
MongoDB
and HashiCorp:
Capabilities for
Use in a Zero Trust
Environment

WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

2WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

It wasn’t that long ago that security professionals protected their IT in much
the same way that medieval guards protected a walled city: They made it as
difficult as possible to get inside. But once someone was past the perimeter,
they had generous access to the riches contained within. That mindset has
changed as users increasingly access networks and applications from any
geography, on any device, on platforms hosted in the cloud. Reliance on
perimeter security has become increasingly insufficient.

Zero trust presents a new paradigm for cybersecurity. In a zero trust
environment, the perimeter is assumed to have been breached. There are
no trusted users, and no user nor device gains trust simply because of its
physical or network location. Every user, device, and connection must be
continually verified and audited. The creator of zero trust, security expert
John Kindervag, summed up the approach: “Never trust, always verify.”

Because databases contain so much of an organization’s sensitive (and
regulated) information, as well as data that may not be sensitive but is critical
to keeping the organization running, it’s imperative that your database is
ready and able to work in a zero trust environment.

That means the database must be secure by default, and it needs to limit
users’ opportunities to make it less secure. It must support a wide range
of tools to allow users to authenticate themselves to the database. Fine-
grained, role based access controls must govern what a user is allowed to do
— or not do — once they’ve been authenticated. And the database should
have auditing capabilities to ensure that administrators can track suspicious
or unexpected behavior by event, user, or role.

Additional technologies, notably encryption, are necessary to support the
successful implementation of zero trust. The National Institute of Standards
and Technology (NIST) wrote a 2020 paper on Zero Trust Architecture,
which was cited in President Joe Biden’s executive order on cybersecurity;
it specifically mentions data protections as a component of zero trust
architecture.

We will primarily focus on how MongoDB’s native functionality & HashiCorp’s
Zero Trust suite of products improve an organization’s security posture.

There are several crucial aspects of performance in a zero trust environment:
security by default; limited and controlled connectivity to the internet;
robust authentication for all users; similar control over user authorizations;
and encryption and redaction capabilities that can strictly limit access to
certain data.

What Is
Zero Trust?

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-207.pdf
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

3WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

A database that is secure by default, such as MongoDB, will be secure out
of the box. This takes some of the responsibility for security out of the hands
of users. The highest levels of security are in place from the start, without
requiring attention — or even knowledge — from users or administrators. To
allow access, users and administrators must proactively make changes. No
one is automatically granted access because of rank or role.

In the case of MongoDB, secure by default means, in part, that Atlas clusters
do not allow for any connectivity to the internet when they’re first spun up.
Each dedicated Atlas cluster is deployed in a unique virtual private cloud
(VPC) configured to prohibit inbound access. (Free and shared Atlas clusters
do not support VPCs.) The only way to access these clusters is through the
Atlas interface. Users can configure IP access lists to allow certain addresses
to attempt to authenticate to the database. Without being included on such
a list, application servers are unable to access the database. Even the person
who sets up the clusters needs to add their IP address to the access list.

Atlas also allows customers to set up temporary access lists with
predetermined expiration dates. This can be helpful when a team member
needs access from a temporary work location.

In the case of HashiCorp, Zero trust security is predicated on securing
everything based on trusted identities. These are the four foundational
categories for identity-driven controls and zero trust security:

1. HashiCorp Vault is an identity-based security product that centers
around enabling enterprises, teams, and individuals to manage secrets
and protect sensitive data.

Vault was built on the principle of identity-based security and acts as an
identity broker and leverages trusted identity platforms (AD, LDAP, etc)
to perform actions within Vault or other products. Vault also acts as an
identity provider for applications and machines to quickly authorize and
authenticate in automated workflows.

Vault is used by millions to centrally store, access, and distribute
dynamic secrets like tokens, passwords, certificates, and encryption keys
across any public or private cloud environment.

2. HashiCorp Consul enables machine-to-machine access by enforcing
authentication between applications and ensuring only the right
machines are talking to each other. Consul codifies authorization and
traffic rules with encrypted traffic while automating identity-based
access for maximum scale, efficiency, and security. With Consul,
organizations can discover services, automate network configurations,
and enable secure connectivity across any cloud or runtime using
Consul service mesh.

