x509 -in ./cert.pem -text -noout
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
73:10:0d:14:8f:90:¢c8:1f:08:ad:72:46:94:be:13:a9:ea:7f:64:14
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=dev.hashidemos.io
Validity
Not Before: Dec 23 12:51:36 2020 GMT
Not After : Dec 23 20:52:06 2020 GMT
Subject: CN=appl.dev.hashidemos.io

+ Another way to view the expiration time is to look up the remaining time for the Vault lease
associated with the certificate. This method may be easier since we do not need to know the
certificate serial number or have the .pem file. However, we can only use this method when the
Intermediate CA Role has lease generation enabled. In the example below, first, we list the lease IDs

for a given CA and Role name using the List Leases endpoint. Then we display an individual lease.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

https://www.vaultproject.io/api-docs/secret/pki#read-certificate
https://www.vaultproject.io/api-docs/system/leases#list-leases

Lookup up lease IDs for inter _ca vl and the appl role
vault list sys/leases/lookup/inter ca vl/issue/appl
Keys

1Q3kZdKx0fZMK5zu9jHFUEPE

4IKCCbgnBD7v1GyHtudP8C5A

50yOHUFQSOMT1v31C1NzwVVJ]

7ygHhbukREUB1zUJpGw5YKeW

Display the lease using the lease ID

curl -s --header “X-Vault-Token: $VAULT TOKEN” \
--request PUT \
--data ‘{“lease_id”:"”inter_ca_vl/issue/appl/1Q3kZdKx0fZMK5zu9jHFuUEPE"}" \
$VAULT ADDR/v1/sys/leases/lookup | jq ‘.data’

{
“expire time”: “2020-12-23T15:58:37.000055-05:00",
“id”: “inter_ca v2/issue/appl/1Q3kZdKx0fZMK5zu9jHFuUEPE",
“issue_time”: “2020-12-23T07:58:37.370543-05:00",
“last_renewal”: null,
“renewable”: false,
“ttl”: 27954

}

- Finally, we can also view the leaf certificate expiry time from the Audit log entry. We have provided a
snippet in the Monitoring /Audit Recommmendations section. The advantage of this method is that we
do not need to login to Vault or need the certificate pem file. Additionally, customized reports of all

certificates nearing expiration can be generated from the log monitoring system.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

81

Rotating /Generating a New Certificate

With Vault PKI, this process is the same as certificate issuance using the Generate Certificate API

endpoint. We covered this process earlier in the Certificate Issuance section. Vault-aware tools such as

Consul Template or Vault Agent do this automatically when the certificate approaches its expiration time.

Renewal

There are some scenarios where it is desirable to keep using the same public /private key pair. For
example, long-lived application instances that are unable to reload new keys until the next scheduled
restart. In that case, we can generate a new CSR and sign it using Vault's Sign Certificate endpoint. This

change is reflected in the example below for CN=appl.dev.hashidemos.io.

Note: the Certificate serial number is updated (since it is a new leaf certificate).

Generate a CSR using existing private key
$ openssl req -new -key appl.dev.hashidemos.io-myprivatekey.pem \

-out appl.dev.hashidemos.io-csr.pem

Now use the Sign Certificate endpoint to generate certificate

$ vault write inter_ca/sign/appl csr="$(cat appl.dev.hashidemos.io-csr.pem)”

Key Value

ca_chain [----- BEGIN CERTIFICATE-----
MIIDOzCCAiOgAw. ..

LvV//SSgVNPXf8dHsdPZ

----- END CERTIFICATE-----]

certificate = ----- BEGIN CERTIFICATE-----
MITIEDTCCAVWgAWIBA. ..

mxHalx0TFcOqvs75wgmtihF52/YsrL32XN+HAXdwrn6d

expiration 1606562607

issuing ca = ----- BEGIN CERTIFICATE-----
MIID0OzCCAi0gAwIBAgIUChfiUh. ..
LvV//SSgVNPXf8dHsdPZ

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

82

https://www.vaultproject.io/api-docs/secret/pki#sign-certificate

serial_number 2b:cb:80:e6:0f:c8:2b:25:34:41:01:0a:65:46:b2:b8:bf:d4:d5:8a

Recommendations:

- Monitor and alert if the certificate rotation process failed. For example, if the Vault Agent is used
to render leaf certificates, the login credentials (such as AppRole) may have expired. Vault Agent
produces errors in its log when this happens. We recommend ingesting logs into a log monitoring

system and alerting on this type of error.

- Use Vault-aware tools such as Vault Agent or Consul Template that are aware of the certificate TTL

and will rotate the certificate automatically.

+ There should be mechanisms in place to deploy or reload the application when the certificate has
changed. Vault Agent and Consul Template both support issuing commands after the new certificate

is rendered.

Deployment / Automation

Typically, leaf certificates are issued via a pipeline during the application deployment. For short-lived
applications such as containers, functions, and ephemeral VMs, the lifetime /TTL of the certificate
is at least as long as that of the application. In the case of long-lived applications, tools are used to

periodically refresh the leaf certificate.

Application deployment tools can directly interact with Vault via the API to issue certificates on behalf of

the application. There are also a few commonly used tools to help with this process:

- Vault Agent []
- Consul Template []

- EnvConsul []

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 83

These tools are aware of the certificate TTL and will refresh the certificate before it expires. This approach
mitigates the risk of application outages due to expired certificates. Another benefit is that they alleviate

manual processes by automating the certificate refresh workflow.

Config management tools such as Ansible, Chef, or Puppet can also be used to login to Vault and fetch
certificates for applications. These tools can also play a role in updating application truststores with the
CA chain when CAs are configured or updated. This blog post provides an example of reading secrets

from Vault using Chef. For Ansible, reference the HashiVault module, which supports reading certificates

from the PKI secrets engine.

Example Vault Agent Configuration

The snippet below shows an example template { } stanza for Vault Agent to render the TLS certificate,

private key, and the CA chain.

Vault Agent renders a new leaf certificate automatically before its expiry time. If lease generation was
enabled for the role, it renders the new leaf certificate when approximately 85% of the lifetime has

elapsed. Otherwise, it renders the certificate just before the validTo time is reached.

TLS SERVER CERTIFICATE
template {

contents = “{{ with secret \”inter_ca/issue/appl\” \”common_name=nginx.dev.
hashidemos.io\” }}{{ .Data.certificate }}{{ end }}”

destination = “/etc/ssl/nginx.dev.hashidemos.io.crt”

TLS PRIVATE KEY

template {

contents = “{{ with secret \"”inter ca/issue/appl” \”common name=nginx.dev.
hashidemos.io\” }} {{ .Data.private key }}{{ end }}”

destination = “/etc/ssl/nginx.dev.hashidemos.io.key”
}

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 84

https://www.hashicorp.com/blog/using-hashicorps-vault-with-chef
https://terryhowe.github.io/ansible-modules-hashivault/modules/hashivault_pki_cert_issue_module.html#hashivault-pki-cert-issue-module

TLS CA CERTIFICATE
template {

contents = “{{ with secret \"inter ca/issue/appl\” \”common_name=nginx.dev.
hashidemos.io\” }} {{ .Data.issuing ca }}{{ end }}”

destination = “/etc/ssl/ca.crt”

When Vault Agent renders the leaf certificate successfully, it logs an INFO message. Vault Agent will
not explicitly revoke the previous lease; rather, it is cleaned up by Vault when the lease TTL has been

reached. An INFO message is also logged by Vault showing lease expiration.

ENRNEN

Output from Vault agent log rendering a new leaf certificate
2020/12/23 13:37:52.341494 [INFO] (runner) rendered “/tmp/certs/dynamic-cert.tpl” =>
“/tmp/certs/app-certs.txt”

OQutput from Vault revoking the previous lease
2020-12-23T08:38:36.016-0500 [INFO] expiration: revoked lease: lease id=inter ca v2/
issue/appl/1kj4t8iy6XVQeVY4Ns510hpQ

N

Revocation

Vault allows us to revoke leaf certificates issued by the Issuing CA. There are two ways to achieve this:
using individual certificate IDs or revoking the associated leases. When a certificate is revoked, Vault

immediately updates the CRL with this information.

When do | need to revoke leaf certificates?

While all expired certificates are considered invalid, sometimes unexpired certificates should also be
considered invalid. This force expiration can be achieved by revoking the leaf certificate and using a

mechanism to let clients know about the revocation.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 85

X.509 PKI RFC 5280 defines a set of possible reason codes associated with X.509 certificate revocation.

The most important reason is if the private key of the certificate was compromised while the certificate
has not yet expired (reason code keyCompromise). This error code can appear, for example, if the
associated private key was revealed in an error log or was placed in a known compromised location

while the certificate has not yet expired.

Another reason could be that the certificate has incorrect properties and is therefore unusable. For
example, if the subject DN is wrong or it does not have the proper extensions. For human-oriented use
cases, a reason could be that someone left the company and their assigned leaf certificate has not

expired.

We recommend keeping certificate lifetimes short to lower the likelihood of a compromise while a
certificate is still valid. With low TTLs (such as a few hours), chances are that when a private key is
exposed, either maliciously or accidentally, the corresponding certificate has already expired. If the
certificate has already expired, there is generally no need to explicitly revoke it since TLS clients should

be rejecting the certificate based on its “Not After” time.

Revoking leaf certificates using the lease ID

To use this method, the generate _lease option must be enabled for the Role configuration under the

PKI secrets engine. By default, this option is set to false. Please see the Intermediate CA Common

Configurations section for more details.

The lease ID is provided when the certificate was generated using the pki/issue /<role_name>

endpoint. Alternatively, outstanding lease |Ds can be looked up using the List Leases AP| endpoint. Below

are examples showing these.

ENRNEN

lease id when generating a certificate

$ vault write inter_ca/issue/appl common_name=appl.dev.hashidemos.io

Key Value

lease id inter ca/issue/appl/h5s7B1Lwh03S0coUjsubrtilL
lease duration 8h

lease renewable false

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 86

https://tools.ietf.org/html/rfc5280#section-5.3.1
https://www.vaultproject.io/api-docs/system/leases#list-leases

ca_chain [----- BEGIN CERTIFICATE-----

<output truncated>

private key type rsa
serial_number 64:11:09:b4:93:5a:f1:62:7a:a0:9b:f2:7c:94:ba:fa:f2:12:b8:2c

Showing all lease IDs from the appl role

$ curl -s --header “X-Vault-Token: $(vault print token)” \
--request LIST \
“http://127.0.0.1:8200/v1/sys/leases/lookup/inter_ca/issue/appl” | jq .data.keys

“2ZiLdKPlgpadykihhpudcLeS”,
“6bOCVuI9cVgU686bziPpmm3B”,
“AJU7m11HdU7QJ6YXCc1XiAUZB",

Once we have the lease ID(s), we can use the vault lease revoke command to revoke certificates
individually. Alternatively, we can destroy all outstanding leases issued from the role or the entire issuing

CA. Below are example commands showing these actions.

Revoking a certificate via the corresponding lease ID
$ vault lease revoke inter_ca/issue/appl/AJU7m11HdU7QJ6Yxc1XiAUZB

All revocation operations queued successfully!

Revoking all certificates issued from a role
$ vault lease revoke -prefix inter_ca/issue/appl/

All revocation operations queued successfully!

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

87

Revoking leaf certificates via certificate serial number

Another way to revoke a certificate is by using the Revoke Certificate API and providing the certificate
serial number. The serial number is provided when it is first issued by Vault. It can also be retrieved later
from the audit log. Note that if lease generation was disabled for the Role, then this method is the only

option for revoking certificates. The snippet below shows an example.

