
Building secure
and compliant
infrastructure in the
multi-cloud era
How to leverage the Terraform ecosystem to
solve security and compliance issues.

WHITE PAPER

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 2

Contents

Executive Summary

Introduction

The challenge of secure infrastructure

Security and compliance remains a manual process for many teams

Six key practices for secure infrastructure

1. Address the provisioning skills gap

2. Reuse infrastructure for consistency

3. Create guardrails

4. Enforce guardrails at the time of provisioning

5. Enforced guardrails continuously post Day 1 provisioning

6. Add observability and visibility

The way forward

3

4

4

5

7

8

12

13

16

17

19

21

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 3

Executive summary
The way organizations provision infrastructure has significantly changed with the move from

dedicated servers to capacity on-demand in the cloud. Homogeneous blueprints of infrastructure

owned by IT have grown inefficient and outdated. In the cloud, infrastructure resources must be

readily available across a variety of providers.

While infrastructure automation underpins the move to the cloud and the overall modernization of

application delivery, this shift requires organizations to address potential security shortcomings in

their traditional provisioning processes, including:

• Slow, error-prone, manual workflows and ticketing systems

• A lack of built-in security controls or secure templates for infrastructure code reuse

• Inconsistent or non-existent policy enforcement processes

• No system to detect non-compliant or drifted infrastructure

• Insufficient auditing and observability

To successfully tackle these issues, teams must first think about how infrastructure and applications

interact with two core audiences with very different priorities:

• Developers and application teams who consume the infrastructure to deploy and manage their

applications. Their priority is to work with infrastructure in an easily consumable way that makes the

deployment process easier.

• Operators or platform teams who provide the infrastructure in a self-service way for their end

developers. These teams solve problems such as, “How do I make the provisioning process

repeatable?” “How do I implement proper policy guardrails?” and “How do I ensure security and

compliance for the duration of the resource lifecycle?”

This white paper will discuss how organizations can leverage infrastructure as code (IaC) to help

solve many of the security and compliance challenges they encounter. This is done by implementing

six fundamental practices for your HashiCorp Terraform workflow that can help ensure secure

infrastructure from the first provision to months and years in the future.

https://terraform.io/

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 4

Introduction

The cloud has changed the way we provision infrastructure for the better, from dedicated servers to

capacity on-demand. Previous homogeneous blueprints of infrastructure owned by IT have

transitioned to capacity on demand and in many cases developers can now provision the

infrastructure resources they need across a variety of providers.

In fact, infrastructure automation underpins organizations’ move to cloud and the modernization of

application delivery. But the cloud also opens up new security challenges. Maintaining a strong

security posture is critical – it seems like there are new breaches reported every day. And for many

organizations, security is not just a nice-to-have enhancement, but a mandate that must be followed

due to regulatory requirements like FISMA, GDPR, Executive Cyber Security orders, and HIPAA.

As organizations make their move to the cloud, how do they make sure their developers provision

infrastructure with security and compliance in mind? With the transition to cloud we must think about

how infrastructure and applications interact for two core audiences:

1. Operators or platform teams, whose job is to provide the infrastructure in a way that is self-service

organization developers. The challenge they must solve is that there are many developers, so

how do orgs make the provisioning process repeatable and with the proper guardrails in place to

ensure the security of systems and resources for the duration of their lifecycle?

2. Developers and application teams use the tools and infrastructure to deploy and manage their

applications. Their priorities are, “How do I work with this infrastructure in a consumable way that

makes the deployment process easier?” As a result, they are less knowledgeable and less focused

on the security and compliance aspect of their infrastructure, so it must be baked in.

The challenge of secure infrastructure

Infrastructure automation underpins organizations’ move to cloud and the overall modernization of

application delivery. Unfortunately, the cloud’s benefits don’t come without challenges and cloud usage

opens a litany of security issues that organizations must address.