MongoDB and
HashiCorp
– Secure by
Default

https://www.hashicorp.com/products/vault?mongo-wp?utm_source=tech_partner&utm_medium=syndication&utm_campaign=23Q3_WW_MONGODB_AND_HASHICORP_ZERO_TRUST_SECURITY_WHITE_PAPER_WP&utm_content=&utm_offer=whitepaper
https://www.hashicorp.com/products/consul?utm_source=tech_partner&utm_medium=syndication&utm_campaign=23Q3_WW_MONGODB_AND_HASHICORP_ZERO_TRUST_SECURITY_WHITE_PAPER_WP&utm_content=&utm_offer=whitepaper

4WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

3. Traditional solutions for safeguarding user access used to require you
to distribute and manage SSH keys, VPN credentials, and bastion hosts,
which creates risks around credential sprawl and users having access
to entire networks and systems. HashiCorp Boundary secures access
to applications and critical systems with fine-grained authorizations
without managing credentials or exposing your network.

4. Human authentication and authorization with 3rd party identity tools
(Active Directory, Okta, Ping)

Data centers and physical storage

MongoDB Atlas is built to work equally well with any of the three largest
cloud providers: Amazon Web Services (AWS), Google Cloud, and Microsoft
Azure.

No matter which of these platforms a customer chooses, data stored in
clusters of level M10 and above is stored in single-tenant dedicated virtual
servers created solely for that Atlas customer. These virtual servers are
isolated in their own dedicated virtual private cloud and do not share logical
data storage or processing with other customers.

http://boundaryproject.io/?utm_source=tech_partner&utm_medium=syndication&utm_campaign=23Q3_WW_MONGODB_AND_HASHICORP_ZERO_TRUST_SECURITY_WHITE_PAPER_WP&utm_content=&utm_offer=whitepaper

5WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

An IT organization may use any number of methods to allow users to
authenticate themselves to a database, including a username and password.
MongoDB enables a variety of other ways to authenticate a user into a
system. MongoDB supports LDAP proxy authentication as well as Kerberos
authentication.

All forms of MongoDB support transport layer security (TLS) and SCRAM
authentication. They are turned on by default and cannot be disabled. Traffic
from clients to Atlas is authenticated and encrypted in transit, and traffic
between a customer’s internally managed MongoDB nodes is also
authenticated and encrypted in transit using TLS.

MongoDB uses TLS 1.2 by default. Customers can use TLS 1.1 or 1.0 if
needed, but MongoDB 4.0 and later does not support TLS 1.0 if a more
recent version is available. Starting with MongoDB 4.4, TLS 1.3 is supported
when used with a compatible OpenSSL library; TLS 1.3 support in Atlas is
coming soon. The MongoDB security team monitors the status of transport
protocols and continually updates requirements to ensure that weak ciphers
are deprecated.

For passwordless authentication to MongoDB, MongoDB offers two different
options to support the use of X.509 certificates. The first option, called “easy,”
auto-generates the certificates needed to authenticate database users.
The “advanced” option is for organizations already using X.509 certificates,
and which already have a certificate management infrastructure. These
organizations can upload their CA certificate to MongoDB Atlas and continue
to use their in house X.509 certificates for authentication. The advanced
option can be combined with LDAPS for authorization. Atlas will send out
automated alerts when certificates issued by the Atlas certificate authority, or
appearing on the certificate revocation list, are close to expiration.

For dedicated clusters (M10 and above), Atlas provides an easy-to-read log
of database authentication events, including both successes and failures.
These logs include the database user who attempted to authenticate, source
IP address, and time stamp. The logs are available either within the Atlas user
interface or via an API.

Access infrastructure can only be reached via bastion hosts and by users
whom senior management has approved for backend access. These hosts
require multifactor authentication and are configured to require SSH keys,
not passwords.

Zero Trust
Authentication
With MongoDB

6WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

Authentication only verifies that someone is who they say they are.
Authorization determines what a user is allowed to do. In a zero trust
environment, each user has a specific level of allowed access or activity.