ENENEN

Write a payload with certificate serial

$ cat <<EOF >payload.json

{ “serial_number”: “2a:dc:19:12:3e:53:c2:b2:e1:63:81:c6:8a:95:00:24:02:db:76:62"” }
EOF

Send a request to the revoke API endpoint

$ curl \
--header “X-Vault-Token: $(vault print token)” \
--request POST \
--data @payload.json \
${VAULT_ADDR}/v1/inter_ca/revoke

{“request_id"”:"0efc5643-faB8a-8294-68bf-ec4717aebll2”,"lease_
id”:"","renewable”:false,”lease duration”:0,"data”:{“revocation
time” :1606489853, " revocation time rfc3339”:72020-11-27T15:10:53.2999954482"},"wrap_

info”:null,”warnings”:null, "auth”:null}

ENENEN

Revocation checking for clients

When using PKI at scale with Vault, there are a few options for checking revoked certificates:

* None - rely on low certificate TTLs
- Use CRLs

- Implement OCSP responder servers

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 88

Some organizations may use a mix of the above strategies based on the required level of compliance.

Whenever possible, our recommendation is to use short certificate lifetimes. They are treated consistently

across different crypto libraries and are simple and predictable. With the streamlined PKI issuance from

Vault, certificate lifetimes can be as short as you want to make them.

For compliance-driven organizations, there is typically a need to publish CRL endpoints and /or
implement OCSP responders. Even with these requirements in place, using short certificate lifetimes
means fewer certificates end up on the revocation list, thereby allowing a more straightforward

implementation of revocation checking mechanisms.

In contrast to certificate expiry checking, revocation checking behavior using CRL or OCSP varies by
client libraries. There have been various improvements in this area, such as using CRLSets and OCSP

Stapling; these are out of scope for this whitepaper.

The Vault PKI Secrets engine publishes a CRL from each issuing CA as covered previously in the
section discussing intermediate CA Common Configurations. Currently, Vault does not operate an
OCSP responder; therefore, a separate OCSP server infrastructure must be deployed. This server can
periodically query Vault for revoked certificates via CRLs, Vault APIs, or a push-based solution can be

implemented.

If configured as part of the intermediate CA role, CRL endpoints and OCSP servers are listed in the X509

certificate under the “CRL Distribution Points” (X509v3) and “Authority Information Access’
sections, respectively. Below is an example snippet from a Vault-issued X.509 certificate showing CRL
and OCSP information.

$ openssl x509 -in ./cert.pem -text -noout
Certificate:
Data:
Version: 3 (0x2)
Serial Number:
50:8d:aa:ff:ea:b9:39:dc:38:e9:6f:a3:69:3e:75:df:7b:e9:bf:78
Signature Algorithm: sha256WithRSAEncryption
Issuer: CN=hashidemos.io
Validity
Not Before: Nov 30 15:30:06 2020 GMT

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

89

Not After : Nov 30 23:30:36 2020 GMT
Subject: CN=*.dev.hashidemos.io
<truncated>
Authority Information Access:
OCSP - URI:https://ocsp.hashidemos.io/v1l/inter_ca
CA Issuers - URI:http://127.0.0.1:8200/v1/inter ca/ca
X509v3 Subject Alternative Name:
DNS:*.dev.hashidemos.io, URI:https://*.dev.hashidemos.io
X509v3 CRL Distribution Points:
Full Name:
URI:http://127.0.0.1:8200/v1/inter_ca/crl

Viewing revoked certificates in the CRL

Below is a simple example of checking whether a leaf certificate is valid by examining the CRL against
the Certificate serial #. The URL for the CRL endpoint was retrieved previously from the X509v3 CRL
Distribution Points section of the certificate (see the previous snippet). Programmatic revocation

checking for TLS clients varies depending on the crypto library implementation.

$ serial_number=2c:db:db:bf:09:2e:3d:5c:6f:b2:ff:d0:ce:1la:e2:85:00:21:e6:4f
$ curl -s “${VAULT_ADDR}/v1l/${CA}/crl” \

--output ${CA}.crl \

&& openssl crl -inform DER -text -in ${CA}.crl \

| grep -i $(echo ${serial_number} | tr -d ‘:’)

Serial Number: 2CDBDBBF092E3D5C6FB2FFDOCE1AE2850021E64F

Validating certificates via OCSP

Checking the CRL and searching for a revoked certificate is an expensive operation for TLS clients. OCSP

provides a more streamlined way to check for revoked certificates that have not yet expired.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 90

OCSP responder URLs should be configured as part of the issuing CA configuration. Once configured,
Vault includes this information under the Authority Information Access section of X.509 certificates. The
TLS client should examine this section and query the OCSP responder URI(s) for certificate validation.
The exact implementation of how OCSP servers are queried depends on the client crypto library being

used.

Tidying

Vault stores all issued certificates in its storage backend with encryption at rest using the cryptographic
barrier. Over time accumulated certificates can lead to high utilization of the storage backend, especially

in environments with a high velocity of certificate issuance.

The Tidy API endpoint allows one to remove expired and revoked leaf certificates from Vault's storage

backend. Please note some important considerations below for using this endpoint.

+ Once the certificate is removed, it can no longer be read from Vault. We recommend carefully
establishing some data retention policies regarding expired and revoked certificates. Once these
timelines are established, we can use the safety buffer parameter to tell Vault that only certificates

older than the buffer time should be cleaned up.

- Consider adding a Vault Enterprise Sentinel Endpoint Governing Policy (EGP) to enforce that the
safety buffer aligns with established data retention policies. This policy prevents the accidental

removal of recently-expired certificates.

+ Depending on how many certificates need to be removed, the Tidy endpoint can be an extremely
| /O intensive task for the storage backend (Consul or Raft). We recommend carefully planning
and testing a tidy operation in advance, especially in environments with a high certificate issuance
volume. Running Tidy operation on a scheduled interval allows for a more predictable load for Vault

and Consul.

In the following snippet, we show two example API calls to the Tidy endpoint to delete expired and
revoked certificates older than 6 months and one year, respectively (the safety _buffer for these time

frames are expressed as hours).

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 91

https://www.vaultproject.io/api-docs/secret/pki#tidy

Remove expired certificates older than 6 months
$ curl \
--header “X-Vault-Token: $VAULT_TOKEN" \
--request POST \
--data ‘{“tidy_cert_store”: “true”, “safety_buffer”:”4382h"}’ \
“${VAULT_ADDR}/v1l/inter_ca/tidy”

Remove revoked certificates older than 1 year
$ curl \
--header “X-Vault-Token: $VAULT_TOKEN" \
--request POST \
--data ‘{“tidy_revoked_certs”: “true”, “safety_buffer”:”8764h"}’ \
“${VAULT_ADDR}/v1l/inter_ca/tidy"”

Common Configurations

In this section, we will review some common configurations and recommendations for scaling PKI with
Vault.

Leaf Certificate Time-To-Live

If the private key of a leaf certificate is compromised while the certificate is still valid (i.e, it has not
expired), a man-in-the-middle attack could be launched. To lower the chances of a compromise like this,
we recommend keeping the certificate lifetime small. This rule has a range of benefits, some of which are

outlined below:

+ A shorter certificate TTL means a lower risk that the TLS Certificate is still valid if the corresponding
private key was accidentally exposed or maliciously accessed. Expired certificates do not need to be
explicitly revoked as crypto stacks should reject them. Revoking expired certificates would result in

productivity loss due to executing additional workflows.

- For some use cases, lower certificate TTLs may alleviate the need to implement CRLs and /or OCSP

servers (see more on this in the next section). In case CRLs are implemented, it will at least result in a

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 92

smaller CRL size.

+ Finally, lowering TTLs imply that automation must be in place to issue certificates both during

application deployment and when the certificate is near expiry.

For ephemeral application instances such as containers, functions, or short-lived VMs, the certificate
lifetime may match the application’s lifetime. For example, a VM-based application that is restarted in
a rolling manner every two weeks might have certificates that are valid for 2.5 weeks. Containers and

functions-as-a-service have shorter lifetimes on the order of hours and days.

If the application is long-lasting, then we recommend using Vault-aware tools to render new certificates

periodically during the application lifetime.

Time-To-Live Hierarchy

The PKI Secrets Engine serves Dynamic Secrets that Vault creates just-in-time and actively manages
their lifecycle. Dynamic secrets in Vault are usually associated with a Lease and a well-defined TTL.
However, because X.509 Certificates have an explicit expiration time (the “Not After” date as specified
in RFC 5280 [reference]), generating the actual lease object within Vault is optional. Please see the

Intermediate CA Common Patterns section regarding the generate_lease option for role configuration.

Any certificate issued by Vault contains a Not After time-based property on the effective TTL at the time

of certificate generation. The TTL can be specified in a variety of ways, as summarized in the table below.

Maximum TTL for the leaf certificate from highest to lowest.

There is a default-lease-ttl setting that is used as the actual TTL when generating a certificate.

Precedence (highest to lowest) Example Configuration

The ttl parameter supplied when generating a vault write inter_ca/issue/appl common_
certificate. This will be capped at the max-lease-ttl name=appl.dev.hashidemos.io ttI=2m
setting for the role or Intermediate CA PKI secrets

engine.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

93

Maximum TTL configured for the role vault secrets tune -max-lease-ttl=4h

inter_ca/roles/appl

Maximum TTL configured for the Intermediate CA vault secrets tune -max-lease-ttl=8h

PKI secrets engine inter ca
Vault system: defaults to 32 days but it can be default_lease_tt1=7000h
overridden max_lease tt1=8760h

Other Leaf Certificate Considerations

Discovery: Vault's audit log can help you discover all leaf certificates issued by Vault and associate them
with the requester. However, there is often a requirement to have an enterprise-wide inventory of all leaf
certificates issued by both Vault and non-Vault CAs. This type of capability is outside the scope of Vault
and better served by existing Certificate Lifecycle Management (CLM) solutions. These solutions often
integrate with Vault PKI.

- For example, KeyFactor has several ways to discover certificates across the enterprise, including
direct CA integration, SSL/TLS endpoints, and Certificate Stores. When integration is enabled with
Vault, KeyFactor can discover certificates across all Vault instances, namespaces, and issuing CAs

and bring them into a single enterprise-wide inventory. Please view this Key Factor + HashiCorp

Vault solution brief for more details.

Compliance: Vault's intermediate CA can be configured with various options to ensure that any certificate
issuing policy can be accommodated. There may be additional requirements for continuous monitoring,
reporting, and alerting. While Vault can help enforce certificate compliance, additional solutions may
need to be in place to demonstrate enterprise-wide compliance and provide monitoring and alerting

functionality for all certificates and CAs across the enterprise.

CLM solutions such as KeyFactor and Venafi can integrate with Vault PKI to provide such capabilities.

Please see KeyFactor and Venafi solution briefs. Both include Vault Secret Engine plugins that can be

easily accessed using Vault APIs.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 94

https://www.keyfactor.com/wp-content/uploads/HashiCorp-Vault-Keyfactor-PKI-as-a-Service-Solution-Brief.pdf
https://www.keyfactor.com/wp-content/uploads/HashiCorp-Vault-Keyfactor-PKI-as-a-Service-Solution-Brief.pdf
https://www.keyfactor.com/wp-content/uploads/Keyfactor-Secrets-Engine-HashiCorp-Vault-Datasheet.pdf
https://www.vaultproject.io/docs/secrets/venafi

Monitoring / Audit Recommendations

Vault will log audit entries for all PKI secrets engine activity. In this section, we provided some audit log
snippets from key activities. Using the audit log, you can create a report of all certificates issued or

revoked by Vault. As with all Vault audit log entries, most of the fields are HMAC'd for security reasons.