Up to 70% of cloud related security incidents are due to resource misconfiguration and over 20%

are from resources IT did not previously know about. According to the 2023 HashiCorp State of Cloud

Strategy Survey, more than 31% of organizations believe they lack adequate controls and oversight to

https://www.hashicorp.com/state-of-the-cloud

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 5

prevent cloud misconfiguration mistakes, directly leading to these negative outcomes. In fact, Gartner

estimates that by the end of 2024, the majority of organizations will continue to struggle with

measuring cloud risk, often significantly underestimating it. As a result, Gartner predicts that through

2025, 90% of organizations that fail to properly secure their public cloud use will inadvertently share

sensitive data — with 99% of these cloud-related security failures being self inflicted.

To prevent this, as part of the provisioning-automation process, central IT, security, compliance, and

finance teams must overcome:

• Non-compliance with regulatory requirements

• Slow, error prone, manual workflows and ticketing systems

• Lack of consistent policy enforcements processes

• Different policy engines and considerations for different infrastructure providers

Any cloud misconfiguration can be a potential entry point for attackers, and there are thousands of

policies that must be adhered to in a cloud-native environment. Errors like overlooked encryption

or firewall rules can compromise an organization’s infrastructure in potentially disastrous ways.

Inconsistently setup infrastructure or drift, not to mention simple human error, can easily introduce

vulnerabilities, push infrastructure out of compliance, or expose critical systems and data. Cloud

infrastructure also has to be vetted for data privacy policies and reporting for federal government

requirements, GDPR, and HIPAA. This brings in thousands of other considerations for provisioning

infrastructure that must be addressed.

Infrastructure as code (IaC) tools like HashiCorp Terraform increase provisioning velocity, but do not

change this reality alone. To ensure security at all times, HashiCorp’s commercial products —

Terraform Cloud and Terraform Enterprise — provide organizations with better workflows and tools to

identify and respond to these threats. Codifying infrastructure makes it scannable, allowing it to be

cross-checked across security and compliance benchmarks using policy as code. By codifying

thousands of policies and then running them against infrastructure as code configurations, operations

teams can maintain provisioning velocity while reducing required code review for security teams.

Here are key HashiCorp’s learnings on how best to leverage the Terraform ecosystem to solve these

security and compliance issues.

Security and compliance remains a manual process for many teams

According to a survey by the developer security company Snyk, 95% of cloud-native companies use

https://www.gartner.com/smarterwithgartner/is-the-cloud-secure
https://terraform.io
https://docs.hashicorp.com/sentinel/concepts/policy-as-code
https://snyk.io/state-of-cloud-native-application-security/

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 6

infrastructure automation and 50% use infrastructure as code. Public Terraform modules available in

the Terraform Registry provide an easier means for provisioning infrastructure via automation. But

just as any open source library must be reviewed prior to shipping in production, Terraform modules

must be vetted for security and compliance. The need for code review could explain why only 33% of

the survey respondents fully automate their provisioning pipeline.

Many teams, particularly teams that build custom solutions around Terraform Community, turn to a

manual process for reviewing Terraform configurations. When writing Terraform code, the workflow

around the community edition generally incorporates four steps:

1. First, practitioners write new configurations or make a change to an existing configuration. Then

they check this configuration into version control.

2. A security and compliance person reviews the code in version control. Depending on their

workload, this can create a bottleneck for implementing infrastructure changes.

3. Upon review, a developer executes a Terraform plan. Terraform creates a preview of the outlined

infrastructure changes.

4. If everything is as expected, a team member can then safely apply infrastructure changes using

the Terraform command line interface (CLI).

The problem is that this process doesn’t scale easily as organizations increase their cloud footprint and

adopt a multi-cloud strategy.

Code review is more arduous than it should be

Often teams that build custom solutions around Terraform Community lack a standardized set of

Terraform modules that can be used in configurations. This introduces an even more critical need for

manual security and compliance review. Multiple Terraform operators create “snowflake” modules,

individual modules that provision similar infrastructure. In addition to wasting effort re-inventing the

wheel, not all teams may be familiar with all of the security and compliance requirements for their

organization. The following trade-offs must then be made:

• Velocity over security: Should DevOps managers continue to allow their teams to write their own

modules without manual review from security personnel, to ensure they are able to move quickly?