To determine each user’s privileges, MongoDB uses role-based access
controls (RBAC). A user’s defined role allows certain activities and denies
others. It may allow someone to read data from a database, for example, but
not insert data.

MongoDB offers several predefined roles covering the most commonly
requested privileges and restrictions. It also allows you to define your own
roles, constructing fine-grained access controls tailored to your organization,
project, or database. These can reflect a specific functionality that a user
needs in their job duties, or a customized role tied to your organizational
structure. It also makes it possible to create a separation of duties among
different parties accessing and managing data.

Database administrators can also create temporary MongoDB users, which
Atlas will automatically delete after a specified period of time. This capability
complements granular database auditing (described below). If a user needs
temporary access to perform maintenance, for example, the assigned role
and its actions can be comprehensively audited. Once the user is deleted,
any client or application attempting to authenticate with that user will not
have access to the database.

MongoDB also allows the construction of a multilevel security framework,
such as “confidential,” “secret,” and “top secret,” by using a $redact operator
in conjunction with tags. Objects and users can be grouped into different
security levels, and unauthorized users are prevented from accessing
information at a higher security level than their authorization.

Database Credential Rotation

No longer do database administrators need to be concerned with manual
rotation of credentials or human mistakes in password policy enforcement.
HashiCorp Vault provides the ability to create, rotate, and revoke MongoDB
database credentials through an automated workflow and API leveraging
user generated policies. This allows each application, service, or user to
dynamically get unique credentials to access the database(s) as well as
lease and expiration times for the credentials. This means that the credentials
will expire and reduce the impact of breaches from leaked credentials.

In a scenario where credentials are lost or stolen, the window for those
credentials to be valid can be reduced to almost nothing or instant-use only.
If credentials are stolen or leaked, the same automated workflow for issuance
and rotation can also automatically revoke access and seal Vault and lock
down from outside access.

Zero Trust
Authorization
With MongoDB

7WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

MongoDB supports a wide variety of auditing strategies, making it easier to
monitor your zero trust environment to ensure that it remains in force and
encompasses your database. Administrators can configure MongoDB to log
all actions or apply filters to capture only specific events, users, or roles.

MongoDB Enterprise Advanced’s role-based auditing allows you to log and
report activities by specific role, such as userAdmin or dbAdmin, coupled
with any roles inherited by each user, rather than having to extract activity
for each individual administrator. This makes it easier for organizations to
enforce end-to-end operational control and maintain the insight necessary
for compliance and reporting.

The audit log can be written to multiple destinations in a variety of formats,
such as to the console and syslog (in JSON) and to a file (JSON or BSON). It
can then be loaded to MongoDB and analyzed to identify relevant events.

Auditing to
Support Zero
Trust

8WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

Encryption

Encryption is a key technology in a zero trust environment. In essence, it’s the
last line of defense. If someone manages to convince the system that they
are someone they’re not, with authorizations they shouldn’t have, encryption
must still protect your data.

MongoDB allows you to encrypt your data in flight, at rest, or even, with
field-level encryption, in use. For data in motion, all versions of MongoDB
support TLS and SSL encryption. For data at rest, MongoDB supports AES-
256 in both CBC mode and GCM mode. It can also be configured for FIPS
compliance.

To encrypt data when it is in use, MongoDB offers an industry-leading
capability called client-side field-level encryption. Client-side field-level
encryption can be implemented to safeguard data even from database
administrators and vendors who otherwise would have access to it.

Client-side field-level encryption is different from other database encryption
approaches because the process of encrypting and decrypting is completely
separate from the database server. Encryption and decryption are handled
exclusively within the MongoDB drivers in the client, before sensitive data
leaves the application. The database only ever uses it as ciphertext.

Client-side field-level encryption is highly flexible. You can selectively
encrypt individual fields within a document, multiple fields within the
document, or the entire document. Each field can be optionally secured with
its own key and decrypted seamlessly on the client.

Securing data with client-side field-level encryption allows you to move to
managed services in the cloud with greater confidence. The database only
works with encrypted fields, and organizations control their own encryption
keys, rather than having the database provider manage them. This additional
layer of security enforces an even finer-grained separation of duties between
those who use the database and those who administer and manage it.