We recommend unmasking certain fields, such as the certificate serial number, which can be used for
log correlation. To unmask all certificate IDs in the audit log for an intermediate CA, issue the command:
‘vault secrets tune -audit-non-hmac-response-keys=serial_number <ca-name>". To only do this for
a specific role, please adjust the path to <ca-name> /issue/<role-name>. If there is a need to read a

certificate later via the certificate serial number, the Read Certificate API endpoint can be used.

The expiration date is already unmasked and shown as UTC; monitoring this may be desirable for long-

lived certificates in order to avoid outages.

Generating a certificate

The “response” portion from the audit entry that is logged when a certificate is generated:

ENRNEN

“response”: {
“mount_type”: “pki”,
“data”: {
“ca_chain”: [
“hmac-sha256:f6aa3109ab199614276ecaa8f0ee343¢c81f5affb5e9379be00382b59122128be”
I,
“certificate”: “hmac-sha256:acbe95f4belc5e5del238ef484ece9d7fc072ac06ec6fb4e39bff6
51e4f32975",
“expiration”: 1606135867,
“issuing ca”: “hmac-sha256:f6aa3109ab199614276ecaa8f0ee343c81f5affb5e9379be00382b
59f22128be”,
“private key”: “hmac-sha256:2c11c3cb20del4bd6cc9ab452289b1505b7824F9¢cb5f8d913192b
854f56b5764",
“private_key type”: “hmac-sha256:79c6244f4f0ee6ed6f099f5173f934e74d6b1lc70f5a05d5f
fefddbdde6f70989",

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

“serial number”: “hmac-sha256:6bd62bc537dcbee7ald88ba9cea3025fle6f273189bf37e6bae
9346dd9721665"

}

If lease generation is configured for the role, the lease ID is also shown under the secret stanza:

ENENEN

“response”: {
“mount_ type”: “pki”,
“secret”: { “lease _id”: “inter_ca/issue/appl/blaQkQkOusJtDR6j0sLMGUum” },
“data”: {
“ca_chain”: [“hmac-sha256:f6aa3109ab199614276ecaa8f0ee343c81lf5affb5e9379be00382b5
9f22128be”]

ENRNEN

Revoking a certificate

As we covered in the Revocation section, there are two ways to revoke a leaf certificate. Below are

example audit log snippets for both methods.

- Using the Revoke Certificate endpoint with certificate serial #

ENENEN

“request”: {

“id"”: "“e98el6d8-baba-1ddf-92bl-4ed3eabealdc”,

“operation”: “update”,

“mount_type”: “pki”,

“client token”: “hmac-sha256:b1b22f0b88af6ae5f8203748603d40769a9367d1cda5836b953f
564105e2b8b”,

“client_token_accessor”: “hmac-sha256:4a9434577775336a48f9c970d627a6564e402a99d7¢e
cfb9dff402f64dbc6c8be”,

“namespace”: {

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

96

"id": u r‘OO‘t"

}
“path”: “inter_ca_v2/revoke”,
“data”: {
“serial_number”: “hmac-sha256:95395ef7fe9918355b9bbc7b921507218e9ac46248bf31a0l
38d29843acle681”
3

“remote_address”: “127.0.0.1"
i
“response”: {
“mount_type”: “pki”,
“data”: {
“revocation time”: 1608736803,
“revocation_time_ rfc3339”: “hmac-sha256:555a981a8e3020be30ebf5dd17a4e92911453aa
d77506cddece3fef3c95f5b24"

}

+ Using the Revoke Lease endpoint. In the example below, we are revoking a specific lease ID. Leases

can be revoked at the Secret Engine or Role level as well.

“request”: {

“id”: “6d11c678-8ca4-0118-9936-386b41b4856d",

“operation”: “update”,

“mount_type”: “system”,

“client_token”: “hmac-sha256:74c00f75226be5fd711e499462dee91ebcb2e48a3a508f364fe7
21191a5af617”,

“client_token_accessor”: “hmac-sha256:a50149ce2d79eee037e36b0ed2c593b2281df735dbe
c0f606becad4a5077cfad”,

“namespace”: {

Midn : u roo.t"

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

}I
“path”: “sys/leases/revoke/inter_ca v2/issue/appl/B5V0JjG3DH548KJHneerJeqk”,
“data”: {

“sync”: false

b
“remote_address”: “127.0.0.1"
i
“response”: {
“mount_type”: “system”,
“data”: {

“http_content type”: “hmac-sha256:71e81a7a525e8b4d0d025687c4d16bd9987a7aad89d99
5db5ea821a47967b3fe”,
“http _status code”: 202

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

98

Secure Introduction

Securely Introducing Vault Clients

When authenticating to Vault, a client needs to provide some type of secret to identify itself, be it an
AppRole RolelD /SecretlD combo, a TLS certificate, or cloud provider keys. Using and transmitting these
secrets creates the risk of exposure to unauthorized entities. In the hands of an adversary, these secrets
can result in unauthorized data access. This secret introduction method creates a challenge: How does
the secret consumer (an application or machine) prove that it is the legitimate recipient of a secret so that
it can acquire a token? There are two basic approaches to securely authenticating a secret consumer to
Vault.

Platform Integration

Using the Platform Integration approach, Vault is configured to trust the underlying platform (ex: AWS,
Azure, GCP), which assigns an identifier (such as an AWS IAM token or a signed JWT) to a virtual

machine, container, or serverless function. Vault uses the provided identifier to verify the client’s identity
by interacting with the underlying platform that assigns the identifiers. Once the platform confirms the

identity with Vault, the identity is considered verified, and Vault returns a token to the client, bound to the

VM identifier (IAM token,

instance ID, JWT, etc.) Trusted Platform
(e.g. AWS, Azure, GCP)

specified roles.

Validate the integrity
of the data

Login w/ platform
specific VM identifier

1) >
El - °
VM

Returns a token

Policy: app_pol
(Client) Y- app-p

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 99

This approach is ideal when the client application is running on a VM hosted on a cloud platform that

has a corresponding auth method. Some example auth methods for this approach are:

+ AWS Auth Method

+ Azure Auth Method

- GCP Auth Method

Trusted Orchestrator

With the Trusted Orchestrator approach, you have a tool or service that has been manually configured to
interact with Vault and has privileged permissions. When the orchestrator launches new applications or

services, it can inject the secrets required to authenticate that application or service with Vault.

Inject the auth data (e.g.
AppRole, PKI cert, token) Trusted Orchestrator

(Nomad, Chef, Kubernetes)

Create auth data (e.g.
AppRole, PKI cert, token)

Login w/ platform
specific VM identifier

O =
El - °
VM

Returns a token
. Policy: app_pol
(Client) y-app-p

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 100

https://www.vaultproject.io/docs/auth/aws
https://www.vaultproject.io/docs/auth/azure
https://www.vaultproject.io/docs/auth/gcp

This approach is ideal when using an orchestrator tool such as Chef to launch applications and can

be applied regardless of where the applications are running, as orchestrators are built to be platform-

agnostic. Some example auth methods for this approach are:

- AppRole Auth Method

» TLS Certificates Auth Method

+ Token Auth Method

Automating Secure Introduction

Vault Agent Auto-Auth

The Vault Agent Auto-Auth approach leverages a client daemon to automate the above platform

integration or trusted orchestrator approaches. With Auto-Auth, Vault Agent automatically authenticates

to the Vault service using one of the supported auto-auth methods. Once Vault Agent receives its token

after successful authentication, it continues to manage token renewals until it reaches the end of its

allowed lifecycle and can no longer be renewed.

Authenticate and acquire a token
via configured auth method

Write the token

¥ v Vault Agent

1

Use the token to
invoke Vault API

sink

(Client)

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

v —_
> — @&

Auth Method
(AliCloud, AWS,
Azure, GCP etc.)

101

https://www.vaultproject.io/docs/auth/approle
https://www.vaultproject.io/docs/auth/cert
https://www.vaultproject.io/docs/auth/token
https://learn.hashicorp.com/tutorials/vault/secure-introduction#vault-agent

To leverage this feature, run the Vault binary in agent mode on the client, with a configuration file that
specifies which auth method to use and which sink location(s) to store the token(s). When the agent is
started, it attempts to acquire a Vault token using the specified auth method. If successful, the resulting
token is written to the configured sink location. If the token value changes, the agent captures the change
and writes the new token to the sink. If authentication fails, the agent falls into a wait-retry loop. More

information on this approach below:

+ Vault Agent documentation

+ Auto-Auth documentation

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 102

https://www.vaultproject.io/docs/agent
https://www.vaultproject.io/docs/agent/autoauth

PKI Solution Architecture

Deployment Reference Architecture

This section covers the best-practice reference architecture for running the Vault service in a production
environment. A Vault cluster consists of a set of Vault processes running across a group of hosts that
together provide a single service endpoint. The Vault service consists of a more extensive collection of
clusters across multiple locations. These processes can be running on physical or virtual servers or in

containers.

Vault supports many different storage engines; however, the only two supported by HashiCorp with Vault

Enterprise are the Consul storage engine and the Raft storage engine. HashiCorp typically recommends

Consul over Raft as the latter is relatively new to Vault, so this reference architecture uses Consul as
the preferred storage backend. A Consul cluster consists of a set of Consul processes running across a
group of hosts that together provide a single service endpoint. They can be running on physical or virtual

servers or in containers.

It is recommended that the Vault and Consul services are operated on separate clusters. By separating
Vault from the Consul storage backend, users can independently scale the server types in each cluster.
Additionally, operational issues are simpler to troubleshoot when the two services are isolated. Since
Consul is a memory-intensive tool, it is advantageous to have a dedicated and separate cluster, to avoid
resource contention or starvation. The Consul cluster should not be used for other Consul-specific

functionality (like service discovery) as it could potentially introduce utilization spikes.

The goal of this reference architecture design is to provide maximum flexibility, scalability, and resilience

across the components of the Vault service.

Hardware Considerations

Below, the server size recommendations are split into two categories: small and large.
- Small: appropriate for initial production deployments or non-production deployments.

- Large: for production workloads with a highly consistent workload (a large number of transactions,

secrets, or a combination).

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 103

https://www.vaultproject.io/docs/configuration/storage
https://www.vaultproject.io/docs/configuration/storage/consul
https://www.vaultproject.io/docs/configuration/storage/raft

In general, processing requirements are dependent on encryption workload and messaging workload

(operations per second and types of operations).

Memory requirements are dependent on the total number of secrets /keys stored in memory and

should be sized according to that data (as should the hard drive storage). Vault has minimal storage
requirements, but the underlying storage backend should have a relatively high-performance hard disk
subsystem. If many secrets are being generated or rotated frequently, this information needs to be written
to disk often and can impact performance if slower hard drives are used. In the case of using Vault for

PKI, this would include x.509 certificates generated by Vault.

Consul's role in a Vault deployment is to serve as the storage backend for Vault. This means that all
content stored for persistence in Vault is encrypted by Vault and written to Consul’'s in-memory key-
value store. As such, memory can be a constraint in scaling as more data is written to Vault. This also has

the effect of requiring vertical scaling on the Consul server's memory if additional space is required.

Consul Server Requirements

Size CPU Memory Disk
Small 2 cores 8-16 GB RAM 50 GB
Large 4-8 cores 32-64+ GB RAM 100 GB

Vault Server Requirements

Size CPU Memory Disk
Small 2 cores 4-8 GB RAM 25GB
Large 4-8 cores 16-32 GB RAM 50 GB

Network Requirements (for both Vault and Consul)

Network throughput is a common consideration for Vault and Consul servers. As both services are
fronted with an HTTPS API, all incoming requests, communications between Vault and Consul,

underlying gossip communication between Consul cluster members, communications with external

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 104

systems (per auth or secret engine configuration, and some audit logging configurations) and responses

consume network bandwidth.