• Security over velocity: Should DevOps insist on a manual code review process by team members

familiar with compliance benchmarks like CIS, as well as all current security and compliance

requirements set by the organization?

https://registry.terraform.io

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 7

Some organizations may not see provisioning velocity as a critical need compared to security. But in an

outage or security breach, manual processes can rob operations teams of critical hours that can mean

the difference between a minor incident and a major problem that makes headline news. HashiCorp

has established the best practice steps we suggest organizations adopt in order to establish secure,

compliant infrastructure built on consistent workflows and policies while being scalable to today’s

modern cloud environments.

Six key practices for secure infrastructure

1. Address the provisioning skills gap

Many organizations are encountering increased complexity and skills gaps across their DevOps

teams. This results in longer development times, more errors due to misconfigurations, and

increased risk. To combat this, organizations must find a unified multi-cloud provisioning solution

to reduce inconsistent workflows and create a golden provisioning workflow for any type of

infrastructure.

2. Reuse infrastructure for consistency

Once you have a unified provisioning solution and begin creating your workflows, it is necessary to

codify infrastructure for reuse. This enables consistent provisioning of infrastructure to remove

misconfigurations. It also lets platform teams enable self-service development while limiting

security risks. This is done by creating golden configurations that have been reviewed, tested,

validated against misconfigurations, and published by central IT to a centralized library. From there

they are easily discoverable by end users.

3. Create guardrails

With reusable infrastructure in place, the next step is to ensure your team is consistently and

compliantly leveraging it. This can be done by defining policies and guardrails through policy as

code for all infrastructure, which ensures security and compliance while reducing costs.

4. Enforce guardrails at the time of provision

Creating policies and guardrails is the start, but traditionally these approaches still had to be

validated through time-consuming manual processes. To avoid this, organizations must establish

and enforce the ability to create guardrails and have them automatically enacted during the

provisioning process, which automatically validates the code against these policies and blocks the

provisioning of non-compliant resources.

5. Enforce guardrails continuously post Day 1 provisioning

Once an organization is provisioning consistent, compliant resources from the start, it also needs to

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 8

ensure those resources aren’t improperly updated or changed on Day 2 and beyond. At scale,

this can be done through automation tools that can range from alerting operators to potentially

unwanted changes to preventing them from taking effect at all.

6. Add observability and visibility

Finally, organizations, and especially those in highly regulated industries, need observability into

this process to ensure they are remaining compliant and secure. When properly established,

observability also enables required auditing and reporting on systems and infrastructure. That

makes it easy to share this information with internal stakeholders and external regulators to

ensure the security of systems and key data as well as continued regulatory compliance.

Critically, Terraform can help you achieve all six of these steps to establish secure infrastructure for

your organization.

1. Address the provisioning skills gap

As noted in the 2023 HashiCorp State of Cloud Strategy Survey, organizations rank skills gaps as the

most common barrier to multi-cloud adoption. In addition, skills-related factors issues such as siloed

teams, lack of training, manual operations, and budget-constrained headcounts also complicate

organizations’ ability to operationalize multi-cloud. This lack of resources can inflate costs and push

developers into roles they aren’t prepared for.

As a result, skills and resources gaps make it harder to properly provision infrastructure, resulting in

errors due to misconfigurations and poor security configurations, which increases risk. Organizations

can address this problem by employing a unified provisioning solution for multi-cloud, such as

Terraform, to decrease the number of workflows by creating unified golden provisioning workflows for

any type of infrastructure. This allows operators and developers to learn one process and tooling, while

limiting misconfiguration from lack of expertise.

Establishing this workflow requires features that allow your teams to collaborate across all your

infrastructure and ensure compliance and consistency. Terraform provides for this while enabling

DevOps teams to establish and manage infrastructure in their preferred manner:

• Infrastructure as code with HashiCorp Configuration Language (HCL) and Cloud Development Kit

for Terraform (CDKTF)

• The ability to connect to version control systems (VCS)

• Remote operations

• Dynamic provider credentials

https://www.hashicorp.com/state-of-the-cloud#mature-organizations-handle-staffing-and-skills-issues-better

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 9

• Vault-backed dynamic credentials

• No-code provisioning

Terraform also lets you provision any infrastructure and leverage security tools you already use with a

vast ecosystem of more than 3,000 providers and more than 250 technology partners and integrations.