Client-side field-level encryption also makes it easier to comply with so-
called right to be forgotten mandates in modern privacy legislation such
as GDPR and CCPA. If a user invokes their right to be forgotten, destruction
of the associated field encryption key will render the user’s personally
identifiable information unreadable and irrecoverable to anyone.

Because the database server has no access to the encryption keys, certain
query operations such as sorts, regexes, and range-based queries on
encrypted fields are not possible server-side. Because of this, client-side
field-level encryption is best applied to selectively protect just those fields

MongoDB and
HashiCorp
Vault in a
Zero Trust
Environment

9WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

containing highly sensitive personal information such as email addresses,
phone numbers, credit card information, or social security numbers.
(MongoDB’s Queryable Encryption, introduced in June 2022, is shifting the
encryption landscape. It allows you to encrypt sensitive data from the client
side, store it as fully randomized encrypted data on the server side, and run
expressive queries on the encrypted data.)

HashiCorp Enterprise Vault and Client Side Field Level Encryption

Vault can be used as an external Key Management Server to supply
encryption keys used by MongoDB’s Client Side Field Level Encryption
libraries for encrypting sensitive fields in MongoDB documents.

Field level encryption (FLE) allows developers to selectively encrypt specific
data fields. It helps protect sensitive data and enhances the security of
communication between client apps and server. Pairing an FTE-capable
database with a KMIP provider offers the highest level of security and control.

The Key Management Interoperability Protocol (KMIP) standard is a
widely adopted approach to handle cryptographic workloads and secrets
management for enterprise infrastructure such as databases, network
storage, and virtual and physical servers. HashiCorp Vault, being a KMIP
compliant Key Management Server (KMS), enables organizations to perform
cryptographic operations for their apps and services.

With MongoDB releasing client-side field level encryption with KMIP support,
customers are now able to use Vault’s KMIP secrets engine to supply the
encryption keys. This allows customers to be in full control of their keys.

10WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

Example FLE Flow in MongoDB with KMIP Provider

The diagram below illustrates the query flow submitted by an authenticated
client using FLE:

This example assumes we are retrieving a user’s record by their SSN number:

1. When the application submits the query, the MongoDB driver analyzes
it to determine if any encrypted fields are involved in the filter.

2. Recognizing that the query is against an encrypted field, the driver
requests the key encryption key (KEK) from the KMIP-enabled key
provider. The key provider returns the keys to the MongoDB driver and
encrypts the key fields, such as SSN, as shown in this example.

3. The driver submits the query to the MongoDB server with the encrypted
fields rendered as ciphertext.

4. The MongoDB server returns the encrypted results of the query to
the driver.

5. The query results are decrypted with the keys held by the driver and
returned to the authenticated client as readable plaintext.

This is one example of how MongoDB and HashiCorp Vault can help
benefit organizations with security management across their databases
and applications. We have built many integrations with MongoDB Atlas for
database credential rotation and key management to help organizations
protect and secure their data infrastructure.

11WHITEPAPER | MONGODB AND HASHICORP: CAPABILITIES FOR USE IN A ZERO TRUST ENVIRONMENT

MongoDB and HashiCorp’s suite of Zero Trust Security products are
optimally suited for organizations operating in a cloud environment or
interested in improving their security posture. MongoDB’s and
HashiCorp products are secure by default and have developed best of
breed capabilities in the most critical areas of zero trust database
management including:

• Secrets Management

• Access, Authorization & Authentication

• Encryption

Together, the HashiCorp & MongoDB Zero Trust solution ensures that
organizations have the controls to authenticate and authorize users and
machines at all layers of a dynamic network based on identity.

Conclusion

https://www.hashicorp.com/partners/tech/mongodb?utm_source=tech_partner&utm_medium=syndication&utm_campaign=23Q3_WW_MONGODB_AND_HASHICORP_ZERO_TRUST_SECURITY_WHITE_PAPER_WP&utm_content=&utm_offer=whitepaper

www.hashicorp.com

http://www.hashicorp.com/