Due to network performance considerations in Consul cluster operations, replication of Vault datasets

across network boundaries should be achieved through Performance or DR Replication, rather than

spreading the Consul cluster across network and physical boundaries. If a single Consul cluster is spread

across network segments that are distant or inter-regional, this can cause synchronization issues within

the cluster, leader re-elections, or generate additional data transfer charges in some cloud providers. The

latency between availability zones should be less than 8ms for a round trip.

The following table outlines the network traffic requirements for Vault and Consul cluster servers:

Source

Consul clients
and servers

Consul clients

Vault clients

Vault servers

Destination

Consul server

Consul clients

Vault servers

Vault servers

port

7300

7301
8200

8201

Communicating with the Vault Cluster

protocol

TCP

TCP and UDP
TCP

TCP

Direction

incoming

bidirectional
incoming

bidirectional

- There are several options for communicating with the Vault cluster:

Purpose

Server RPC

LAN gossip
Vault API
Vault
replication

traffic, request

forwarding

- Using host IP addresses or hostnames that are resolvable via a standard named subsystem.

- Using load balancer IP addresses or hostnames that are resolvable via a standard named subsystem.

+ Using the attached Consul cluster DNS as service discovery to resolve Vault endpoints.

- Using a separate Consul service discovery cluster DNS as service discovery to resolve Vault

endpoints.

The implementation details of these options are outside the scope of this document.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

105

Consul Reference Architecture

Since we need to have an underlying Consul cluster to use as the storage backend for our Vault cluster,
we should first review the Consul reference architecture. The Consul reference architecture is slightly
different when deploying Consul OSS than when deploying Consul Enterprise. Those differences are

covered below.

Because Consul relies upon raft consensus to organize and replicate information, we want to provide
three unique resilient paths to provide meaningful reliability. Essentially, a consensus system requires
a simple majority of servers to be available at any time. It is recommended that the Consul servers are

spread across three availability zones to ensure the best chance for healthy consensus.

When deploying Consul OSS, it is recommended to run with a total of five Consul servers, spread across
three availability zones in a 2-1-2 configuration (2 servers in Zone A, 1 server in Zone B, and 2 servers in

Zone C). Consul can lose any single zone and remain operational.

ZONE A ZONE B ZONE C

Follower Leader Follower
Consul Server Consul Server Consul Server

Follower Follower
Consul Server Consul Server

Image: Consul OSS Cluster

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 106

When deploying Consul Enterprise, the deployment changes a bit to take advantage of Consul

Enterprise’s Autopilot with Redundancy Zones feature. Redundancy zones run a single Consul voter and

any number of non-voters in a defined zone. Non-voters still receive data from cluster replication to
help horizontally scale out reads, but they do not participate in quorum election operations. If the voter is
lost in a zone, Autopilot steps in and automatically promotes the non-voter to become a voter and start

participating in quorum election operations, restoring the full quorum participation almost immediately.

This also allows us to speed up quorum operations by reducing the quorum size of the cluster from five
with Consul OSS to three with Consul Enterprise. Similarly to the preferred Consul OSS deployment, we
spread the Consul servers across three availability zones. Distributing the cluster across availability zones
allows us to lose an entire availability zone and maintain quorum, but we can also now survive the failure
of many individual servers within a given redundancy zone as well. At least two servers per redundancy

zone are recommended (a total of 6 at minimum).

ZONE A ZONE B ZONE C

Follower Leader Follower
Consul Server Consul Server Consul Server

Non-Voter Non-Voter Non-Voter
Consul Server Consul Server Consul Server

Image: Consul OSS Cluster

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 107

https://learn.hashicorp.com/tutorials/consul/autopilot-datacenter-operations
https://learn.hashicorp.com/tutorials/consul/redundancy-zones

Vault Reference Architecture

To meet the lofty resiliency goals put forth for Vault, we recommend that no less than three Vault servers
are used. These servers should be spread across three availability zones, similar to the Consul cluster

deployment model. With Vault Enterprise, HashiCorp recommends leveraging performance standbys to

help scale out read-only workloads. More information on this is available in the Scale and Performance
Considerations section below. In both cases, you would have three or more Vault servers in your Vault

cluster.

ZONE A ZONE B ZONE C

Follower Follower Follower
Consul Server Consul Server Consul Server

A
v

Leader Follower
Consul Server Consul Server

HTTPS HTTPS
TCP/8200 TCP/8200
Request FWD Request FWD

£ :

v

Standy Vault Server Active Vault Server Standy Vault Server
w/ Consul Client w/ Consul Client w/ Consul Client
HTTPS HTTPS HTTPS
TCP/8200 TCP/8200 TCP/8200

O g .

Client Client Client
w/ Consul Client w/ Consul Client w/ Consul Client

Image: Vault OSS and Consul OSS

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 108

https://www.vaultproject.io/docs/enterprise/performance-standby

In the above scenario, the servers in the Vault cluster and the associated Consul cluster are hosted
between three availability zones. This solution has an n-2 redundancy at the server level for Vault and
Consul and n-2 redundancy for Vault at the availability zone level. This also has an n-1 redundancy at
the availability zone level for Consul and, as such, is considered the most resilient of all architectures for a

single Vault cluster with a Consul storage backend for the OSS product.

For a cluster using Vault Enterprise, the reference architecture changes slightly as it uses the Consul

Enterprise cluster described above, leveraging Autopilot and redundancy zones.

ZONE A ZONE B ZONE C

Follower (non-voting) Follower (non-voting) Follower (non-voting)
Consul Server Consul Server Consul Server

A
v

Follower Leader Follower
Consul Server Consul Server Consul Server

HTTPS HTTPS
TCP/8200 TCP/8200
Request FWD Request FWD

£ :

\4

Standy Vault Server Active Vault Server Standy Vault Server
w/ Consul Client w/ Consul Client w/ Consul Client
HTTPS HTTPS HTTPS
TCP/8200 TCP/8200 TCP/8200

O g .

Client Client Client
w/ Consul Client w/ Consul Client w/ Consul Client

Image: Vault Enterprise and Consul Enterprise

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 109

In this scenario, the servers in the Vault cluster and its associated Consul cluster are hosted between
three availability zones. This solution has an n-2 redundancy at the server level for Vault and an n-3
redundancy at the server level for Consul. At the availability zone level, Vault is at n-2 redundancy and
Consul at n-1 redundancy. This model differs from the OSS design in that the Consul cluster contains

six servers, with three of them as non-voting members. The Consul cluster is set up using redundancy
zones so that if any server were to fail, a non-voting member would be promoted by Autopilot to become

a full member and so maintain quorum.

Multi-Region Deployment Reference Architecture

To this point, we've been talking about Vault within the context of a single cluster spread across multiple
availability zones. This design is excellent for surviving individual server failures and availability zone
failures; however, it still leaves the Vault cluster exposed to region failure. To protect against region-
level failure, Vault Enterprise provides two features: Performance Replication and Disaster Recovery

Replication.

Performance Replication

In performance replication, the secondary cluster shares the same underlying configuration, policies,
roles, and static secrets (such as key-value pairs or PKI keys) as the primary cluster. A performance
replication secondary, however, can keep track of its own tokens and leases (decoupled from the
primary). If a user action would cause an underlying write to the shared state, the replication secondary
forwards that operation to the primary, which is transparent to the end-user. In practice, most high-
volume workloads (such as key-value reads or transit operations) can be satisfied by the secondary,

enabling horizontal scale-out.

Disaster Recovery Replication

In disaster recovery replication, the secondary cluster shares the same underlying configuration, policies,
roles, and static secrets (such as key-value pairs or PKI keys) as the primary cluster; however, it also
shares the same tokens and leases as the primary cluster. This mode is designed to allow for continuous
operation of applications in the event of region failure. The disaster recovery cluster cannot be used for

reads or writes until it has been promoted to primary.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 110

For the most resilient possible multi-region deployment, HashiCorp recommends at least three

performance clusters, spread across three separate regions, each with its own disaster recovery cluster.

REGION 3 REGION 1 REGION 2
Performance Vault Performance Vault Performance Vault
Cluster (B) Cluster (A) Cluster (C)

Consul Consul Consul
Cluster Cluster Cluster
- -~
DR Vault DR Vault DR Vault
Cluster (D) Cluster (E) Cluster (F)

Consul Consul Consul
Cluster Cluster Cluster

Image: A resilient Vault service deployment

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 111

Production Hardening

There are several other recommendations from HashiCorp that are based on Vault's security model and

focus on defense in depth.

» End-to-End TLS. Vault should always be used with TLS in production. If intermediate load balancers
or reverse proxies are used to front Vault, they should not terminate TLS. This way, traffic is always

encrypted in transit to Vault and minimizes risks introduced by intermediate layers.

+ Single Tenancy. Vault should be the only primary process running on a host. This method reduces
the risk that another process running on the same host is compromised and can interact with Vault.
Similarly, running on bare metal should be preferred to a VM, and a VM preferred to a container. This
model reduces the surface area introduced by additional layers of abstraction and other tenants
of the hardware. Both VM and container-based deployments work but should be avoided when

possible to minimize risk.

- Firewall traffic. Vault listens on well-known ports, so use a local firewall to restrict all incoming and
outgoing traffic to Vault and essential system services like NTP. This includes restricting incoming
traffic to permitted subnets, and outgoing traffic to services Vault needs to connect to, such as

databases.

- Disable SSH / Remote Desktop. When running Vault as a single-tenant application, users should
never access the machine directly. Instead, they should access Vault through its API over the
network. Use a centralized logging and telemetry solution for debugging. Be sure to restrict access to

logs on a need-to-know basis.

- Disable Swap. Vault encrypts data in transit and at rest; however, it must still keep unencrypted
sensitive data in memory to function. The risk of exposure should be minimized by disabling swap
to prevent the operating system from paging sensitive data to disk. Vault attempts to “memory lock”

physical memory automatically, but disabling swap adds another layer of defense.

- Don't Run as Root. Vault is designed to run as an unprivileged user. There is no reason to run Vault
with root or Administrator privileges, which can expose the Vault process memory and allow access
to Vault encryption keys. Running Vault as a regular user reduces its privilege. Configuration files for

Vault should have permissions set to restrict access to only the Vault user.

- Disable Core Dumps. A user or administrator that can force a core dump and has access to the

resulting file can potentially access Vault encryption keys. Preventing core dumps is a platform-

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 112

https://www.vaultproject.io/docs/internals/security.html

specific process; on Linux, setting the resource limit RLIMIT _CORE to O disables core dumps. This
setting can be executed by process managers and is also exposed by various shells. In Bash, ulimit

-c 0 accomplishes this.

+ Immutable Upgrades. Vault relies on an external storage backend for persistence, and this
decoupling allows the servers running Vault to be managed immutably. When upgrading to new
versions, new servers with the upgraded version of Vault are brought online. They are attached to
the same shared storage backend and unsealed. Then the old servers are destroyed. This method
is similar to a blue-green deployment model and reduces the need for remote access and upgrade

orchestration, which may introduce security gaps.

- Avoid Root Tokens. Vault provides a root token when it is first initialized. This token should be used
to configure the system initially, particularly setting up auth methods so that users may authenticate.
We recommend treating Vault configuration as code and using version control services to manage
policies. Once set up, the root token should be revoked to eliminate the risk of exposure. Root tokens
can be generated when needed and should be revoked as soon as possible once their need has
been fulfilled.

- Enable Auditing. Vault supports several audit devices. Enabling auditing provides a history of all
authenticated operations performed by Vault, generating a forensic trail in the case of misuse or
compromise. Audit logs securely hash any sensitive data, but access should still be restricted to

prevent any unintended disclosures.