Infrastructure as code with HCL and CDKTF

Terraform is built to give you the options to best define your infrastructure as code (IaC). The first way

is to leverage HCL, which is a simple syntax that allows you to better leverage Terraform’s capabilities. It

gives you a significant degree of control over your infrastructure in a way that’s more ‘human-readable’

than other configuration languages such as YAML and JSON. As a result it is easier to review and

understand what your code is saying and doing.

That said, some developers have preferred languages they like to work with, or they may not want to

learn a new configuration language. That’s where the Cloud Development Kit for Terraform comes in.

CDKTF lets you use familiar programming languages to define and provision your infrastructure.

With CDKTF, developers can set up their infrastructure as code without context switching from

their familiar programming language, using the same tooling and syntax to provision infrastructure

resources that they use to define the application’s business logic. Teams can collaborate in a familiar

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 10

syntax while still leveraging the Terraform ecosystem and deploying their infrastructure configurations

via established Terraform provisioning pipelines.

CDK for Terraform allows you to manage complexity and reduce code duplication by creating

custom abstraction layers, referred to as constructs. Constructs let developers reuse existing resource

configurations written in their preferred programming language rather than defining resources by hand,

which simplifies development and speeds delivery of new features and services.

Adding further flexibility, the choice of whether to work with Terraform in HashiCorp Configuration

Language (HCL) or one of CDKTF’s supported programming languages can be made on a team-by-

team or project-by-project basis. This is because CDKTF interoperates with all existing Terraform

providers and modules, and the JSON configuration file that is synthesized from your application

code can be deployed with Terraform directly. These options help mitigate the skills gap issues that

arise with a cloud transformation while enabling greater reuse of code to promote greater security and

compliance.

Connect to VCS

Another way to ensure collaboration and compliance across your team is through the use of version

control systems. In addition to the CLI-driven workflow, Terraform offers a VCS-driven workflow that

automatically triggers runs based on changes to your VCS repositories. The CLI-driven workflow allows

you to quickly iterate on your configuration and work locally, while the VCS-driven workflow enables

collaboration within teams by establishing your shared repositories as the source of truth for

infrastructure configuration. VCS workflows also allow for stronger version control and code reviews to

ensure continued compliance and prevent errors. This is a key step in setting up secure and compliant

workflows across your entire cloud stack.

Remote operations

Terraform Cloud is designed as an execution platform for Terraform, and can perform Terraform

runs on its own disposable virtual machines. This provides a consistent and reliable run environment,

and enables advanced features like Sentinel policy enforcement (more on that below), notifications,

version-control integration, and more.

Terraform runs managed by Terraform Cloud are called remote operations. Remote runs can be

initiated by webhooks from your VCS provider, by UI controls within Terraform Cloud, by API calls, or via

the Terraform CLI.

https://developer.hashicorp.com/terraform/cdktf/concepts/constructs
https://developer.hashicorp.com/terraform/language
https://developer.hashicorp.com/terraform/language

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 11

To secure these remote operations, Terraform Cloud Agents is a paid feature that can allow Terraform

to communicate with isolated, private, or on-premises infrastructure. The agent polls Terraform Cloud

or Terraform Enterprise for any changes to your configuration and executes the changes locally, so you

do not need to allow public ingress traffic to your resources. Agents allow you to control infrastructure in

private environments without modifying your network perimeter, increasing security.

Terraform Cloud Agents also support running custom programs, called hooks, during strategic points of

a Terraform run. For example, you may create a hook to dynamically download software required by the

Terraform run or send an HTTP request to a system to kick off an external workflow.

Dynamic provider credentials

Storing long-lived static credentials in Terraform presents severe security risks, as cloud credentials

are highly sensitive and can grant powerful privileges. Terraform Cloud’s dynamic provider credentials

provide short-lived just-in-time (JIT) access to HashiCorp Vault and official cloud providers (AWS,

Microsoft Azure, and Google Cloud). This authentication method is enabled by implementing the

OpenID Connect (OIDC) standard using a workload identity token generated by the Terraform Cloud

platform.

Using dynamic provider credentials removes the need to store long-lived credentials in Terraform and

significantly limits the impact of accidental credential exposure and reuse. You also gain more granular

permissions control over your Terraform operations. You can scope privileges down to the run phase,

workspace, project, or organization, enabling the least privilege principle.