- Upgrade Frequently. Vault is actively developed. Regular updates are essential to incorporate security
fixes and any changes in default settings such as key lengths or cipher suites. Subscribe to the Vault
mailing list, the Discuss forum, and the GitHub CHANGELOG for updates.

- Configure SELinux / AppArmor. Using additional mechanisms like SELinux and AppArmor can
help provide additional layers of security when using Vault. While Vault can run on many operating

systems, we recommend Linux due to the various security primitives mentioned here.

+ Restrict Storage Access. Vault encrypts all data at rest, regardless of which storage backend is used.
Although the data is encrypted, an attacker with arbitrary control can cause data corruption or loss by
modifying or deleting keys. Access to the storage backend should be restricted to the Vault service to

avoid unauthorized access or operations.

- Disable Shell Command History. You may want the Vault command itself to not appear in Bash

history on a host. Refer to additional methods for guidance.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 113

https://learn.hashicorp.com/tutorials/vault/static-secrets#additional-discussion

+ Tweak ulimits. Your Linux distribution may have strict process ulimits. Consider reviewing ulimits for
the maximum number of open files, connections, etc. before going into production; they may need

increasing.

- Docker Containers. To leverage the “memory lock” feature inside the Vault container, you will likely

need to use the overlayfs2 or another supporting driver.

- No Clear Text Credentials. The seal stanza of the Vault server configuration file configures the seal
type that will be used for additional data protection, such as using HSM or Cloud KMS solutions to
encrypt and decrypt the master key. DO NOT store your cloud credentials or HSM pin in clear text

within the seal stanza.

+ If the Vault server is hosted on the same cloud platform as the KMS service, use the platform-

specific identity solutions. For example:

+ Resource Access Management (RAM) on AliCloud

- 1AM Role or ECS task on AWS

« Managed Service Identities (MSI) on Azure

» Service Account on Google Cloud Platform

- If that is not applicable, set the credentials as environment variables (e.g. VAULT _HSM_PIN).

Scale and Performance Considerations

Consul Memory Utilization

Since Consul stores all of its data in memory, it is necessary to keep an eye on memory consumption.
If you see your memory utilization surpass 70%, consider moving to a machine with a larger memory

capacity.

Shorten Certificate Lifetimes (or Managing CRL Size)

Vault's PKI secrets engine aligns with the Vault philosophy of short-lived secrets. As such, it is not
expected that CRLs will grow to a large size. A private key is only ever returned to the requesting client.

The PKI secrets engine does not store generated private keys, except for CA certificates. In most cases, if

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 114

https://www.vaultproject.io/docs/configuration/seal/alicloudkms.html#authentication
https://www.vaultproject.io/docs/configuration/seal/awskms.html#authentication
https://www.vaultproject.io/docs/configuration/seal/azurekeyvault.html#authentication
https://www.vaultproject.io/docs/configuration/seal/gcpckms.html#authentication-amp-permissions

the key is lost, the certificate can simply be ignored, as it will expire shortly.

If a certificate must truly be revoked, the normal Vault revocation function can be used; alternately, a root
token can be used to revoke the certificate using the certificate’s serial number. Any revocation action
causes the CRL to be regenerated. When the CRL is regenerated, any expired certificates are removed
from the CRL (and any revoked, expired certificates are removed from the PKI secrets engine's storage).

Please see the Managing Leaf Certificates section for more information.

Using Raft Storage Backend Instead of Consul Storage Backend

While Consul is HashiCorp’'s recommended storage backend for running Vault in production, there
are some circumstances in which the network latency required to write and read from Consul is too
penalizing for a use case. In this case, it may be preferable to use the Raft storage backend instead,

allowing Vault to write to its local disk.

Resource Quotas

One side effect of the API-driven model is that applications and users can misbehave by overwhelming

system resources through consistent and high volume API requests resulting in denial-of-service issues
in some Vault nodes or even the entire Vault cluster. In this case, Vault provides a feature, resource quotas,
that allows Vault operators to specify limits on resources used in Vault. Specifically, Vault allows operators

to create and configure API rate limits.

Health Monitoring Recommendations for Vault

For a detailed tutorial on how to monitor Vault and Consul clusters, as well as what to monitor, visit the

Vault Consul Monitoring Guide.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 115

https://hashicorp-education.s3-us-west-2.amazonaws.com/whitepapers/Vault/Vault-Consul-Monitoring-Guide.pdf

Deployment Anti-Patterns

- Single Region Deployments (Enterprise): Regional outages in the major cloud providers are not
that uncommon. Thus, it is never recommended to run Vault Enterprise in a single region. Multiple

regions should always be leveraged for robust, production Vault Enterprise deployments.

- Single AZ Deployments (OSS / Enterprise): While Vault OSS doesnt give the option for true multi-
region deployments, it is still possible to provide resiliency against an availability zone failure by

spreading the Vault servers across multiple availability zones as described above.

- Non-Consul / Raft Backend (Enterprise): When deploying Vault Enterprise into production, only
two storage backends are officially supported by HashiCorp: Consul and Raft. This policy is in place
because we have dedicated support teams of subject matter experts for both of those technologies

at HashiCorp and cannot provide that same expertise for non-HashiCorp technologies.

 Deploying Disaster Recovery clusters or Performance Replication clusters in the same region as their
respective primaries (Enterprise): It is never a good idea to pack your Disaster Recovery clusters or
Performance Replication clusters into the same region as their respective primary clusters since the

loss of the region would result in loss of the primary and the replica clusters.

Gathering Service Level Requirements

With every shared service, it is essential to begin the deployment by gathering requirements and
expectations from those who will consume it. However, service consumption isnt expressly limited to an
end-user integrating with the service. With PKI in particular, consumers will also likely include security

and compliance teams.

Each user group can be classified into three different categories: operators (the team managing the
service), policy owners (security and compliance teams), and users (consumers of the service in the
traditional sense). To ensure the collection of as many relevant requirements as possible, select a

representative sample from each of those categories to discuss the initial requirements.

The following questions can be used to determine what is essential to each of these groups regarding

PKI and the ongoing management of SSL certificates:

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 116

Operators
- In which geographic areas will the service need to be consumed?
- What are the default TTLs that should be associated with generated leaf certificates?
- What are the rotation requirements and rotation process for root and intermediate certificates?
- What are the retention requirements for audit data associated with SSL management?
- How will user access be mapped to various actions?

- What is the plan/process for deploying the service in new regions?

Security and Compliance
- What are the lifecycle and rotation requirements for certificates and keys?
- Are there any external customer requirements that should be considered in the security design?
* How should administrative and user access be mapped to various actions?

- How should critical security and compliance events be captured from the service?

Users
- Who are the technical contacts for each group of consumers?
- How will service improvements and outages be communicated?

- Are there special regulations that need to be considered for specific regions, such as Europe or
China?

- What is the onboarding /integration process for new users, teams, and applications?
- What is the recommended process for consuming and managing leaf certificates?

» How are the requirements and SLAs for external customers mapped to internal requirements and

SLAs for the Vault service?

- Which platforms will be consuming certificates?

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 117

+ What is the definition of “successful integration” with Vault?

- How are the terms “degraded” and “unavailable” defined with regard to the Vault service?

Determining Service Level Objectives

After requirements have been gathered, service level objectives can be created based on those
requirements. The purpose of service level objectives is to specifically define the criteria for the

operational success of a service. These can be related to availability, performance, or both.

The following are examples of service level objectives that could be used for SSL certificate

management:

+ Users should receive a valid response for a certificate request for any part of the certificate lifecycle

in under 50ms to 99.9% of their requests in any given 30-day period.

- Users should receive a valid response for 99.9% of their certificate requests on up to 1,000

concurrent requests on any particular Vault cluster in any given 30-day period.

+ The support team will respond to 99% of SEV 1 outages (complete service disruption) within 15

minutes.

+ There should be no more than two minutes of interruption in the arrival of audit log data from any

given cluster at any time.

Mapping Service Level Indicators

The purpose of service level indicators is to measure the service’s performance against the defined
service level objectives. Additionally, service level indicators are used as a way to measure other critical

functions in order to ensure the service is operational at all times.

While it is vital to measure hardware-based factors that can impact the service, such as CPU or RAM
utilization, it is more critical to measure the behavior of service functionality, such as how long the service
takes to complete a signing request. This method is a much better indicator of the actual health of the

service because it provides a more accurate representation of user experience.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 118

The following indicators can be used to measure the health and operations of the PKIl secrets engine:

- Generate Certificate
+ Sign Certificate
- Revoke Certificate

- Read CRL

A script can be created to mimic one or all of the above actions. Success and time measurements can
be taken along with each of these actions to ensure the defined service level objectives are being met

consistently.

It is recommended to use the ‘tidy” action in the API to clean up the certificate revocation list regularly,

especially due to the creation and revocation of certificates as a mechanism to monitor the service.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 119

PKI Use-Case Design

Overview

The purpose of this section is to provide concrete examples of how to configure and use Vault as a PKI
Management solution. Throughout this section, we will enhance our understanding through additional

assets like learning sites, blogs, and example platforms.

Assumptions

Before you begin going through this section, we are assuming the following:

* You have read through the previous sections on the issues with traditional PKI management, the

solutions to those issues, and the supporting architecture for those solutions.
* You have access to the internet and can access general websites.
* You have some experience with Linux-based systems.

- A Vault instance or cluster has been deployed, and you can access and configure Vault.

Configuration

ROOT CERTIFICATE

Digital Signature

Public Key
ROOT CERTIFICATE

example.com l

> Digital Signature

Public Key
ROOT CERTIFICATE
example.com l

> Digital Signature

Public Key

test.example.com

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

120

Overview

The PKI Secrets Engine generates dynamic X.509 certificates. With this secrets engine, services can
get certificates without going through the usual manual process of generating a private key and CSR,
submitting to a CA, and waiting for a verification and signing process to complete. Vault's built-in

authentication and authorization mechanisms provide verification functionality.

By keeping TTLs relatively short, revocations are less likely to be needed, keeping CRLs short and helping
the secrets engine scale to large workloads. This method, in turn, allows each instance of a running
application to have a unique certificate, eliminating sharing and the accompanying pain of revocation

and rollover.

In addition, by allowing revocation to mostly be forgone, this secrets engine allows for ephemeral
certificates. Certificates can be fetched and stored in memory upon application startup and discarded
upon shutdown without ever being written to disk.

References

+ PKI Secrets Engine

- Build Your Own Certificate Authority (CA)

Steps

Create a Self Signed Root Certificate (Optional)
Use this step if you do not have a CA already.

1. Enable the pki secrets engine at the pki path
vault secrets enable pki

2. Tune the pki secrets engine to issue certificates with a maximum time-to-live (TTL)
vault secrets tune -max-lease-ttl=8760h pki

3. Generate the root certificate and save the certificate in CA_cert.crt.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 121

https://www.vaultproject.io/docs/secrets/pki
https://learn.hashicorp.com/tutorials/vault/pki-engine

vault write -field=certificate pki/root/generate/internal \
common_name="example.com” \
tt1=8760h > CA cert.crt

This process generates a new self-signed root CA certificate and private key. Vault automatically
revokes the generated root at the end of its lease period (TTL); the CA certificate signs its own
Certificate Revocation List (CRL).

4. Configure the CA and CRL URLs.

vault write pki/config/urls \
issuing_certificates="http://127.0.0.1:8200/v1/pki/ca” \
crl _distribution points=http://127.0.0.1:8200/v1/pki/crl

Generate an Intermediate CA

1. Enable the pki secrets engine at the pki_int path.

$ vault secrets enable -path=pki_int pki

2. Tune the pki_int secrets engine to issue certificates with a maximum time-to-live (TTL) of 4380

hours

$ vault secrets tune -max-lease-tt1=4380h pki int

3. Execute the following command to generate an intermediate and save the CSR as pki_intermediate.

csr.

$ vault write -format=json pki int/intermediate/generate/internal \
common_name="example.com Intermediate Authority” \

| jg -r ‘.data.csr’ > pki intermediate.csr

4. Sign the intermediate certificate with the root certificate and save the generated certificate as

intermediate.cert.pem.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 122

a. Self Signed Root Certificate

vault write -format=json pki/root/sign-intermediate csr=@pki_ intermediate.csr
format=pem_bundle tt1="4380h" \

| jg -r ‘.data.certificate’ > intermediate.cert.pem

b. External CA Providers

Send the Certificate Signing Request (CSR) to the CA provider and have a signed certificate

generated.

5. Once the CSR is signed and the root CA returns a certificate, it can be imported back into Vault.

$ vault write pki _int/intermediate/set-signed certificate=@intermediate.cert.pem

Create a Role

A role is a logical name that maps to a policy used to generate those credentials. It allows configuration
parameters to control certificate common names, alternate names, the key uses they are valid for, and

more.

Here are a few noteworthy parameters:

Param Description

allowed_domains Specifies the domains of the role (used with allow_bare_domains and
allow-subdomains options)

allow_bare_domains Specifies if clients can request certificates matching the value of the actual
domains themselves

allow_subdomains Specifies if clients can request certificates with CNs that are subdomains
of the CNs allowed by the other role options (NOTE: This includes wildcard
subdomains.)

allow_glob_domains = Allows names specified in allowed_domains to contain glob patterns (e.g.

ftp".example.com)

1. Create a role named example-dot-com, which allows subdomains.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

\

123

$ vault write pki int/roles/example-dot-com \
allowed domains="example.com” \
allow_subdomains=true \
max_ttl="720h"

Integrations

While Vault can integrate into any system using the CLI or REST APl methods, we examine two examples

of more native system integrations.

Hashicorp Consul

Overview

A common practice is to integrate Consul Service Mesh with Vault to centralize the management of
certificates generated for mutual TLS. Do not confuse this section with using Consul as a Storage

Backend for Vault, which is out of scope for this document.

The Vault CA provider uses two separately configured PKI Secrets Engines for managing Connect

certificates.

The RootPKIPath is the PKI engine for the root certificate. Consul uses this root certificate to sign the

intermediate certificate. Consul never attempts to write or modify any data within the root PKI path.

The IntermediatePKIPath is the PKI engine used for storing the intermediate signed with the root
certificate. The intermediate is used to sign all leaf certificates, and Consul may periodically generate new

intermediates for automatic rotation. Therefore, Consul requires write access to this path.

If either path does not exist, then Consul attempts to mount and initialize it. This action requires additional

privileges by the Vault token in use. If the paths already exist, Consul uses them as configured.

You can choose either Vault or Consul to manage the PKI Paths within Vault. We let Vault manage the PKI

Paths to consolidate the management of certificates to Vault only.

There are additional configuration steps to consider when using a Vault / Consul / Kubernetes

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 124

https://www.vaultproject.io/docs/secrets/pki

deployment which can be found at Configuring a Connect CA Provider. This section covers the Vault and

Consul integration only.

References

+ Vault as a Connect CA

+ Configuring a Connect CA Provider

Steps

1. Create a Vault policy which allows Consul to use pre-existing PKI paths in Vault. Consul is granted
read-only access to the PKI mount points and the Root CA, but is granted full control of the

Intermediate or Leaf CA for Connect clients.

In this example the RootPKIPath is connect_root and the IntermediatePKIPath is connect_inter.

These values should be updated for your environment.

Existing PKI Mounts
path “/sys/mounts” {

capabilities = [“read” 1]

path “/sys/mounts/connect root” {

capabilities = [“read”]

path “/sys/mounts/connect inter” {

capabilities = [“read” 1

path “/connect root/” {

capabilities = [“read” 1]

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 125

https://www.consul.io/docs/k8s/connect/connect-ca-provider
https://www.consul.io/docs/connect/ca/vault
https://www.consul.io/docs/k8s/connect/connect-ca-provider

path “/connect root/root/sign-intermediate” {

capabilities = [“update”]

path “/connect inter/*” {

capabilities = [“create”, “read”, “update”, “delete”, “list”]

2. When you write this policy to Vault, it generates some information, including the token we use in the

Consul configuration file.

$ vault token create -policy=pki consul -ttl=24h

Key

token

token accessor
token duration
token_renewable
token policies
identity policies

policies

3. Locate the Consul configuration file on all servers and clients attached to your service mesh. For

stock installations, you may find them at /etc /consul.d on most Linux distributions.

4. Edit the configuration file on every node by setting ca_provider to “vault” within the connect stanza

and provide the appropriate Vault settings. An example configuration is shown below:

connect {
enabled = true

ca_provider = “vault”

Value
7PEVOFxImdFyu@FQbsXzIXwi
71MSF8PSUP0O3sw9h5GpxP7cv
24h

true

[“default” “pki consul”]
[]

[“default” “pki_consul”]

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

126

ca_config {
address = “http://localhost:8200"
token = “7PEVOFxJImdFyu@FQbsXzIXwi”

root pki path = “connect-root”

”

intermediate pki path = “connect-intermediate

}

5. Restart the Consul node agent to complete the changes.

Kubernetes

Overview

Kubernetes can be configured to use Vault as a certificate manager, which enables your services to
establish their identity and communicate securely over the network with other services or clients internal

or external to the cluster.

Jetstack’s cert-manager enables Vault's PK| secrets engine to dynamically generate X.509 certificates

within Kubernetes through an Issuer interface.

We're going to assume that you have instances/clusters of Vault and Kubernetes already deployed

References

- Running Vault with Kubernetes

- Integrate a Kubernetes Cluster with an External Vault

+ Configure Vault as a Certificate Manager in Kubernetes with Helm

Steps

1. Enable the Kubernetes authentication method.

$ vault auth enable kubernetes

Success! Enabled kubernetes auth method at: kubernetes/

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 127

https://www.hashicorp.com/products/vault/kubernetes
https://learn.hashicorp.com/vault/getting-started-k8s/external-vault
https://learn.hashicorp.com/tutorials/vault/kubernetes-cert-manager?in=vault/kubernetes

2. Configure the Kubernetes authentication method to use the service account token, the location of the

Kubernetes host, and its certificate.

$ vault write auth/kubernetes/config \

token reviewer jwt="$(cat /var/run/secrets/kubernetes.io/serviceaccount/token)” \
kubernetes host="https://$KUBERNETES PORT 443 TCP_ADDR:443" \

kubernetes ca cert=@/var/run/secrets/kubernetes.io/serviceaccount/ca.crt

Success! Data written to: auth/kubernetes/config

The token reviewer jwt and kubernetes ca cert reference files are written to the container
by Kubernetes. The environment variable KUBERNETES PORT 443 TCP_ADDR references the internal

network address of the Kubernetes host.

3. Create a Kubernetes authentication role named issuer that binds the pki policy with a Kubernetes

service account named issuer.

$ vault write auth/kubernetes/role/issuer \
bound service account names=issuer \
bound service account namespaces=default \
policies=pki \
tt1=20m

Success! Data written to: auth/kubernetes/role/issuer

The role connects the Kubernetes service account, issuer, in the default namespace with the pki Vault
policy. The tokens returned after authentication are valid for 20 minutes. This Kubernetes service account

name, issuer, is created in the Deploy Issuer and Certificate section.

4. Install Jetstack’s cert-manager’s version 0.14.3 resources.

$ kubectl apply --validate=false -f https://github.com/jetstack/cert-manager/

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 128

https://learn.hashicorp.com/tutorials/vault/kubernetes-cert-manager?in=vault/kubernetes#configure-an-issuer-and-generate-a-certificate

releases/download/v0.14.

customresourcedefinition
created
customresourcedefinition
customresourcedefinition
created
customresourcedefinition
customresourcedefinition
created

customresourcedefinition

3/cert-manager.crds.yaml

.apiextensions.

.apiextensions.

.apiextensions.

.apiextensions.

.apiextensions.

k8s.
k8s.

k8s.
k8s.

k8s.

.apiextensions.k8s.io/challenges.acme.cert-manager.io

io/orders.acme.cert-manager.io created

io/certificaterequests.cert-manager.io

io/certificates.cert-manager.io created

io/clusterissuers.cert-manager.io

io/issuers.cert-manager.io created

5. Create a namespace named cert-manager to host the cert-manager.

$ kubectl create namespace cert-manager

namespace/cert-manager created

Jetstack’s cert-manager Helm chart is available in a repository that they maintain. Helm can request

and install Helm charts from these custom repositories.

6. Add the jetstack chart repository.

$ helm repo add jetstack https://charts.jetstack.io

“jetstack” has been added to your repositories

Helm maintains a cached list of charts for every repository that it maintains. This list needs to be

updated periodically so that Helm knows about all available charts and their releases. A repository

recently added needs to be updated before any chart is requested.

7. Update the local list of Helm charts.

$ helm repo update

Hang tight while we grab the latest from your chart repositories...

...Successfully got an update from the “jetstack” chart repository

Update Complete. # Happy Helming!s

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 129

The results show that the jetstack chart repository has retrieved an update.

8. Install the cert-manager chart version 0.11 in the cert-manager namespace.

$ helm install cert-manager \
--namespace cert-manager \
--version v0.14.3 \
jetstack/cert-manager

NAME: cert-manager

#H .

The cert-manager chart deploys several pods within the cert-manager namespace.

9. Get all the pods within the cert-manager namespace.

$ kubectl get pods --namespace cert-manager

NAME READY
RESTARTS AGE

cert-manager-66958f45fc-pdf64 1/1 Running 0
cert-manager-cainjector-755bbf9c6b-gpgtg 1/1 Running 0
cert-manager-webhook-76954fcbcd-w4lll 1/1 Running 0

Wait until the pods prefixed with cert-manager are running and ready (1/1).

These pods now require configuration to interface with Vault.

10. Create a service account named issuer within the default namespace.

$ kubectl create serviceaccount issuer

serviceaccount/issuer created

The service account generated a secret that is required by the Issuer.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

STATUS

27s
27s
27s

130

11. Get all the secrets in the default namespace.

$ kubectl get secrets
default-token-mlm2n kubernetes.io/service-account-token
issuer-token-1lmzpj kubernetes.io/service-account-token

sh.helm.release.vl.vault.vl helm.sh/release.vl

w = W w

vault-token-749nd kubernetes.io/service-account-token

12. The issuer secret is displayed here as the secret prefixed with issuer-token.

Create a variable named ISSUER SECRET REF to capture the secret name.
$ ISSUER SECRET REF=$(kubectl get serviceaccount issuer -o json | jq -r

“.secrets[].name”)

13. Create an Issuer, named vault-issuer, that defines Vault as a certificate issuer.

$ cat <<EOF | kubectl apply -f -
apiVersion: cert-manager.io/vlalpha2
kind: Issuer
metadata:
name: vault-issuer
namespace: default
spec:
vault:
server: http://vault.default
path: pki/sign/example-dot-com
auth:
kubernetes:
mountPath: /vl/auth/kubernetes
role: issuer
secretRef:
name: $ISSUER SECRET REF
key: token

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

13d
47s
28m
28m

131

EOF

issuer.cert-manager.io/vault-issuer created

The specification defines the signing endpoint and the authentication endpoint and credentials.
+ metadata.name sets the name of the Issuer to vault-issuer

+ spec.vaultserver sets the server address to the Kubernetes service created in the default

namespace

- specwvault.path is the signing endpoint created by Vault's PKI example-dot-com role

+ spec.vaultauth.kubernetes.mountPath sets the Vault authentication endpoint

+ spec.vaultauth.kubernetes.role sets the Vault Kubernetes role to issuer

- specwvaultauth.kubernetes/secretRef.name sets the secret for the Kubernetes service account

- specvaultauth.kubernetes /secretRefkey sets the type to token.