Vault-backed dynamic credentials

Vault-backed dynamic credentials combine dynamic provider credentials with Vault secrets engines

to offer a consolidated workflow. This approach authenticates Terraform runs to Vault using workload

identity tokens generated by Terraform Cloud, then uses Vault secrets engines to generate dynamic

credentials for the AWS, Azure, and Google Cloud providers. Vault-backed dynamic credentials

represent a significant enhancement for customers already using Vault for on-demand cloud access

and for any organization seeking to reduce the risks of managing credentials.

No-code provisioning

No-code provisioning allows you to provision infrastructure with modules already built and approved

by your organization. This gives developers with limited infrastructure knowledge a way to effectively

deploy and manage resources. Organizations can use this approach to adopt a self-service model

https://developer.hashicorp.com/terraform/cloud-docs/agents
https://www.vaultproject.io/use-cases/dynamic-secrets?_gl=1*z9pcy4*_ga*MTYwOTIyMDQyNS4xNjcwOTY0MjIx*_ga_P7S46ZYEKW*MTY4MzI5NjExNy4yNTAuMS4xNjgzMjk2Mjk4LjIzLjAuMA..&ajs_aid=b819fe94-ab52-42b0-8dc3-183a8dacd6e9&product_intent=terraform
https://developer.hashicorp.com/terraform/tutorials/cloud/no-code-provisioning

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 12

where your Terraform experts can write configurations using HCL, and others can consume and reuse

the modules they create. No-code provisioning enables collaboration among developers and paves the

way for infrastructure as code at scale. Terraform projects help enable guardrails around self-service

provisioning by allowing team permissions, variable sets, and policies to be scoped at the project level

for all existing and new workspaces.

Now that you have the tools and structure to create consistent workflows across your DevOps team, the

next step is to establish the processes for reuse of this infrastructure.

2. Reuse infrastructure for consistency

Once you have a unified provisioning solution and begin creating your workflows, it is necessary to

codify this infrastructure for reuse. To do this, operators create golden configurations that enable

developers while limiting security risks.

Terraform enables this with an automated, repeatable secure framework for your infrastructure.

It provides features to create a producer and consumer model with the ability to build a library of

approved infrastructure as code that can then be leveraged by your developers. When following this

methodology, many organizations find that they can actually publish 60% or more of their resources

for reuse, reducing development times and costs. There are two primary paths for distributing your

reusable code: leveraging the Terraform public registry or building out your own private registry of

modules, providers, and policies.

The Terraform public registry

The public Terraform Registry is an official repository enabling teams to quickly and easily discover

Terraform providers that power all of Terraform’s resource types, find modules for quickly deploying

common infrastructure configurations, and leverage a library of policies that can be used within

Terraform to accelerate your adoption of policy as code. Here you can find official providers and

modules owned and maintained by HashiCorp, owned and maintained by our approved technology

partners, or developed by third parties and distributed to the larger Terraform community. The registry

is a great starting point to build and share proven code that can address your organization’s key use

cases.

Private registries

Many organizations use modules, providers, or policies that cannot or do not need to be publicly

available, but must still be easily accessible across their teams. In these instances, teams could load

private modules directly from version control systems and other sources, but those methods do not

https://registry.terraform.io/
https://developer.hashicorp.com/terraform/language/modules/sources

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 13

support version constraints or a browsable marketplace, both of which help enable the producer-

consumer content model essential in larger organizations. The answer is the creation of private

registries to give your teams access to a common set of providers and modules.

Terraform Cloud includes a private registry that is available to all accounts. Unlike the public registry,

the private registry can import modules from your private VCS repositories on any of Terraform Cloud’s

supported VCS providers. It also lets you upload and manage private, custom providers through

the Terraform Cloud API and curate a list of commonly used public providers and modules. You

can seamlessly reference private modules and providers in your Terraform configurations, and the

Terraform Cloud UI includes a searchable marketplace to help users find the components they need.

Leveraging the appropriate registry system gives you a set of reusable code that is easily accessible

across your teams. The next step to securing your infrastructure is to establish guardrails and policies

that ensure everything is implemented in a secure and compliant manner.