14. Generate a certificate named example-com.

$ cat <<EOF | kubectl apply -f -
apiVersion: cert-manager.io/vlalpha2
kind: Certificate
metadata:
name: example-com
namespace: default
spec:
secretName: example-com-tls
issuerRef:
name: vault-issuer
commonName: www.example.com
dnsNames:
- www.example.com
EOF

certificate.cert-manager.io/example-com created

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

132

The Certificate, named example-com, requests from Vault the certificate through the Issuer, named
vault-issuer. The common name and DNS names are names within the allowed domains for the

configured Vault endpoint.

15. View the details of the example-com certificate.

S kubectl describe certificate.cert-manager example-com

Name: example-com
Namespace: default
#H ...
Events:
Type Reason Age From Message

Normal GeneratedKey 10m cert-manager Generated a new private key
Normal Requested 10m cert-manager Created new CertificateRequest resource
“example-com-1072521490"

Normal Issued 70s cert-manager Certificate issued successfully

The certificate reports that it has been issued successfully.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 133

How-To

For this section, we assume that you have configured your Vault instance /cluster using the steps outlined
in the Configuration section, and you have integrated your additional solutions outlined in the Integrations

section.

Request a Certificate

Overview

Request signed leaf or endpoint certificates to use in your environment.

References

+ PKI Secrets Engine

- Build Your Own Certificate Authority (CA)

Steps
CLI
1. Execute the following command to request a new certificate for the testexample.com domain based

on the example-dot-com role.

$ vault write pki_int/issue/example-dot-com common name="test.example.com”
ttl="24h"

REST API
2. Invoke the /pki_int/issue/<role_name> endpoint to request a new certificate.

Request a certificate for the test.example.com domain based on the example-dot-com role.

curl --header “X-Vault-Token: <TOKEN>" \
--request POST \
--data ‘{“common name”: “test.example.com”, “ttl”: “24h"}’' \
http://127.0.0.1:8200/v1/pki_int/issue/example-dot-com | jq

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 134

https://www.vaultproject.io/docs/secrets/pki
https://learn.hashicorp.com/tutorials/vault/pki-engine

Web Ul
1. Select Secrets.
2. Select pki_int from the Secrets Engines list.
3. Select example-dot-com under Roles.
4. Enter testexample.com in the Common Name field.
5. Expand Options and then set the TTL to 24 hours.

6. Click Generate.

Secrets

pki_app ¢ creds ¢ example-dot-com

Issue Certificate

Attention You will not be able to access this information later, so please copy the information below.

Certificate =000 ====- BEGIN CERTIFICATE-----
MIIDvzCCAqegAwIBAGIUSJeC3fDT2X5TIbr99nc+iev1z0cwDQYJKoZ IhveNAQEL
BOAWF JEUMBIGA1UEAXMLZXhhbXBsZS5 jb2 0wHhcNMTgwNz I IMDIWwMDAYWhcNMTgw
NzI4MDIWMDMyWjABMRKWFwYDVQQDEXBOZXNOLmMV4YWlwbGUuY29tMIIBIjANBgkg
hkiGIwOBAQEFAAOCAQBAMIIBCgKCAQEAUNFsVGYPZz2BNIX4UDm+Y0k1KSarbwIK2
7§CsEfEGokP0tLBPyQ+ke9CbDTudkspTeW20Kgt 6mg2RB4TgHSwHe1326hcopiPp
oJvItPBdukIm7cczFOEQURiyHSEtJdsPT4 TMErwMMpv+BzgnkiUlRhF25GUEigSu
UfUXQAtHIO6299yFlzVGGLTI6e2YhG3PTSxfEL6 1T+ggIERSbqwXvOKZNGVFpygx
cevANw+AOKedSiYi+51A4eT95jgfclFCKpulx600UihYt9TXENUBBfACS 3RTXUEM
/Z2fczaulgs02TMKsrOzTkogC8MR4mmyvgBxemHy 1+bN71to75CKr+2QIDAQABOL4H/
MIH8MA4GAlUADWEB/WQEAWIDGDAABgNVHSUEF JAUBgGr BgEFBQCDAQY IKWYBBQUH
AwIwWHQYDVROOBBYEFI1nJPQFFcOexAR+7aBejl/m+nuxMB8GAlUdIWQYMBaAFPmME
SHONJUUbAJvh77Psmpkcszn9MDsGCCsGAQUFBWEBBC BWLTArBggrBgEFBQewAoY £
aHROcDovLzEyNy4wL jAUMTo4MjAWL3YxL3Bras9 jYTAbBgNVHREEFDASghBOZXNO
LmV4YW1wbGUuY29tMDEGA] UdHWQQMCgwIqAkoCKGIGhOdHAGLyY BxMjcuMCAWLIEG
ODIWMCY2MS9waZkvY3TsMAOGCSqGSIb3DQEBCWUAAAIBAQATLELCL161 jdLix1K5C
SY9kqsgIHXFEWTSEQBbgsdq/3¥Y2mgVBy++NoEZ7gb9aTgCCvyynPILIsVerXoays
Za5uYyTOmFJasYJTmWeVTDANuBNIT3/gNIFJIgHbnnF+UdYBOt1Xrcd /CntGIMET
zDBMtQe59x031hgbFQhpDQ+ExFxddGuODRC jaaaAkoB84SIBBCOcK25+07/FTWulg
6akc6t2exTx2eedwthybuheBTrFMmz jE25/MMOYOEL 2PVPMi+GYXb6Umhd 7X5538
ewr9wKqIiFZzF6Z+51Ji7jaaUEOH81jgV4q4 HT6wIvBgyLKGSniD20k5mjUDcCik
RTX4

-BEGIN CERTIFICATE-----

MIIDNTCCAh2gAwIBAGIUQhIX9DOX76JA5 jpIEWz21pQq2dkwDQYIKoZ Thve NAQEL
BOAWF jEUMBIGA1UEAXMLZXhhbXBSZSS jb2 0wHhcNMT gwhz I IMDEzMTMOWhcNMTgw
ODI2MDEzMjAzWiAWMRQWEGYDVQODEWE LeGFtcGx LLMNvbTCCAS IWDQYJKoZ ThveN
AQEBBQADgGEPADCCAQoCYgEBAKTCTVoRA3Y2yET x4 ZEVq/BrUjRhUr 6VWDBORMSA
NuUMEYI46AjQiyyZzRSSoLnjIVEWEU/sQhEIESQ6bYQ0I5sJ00jLNSWT SPvHrB143
n33LNJKvQ9InOafRSWKiILI6YGtBy0hWoaEYUOgQg+kTKP7ThUr YqJQykGGkJFTGuVKm
PGEYNYIMBt2jD35UmO7NwpgsMwOC+HpPIj22TpZ+VHGCFPIalgRmeJzd79y96bn+ts
hfNN3+YbugQmmzrtiA¥LCLIBYy4LKirgz0BlaDh8LX2uViCVeqivtoz32bceBymw
¥Zmz2Wa3UB2g5+ggqnnlFojrGn+ofHCAKRO4EeK8mFrgBmhMCAWEARaN TMHkwDgYD
VROPAQH/BAQDAGEGMABGA1UJEWEB /WQFMAMBAT BWHQYDVROOBBYEFPMESHONJIUUDL

Issuing CA

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

135

The response contains the PEM-encoded private key, key type and certificate serial number.

7. Click Copy Credentials and save it to a file.

Revoke Certificates

Overview

If a certificate must be revoked, you can easily perform the revocation action, which causes the CRL to be

regenerated. When the CRL is regenerated, any expired certificates are removed from the CRL.
References

» PKI Secrets Engine

- Build Your Own Certificate Authority (CA)

Steps
CLI

1. To revoke a certificate, execute the following command.

$ vault write pki_int/revoke serial number=<serial number>

REST API

1. Invoke the /pki_int/revoke endpoint to invoke a certificate using its serial number.

curl --header “X-Vault-Token: <TOKEN>" \
--request POST \
--data ‘{“serial _number”:
“48:97:82:dd:f0:d3:d9:7e:53:25:ba:fd:f6:77:3e:89:e5:65:cc:e7"}" \
http://127.0.0.1:8200/v1/pki_int/revoke

Web Ul
1. Select Secrets.

2. Select pki_int from the Secrets Engines list.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 136

https://www.vaultproject.io/docs/secrets/pki
https://learn.hashicorp.com/tutorials/vault/pki-engine

3. Select the Certificates tab.
4. Select the serial number for the certificate you wish to revoke.

5. Click Revoke. At the confirmation, click Revoke again.

Remove Expired Certificates

Overview

Keep the storage backend and CRL by periodically removing certificates that have expired and are past a

certain buffer period beyond their expiration time.

References

+ PKI Secrets Engine

« Build Your Own Certificate Authority (CA)

Steps
CLI

1. To remove revoked certificates and clean the CRL.

$ vault write pki_int/tidy tidy cert_store=true tidy revoked_certs=true

REST API

2. Invoke the /pki_int/tidy endpoint to remove revoked certificate and clean the CRL

$ curl --header “X-Vault-Token: <TOKEN>" \
--request POST \
--data ‘{“tidy cert store”: true, “tidy revoked certs”: true}’ \

http://127.0.0.1:8200/v1/pki int/tidy

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

137

https://www.vaultproject.io/docs/secrets/pki
https://learn.hashicorp.com/tutorials/vault/pki-engine

Web UI
1. Select Secrets.
1. Select pki_int from the Secrets Engines list.
1. Select Configure.
1. Select the Tidy tab.
1. Select the check-box for Tidy the Certificate Store and Tidy the Revocation List (CRL).

1. Click Save.

SSH Login

Overview

The signed SSH certificate is the simplest and most powerful mechanism in terms of setup complexity
and being platform agnostic. By leveraging Vault's powerful CA capabilities and functionality built into

OpenSSH, clients can SSH into target hosts using their own local SSH keys.

In this section, the term “client” refers to the person or machine performing the SSH operation. The “host”

refers to the target machine. If this is confusing, substitute “client” with “user.”

Troubleshooting can be found at the end of the Signed SSH Certificates web page.

References

+ SSH Secrets Engine

- Signed SSH Certificates

» Manage SSH with HashiCorp Vault

Steps

Configure the SSH Secrets Engine

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 138

https://www.vaultproject.io/docs/secrets/ssh/signed-ssh-certificates.html
https://www.vaultproject.io/docs/secrets/ssh
https://www.vaultproject.io/docs/secrets/ssh/signed-ssh-certificates.html
https://youtu.be/bKe4BkDfdvI

1. Mount the secrets engine. Like all Secrets Engines in Vault, the SSH secrets engine must be mounted

before use.
$ vault secrets enable -path=ssh-client-signer ssh

This command enables the SSH secrets engine at the path “ssh-client-signer.” It is possible to
mount the same secrets engine multiple times using different -path arguments. The name “ssh-
client-signer” is not special - it can be any name, but this documentation assumes “ssh-client-

signer.”

2. Configure Vault with a CA for signing client keys using the /config/ca endpoint. If you do not have

an internal CA, Vault can generate a keypair for you.

$ vault write ssh-client-signer/config/ca generate signing key=true

If you already have a keypair, specify the public and private key parts as part of the payload:

$ vault write ssh-client-signer/config/ca \
private key="..." \

public_key="..."

Regardless of whether it is generated or uploaded, the client signer public key is accessible via the

API at the /public_key endpoint.

3. Add the public key to all target host's SSH configuration. This process can be manual or automated
using a configuration management tool. The public key is accessible via the APl and does not

require authentication.

$ curl -o /etc/ssh/trusted-user-ca-keys.pem http://127.0.0.1:8200/v1/ssh-client-
signer/public key
$ vault read -field=public_key ssh-client-signer/config/ca > /etc/ssh/trusted-user-

ca-keys.pem

Add the path where the public key contents are stored to the SSH configuration file as the

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 139

TrustedUserCAKeys option.

/etc/ssh/sshd_config
...

TrustedUserCAKeys /etc/ssh/trusted-user-ca-keys.pem

Restart the SSH service to pick up the changes.
4. Create a named Vault role for signing client keys.

Because of the way some SSH certificate features are implemented, options are passed as a map.

The following example adds the permit-pty extension to the certificate.

$ vault write ssh-client-signer/roles/my-role -<<"EOH”

“allow user certificates”: true,
“allowed users”: “*",
“allowed extensions”: “permit-pty,permit-port-forwarding”,

“default_extensions”: [

{
“permit-pty”: “”
}
1,
“key type”: “ca”,
“default _user”: “ubuntu”,
“ttl”: “30m0s”
}
EOH

Client SSH Authentication

The following steps are performed by the client (user) that wants to authenticate to machines managed

by Vault. These commands are usually run from the client’s local workstation.

1. Locate or generate the SSH public key. Usually, this is ~/.ssh/id_rsa.pub. If you do not have an

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 140

SSH keypair, generate one:

$ ssh-keygen -t rsa -C “user@example.com”

2. Ask Vault to sign your public key. This file usually ends in .pub and the contents begin with ssh-rsa..

$ vault write ssh-client-signer/sign/my-role \
public key=@$HOME/.ssh/id rsa.pub

The result includes the serial and the signed key. This signed key is another public key.

To customize the signing options, use a JSON payload:

$ vault write ssh-client-signer/sign/my-role -<<"EOH”

“public_key”: “ssh-rsa AAA...",
“valid principals”: “my-user”,
“key id"”: “custom-prefix”,
“extensions”: {

“permit-pty”: “”,

un

“permit-port-forwarding”:

EOH

3. Save the resulting signed public key to disk. Limit permissions as needed.

4. SSH into the host machine using the signed key. You must supply both the signed public key from

Vault and the corresponding private key as authentication to the SSH call.

$ ssh -i signed-cert.pub -i ~/.ssh/id rsa username@l0.0.23.5

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT

141

Host Key Signing

For added layers of security, we recommend enabling host key signing. This method is used in
conjunction with client key signing to provide an additional integrity layer. When enabled, the SSH agent
verifies the target host is valid and trusted before attempting to SSH. This reduces the probability of a

user accidentally SSHing into an unmanaged or malicious machine.

1. Mount the secrets engine. For the most security, mount at a different path from the client signer.

$ vault secrets enable -path=ssh-host-signer ssh

2. Configure Vault with a CA for signing host keys using the /config/ca endpoint. If you do not have an

internal CA, Vault can generate a keypair for you.

$ vault write ssh-host-signer/config/ca generate signing key=true

3.If you already have a keypair, specify the public and private key parts as part of the payload:

$ vault write ssh-host-signer/config/ca \
private key="..." \

public_key="..."

Regardless of whether it is generated or uploaded, the host signer public key is accessible via the API

at the /public_key endpoint.

4. Extend host key certificate TTLs

$ vault secrets tune -max-lease-tt1=87600h ssh-host-signer
Create a role for signing host keys. Be sure to fill in the list of allowed
domains, set allow bare domains, or both.
$ vault write ssh-host-signer/roles/hostrole \
key type=ca \
tt1=87600h \

allow host certificates=true \

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 142

allowed domains="localdomain,example.com” \

allow subdomains=true

5. Sign the host's SSH public key.

vault write ssh-host-signer/sign/hostrole \
cert_type=host \
public_key=@/etc/ssh/ssh _host rsa key.pub

6. Set the resulting signed certificate as HostCertificate in the SSH configuration on the host machine.

$ vault write -field=signed key ssh-host-signer/sign/hostrole \
cert _type=host \
public_key=@/etc/ssh/ssh_host rsa key.pub > /etc/ssh/ssh _host rsa key-cert.pub

Set permissions on the certificate to be 0640

$ chmod 0640 /etc/ssh/ssh_host rsa_key-cert.pub

Add host key and host certificate to the SSH configuration file.

/etc/ssh/sshd_config
...

For client keys
TrustedUserCAKeys /etc/ssh/trusted-user-ca-keys.pem

For host keys

HostKey /etc/ssh/ssh_host rsa key
HostCertificate /etc/ssh/ssh host rsa key-cert.pub

Restart the SSH service to pick up the changes.

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 143

Client-Side Host Verification

1. Retrieve the host signing CA public key to validate the host signature of target machines.

$ curl http://127.0.0.1:8200/v1/ssh-host-signer/public key
$ vault read -field=public_key ssh-host-signer/config/ca

2. Add the resulting public key to the known_hosts file with authority.

~/.ssh/known_hosts
@cert-authority *.example.com ssh-rsa AAAAB3NzaClyc2EAAA..

3. SSH into target machines as usual.

Automate Endpoint Certificate Rotation

B

Agent Template
Certificate Creation /
Expiration Event (PKI)
° Read /Parse
Broadcast events Generate Output File
Get new secrets . Execute
Event Execution JSON
Endpoint BASH
(Consul Template) Powershell

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 144

Overview

Already you can see how generating PKI certificates with Vault saves operators time. A single call to the
Vault API replaces the tedious process of generating a private key, generating a CSR, submitting to a CA,

and then waiting for a verification and signing process to complete.
To automate the process further, use a template rendering tool such as Consul Template.

Consul Template is a daemon that queries a Consul or Vault cluster and updates any number of
specified templates on the file system. Rendering templates requires both a template file and a template
configuration. Template files are written in the Go Template format, and the configuration files are in HCL.

(See Consul Template's README.md for further documentation.)
» Some of the most common Vault use cases include:
+ Continuously read values from Vault and store them locally
+ Continuously renewing Vault auth tokens
+ Executing arbitrary commands

- Continuously renewing Dynamic Secrets (PKI, AWS, Database)

References

+ X.509 Certificate Management with Vault

- Automating Certificate Lifecycle Management with HashiCorp Vault

- Templating Language

- Certificates Automation with Vault and Consul Template

+ Eb5-certificate-rotate repo

+ Consul Template Download

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 145

https://github.com/hashicorp/consul-template
https://golang.org/pkg/text/template/
https://github.com/hashicorp/hcl
https://www.hashicorp.com/blog/certificate-management-with-vault
https://devcentral.f5.com/s/articles/Automating-certificate-lifecycle-management-with-HashiCorp-Vault
https://github.com/hashicorp/consul-template#templating-language
https://medium.com/hashicorp-engineering/certificates-issuing-and-renewal-with-vault-and-consul-template-18e766228dac
https://github.com/f5devcentral/f5-certificate-rotate
https://releases.hashicorp.com/consul-template/

Steps
Deploy Consul Template

1. You can download the latest release from Consul Template here on the target host that requires a

certificate.

2. We will use a simple configuration for our Consul Template covering only the Vault integration scope,

to create a config.hcl file with the following:

vault {
address = “http://vault-server:8200”
token="XXXXXXXX"” . #also can be under VAULT TOKEN env variable
grace = “1s”

unwrap_token = false
renew_token = false
}
syslog {
enabled = true
facility = “LOCAL5”
}
template {
contents="{{ with secret \"pki/issue/CA\"” \”common_name=example.com\” }}{{ .Data.
certificate }}{{ end }}”
destination="~/example.com.cert”
#0ptional Command after certificate renewal

command = “restart service foo”

3. Start Consul Template with the -config option set to the configuration file. Consider configuring it as

a registered service to execute on host startup if needed.

consul-template -config config.hcl

4. Check the time validity on the certificate by issuing the following command against the certificate.

openssl x509 -text -noout -in example.com.cert

WHITEPAPER | MODERN DAY PKI MANAGEMENT WITH HASHICORP VAULT 146

www.hashicorp.com e e e e e e e e e

	Preface
	What is PKI

	Common Uses for PKI
	Securing Communications
	Authenticating Users and Systems (SSH)
	Signing and Encryption

	Traditional PKI Management
	People and Process
	Lifecycle Management Patterns

	Shortcomings with Traditional PKI
	People
	Process

	HashiCorp Vault Specializes in Internal PKI
	PKI Design Overview
	Core Elements of PKI
	Improving Certificate Lifecycle and Security
	Example Scenario

	Designing the Vault PKI Solution
	Design Considerations
	One CA, One Secrets Engine
	Configure CRL/OCSP in Advance
	Safe Minimums
	
Token Lifetimes and Revocation

	Patterns: Managing Root Certificates
	What is a Root Certificate?
	Vault PKI Root CA Anti-Patterns
	External CA as a Public Signing Authority
	The Root CA as an Issuing CA

	When Vault should Manage the Root CA(s)
	Lifecycle Management
	Preparation
	Root Certificate Generation
	Certificate Expiration, Renewal, and Revocation
	Securing the Vault CA using an HSM
	Securing the Root Private Key Generation
	Key Length and Algorithm Selection
	Root Certificate Validity Period
	Defining Root CA Constraints
	Monitoring Recommendations

	Patterns: Managing Intermediate CA
	Integrating with Existing CAs
	CA Hierarchy Design Recommendations

	Intermediate CA Anti-patterns
	Common Intermediate CA Management Patterns

	CA Lifecycle Management
	CA Validity Time Periods
	CA Succession
	1. Renew CA certificate TTL only
	2. Replace CA without changing the private key
	3. Replace CA and rotate the private/public key pair
	4. Replace Intermediate CA and Root CAs
	Certificate Revocation List and OCSP
	Revoking CA Certificates

	Vault and SPIFFE/SPIRE
	Monitoring/Audit Recommendations
	Operation
	Example path and data snippets

	Patterns: Managing Leaf Certificates
	Anti-Patterns
	Lifecycle Management
	Preparation
	Certificate Issuance
	Usage and Validation
	Renewal/Rotation

	Deployment / Automation
	Example Vault Agent Configuration

	Revocation
	When do I need to revoke leaf certificates?
	Revoking leaf certificates using the lease ID
	Revoking leaf certificates via certificate serial number
	Revocation checking for clients
	Viewing revoked certificates in the CRL
	Validating certificates via OCSP

	Tidying
	Common Configurations
	Leaf Certificate Time-To-Live
	Time-To-Live Hierarchy
	Maximum TTL for the leaf certificate from highest to lowest.
	Precedence (highest to lowest)
	Example Configuration
	Other Leaf Certificate Considerations

	Monitoring / Audit Recommendations
	Generating a certificate
	Revoking a certificate

	Secure Introduction
	Securely Introducing Vault Clients
	Platform Integration
	Trusted Orchestrator

	Automating Secure Introduction
	Vault Agent Auto-Auth

	PKI Solution Architecture
	Deployment Reference Architecture
	Hardware Considerations
	Consul Reference Architecture
	Vault Reference Architecture
	Multi-Region Deployment Reference Architecture
	Production Hardening
	Scale and Performance Considerations
	Health Monitoring Recommendations for Vault

	Deployment Anti-Patterns
	Gathering Service Level Requirements
	Determining Service Level Objectives
	Mapping Service Level Indicators

	PKI Use-Case Design
	Overview
	Assumptions
	Configuration
	Overview
	References	
	Steps
	Param
	Description

	Integrations
	Hashicorp Consul
	Kubernetes

	How-To
	Request a Certificate
	Revoke Certificates
	Remove Expired Certificates
	SSH Login
	Automate Endpoint Certificate Rotation