Integration with HCP Packer

Terraform’s pre-written modules let teams dynamically provision multi-cloud self-service

infrastructure, but organizations also need a way to manage their provisioning pipelines at the image

level. HCP Packer helps platform teams ensure all image artifacts provisioned are secure, compliant,

up-to-date, and easily trackable. With the HCP provider, Terraform can access the Packer data source

to query image channels in Terraform configuration files rather than hard-coding them. This allows

users to track image metadata and storage location, and automatically provides the correct image to

developers in Terraform. This close integration of Terraform and HCP Packer enables users to unify

their infrastructure workflows and create a successful golden image pipeline.

3. Create guardrails

Once you create reusable infrastructure, you need to ensure your team is consistently and compliantly

leveraging it. Provisioning doesn’t happen in a vacuum. Different business units — like finance, security,

and compliance, for example — must ensure that their goals are met any time a change is introduced

to infrastructure. Historically, this necessitated a pass-off to other teams for code review, which slows

down DevOps teams.

Policy as code speeds this review process by enabling organizations to define requirements from

these teams as code, which enables automated testing and automated deployment. This can be done

by defining policies and guardrails that enforce security, maintain compliance, and monitor costs. The

best way to ensure secure and compliant infrastructure is to integrate policy as code across all layers of

your infrastructure. Policy as code reduces human error and misconfigurations, preventing some of the

https://developer.hashicorp.com/terraform/language/modules/syntax#version
https://www.hashicorp.com/products/terraform
https://developer.hashicorp.com/terraform/cloud-docs/registry
https://developer.hashicorp.com/terraform/cloud-docs/registry/using
https://developer.hashicorp.com/hcp/docs/packer
https://registry.terraform.io/providers/hashicorp/hcp/latest
https://developer.hashicorp.com/packer/tutorials/cloud-production/golden-image-with-hcp-packer
https://docs.hashicorp.com/sentinel/concepts/policy-as-code

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 14

easiest attack vectors for security breaches. Terraform has a number of features to help implement this:

• HashiCorp Sentinel: Allows you to write custom policies that are automatically enforced in the

provisioning workflow.

• Native Open Policy Agent (OPA) integration: Leverage your organization’s standard OPA across

infrastructure managed by Terraform

• Run tasks: Implement pre-written policies from third-party partners to ensure continued security

and compliance beyond Terraform

HashiCorp Sentinel

Sentinel is HashiCorp’s policy as code framework, which is based on a powerful declarative policy

language to enable fine-grained, logic-based policies. It enables guardrails to be put in place on

automation while allowing the codification and automatic enforcement of business requirements

in critical areas of your infrastructure. Historically, these types of guardrails often required human

enforcement through time-consuming and error-prone ticketing systems. In addition, these manual

processes don’t scale well in the cloud. By leveraging Sentinel policies in your Terraform workflows, you

can ensure secure and create compliant infrastructure across all your teams.

You can leverage pre-defined policies to expedite development and overcome skills gaps or develop

your own policies internally to fit your particular business and security needs. These policies are then

grouped into reusable policy sets that are applied globally or at a project and workspace level, boosting

consistency across your organization.

Native Open Policy Agent (OPA) integration

Sometimes organizations use a more generalized policy engine like Open Policy Agent (OPA) for

Terraform and other tools. OPA is a general-purpose policy engine that unifies policy enforcement

across the stack and has native integration into Terraform Cloud. OPA uses a high-level declarative

language called Rego that, much like Sentinel, is used to enforce controls using policy as code.

Organizations that have already invested in OPA may want to leverage those existing skills and policies.

Native OPA integration allows customers to migrate their existing Rego-based policies into Terraform

Cloud with minimal engineering effort. As with Terraform and infrastructure as code, OPA lets users rely

on a single language for policy as code for different configurations and resources. This makes it easy to

create and share reusable policies with the rest of the organization.

Teams can choose their desired policy framework and collaborate seamlessly across their organization.

Native OPA support also allows Terraform Cloud users to take advantage of the platform’s mature policy

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 15

workflows. These workflows help simplify policy enforcement and free users from the burden of using

custom or third-party tools to connect OPA and Terraform Cloud.

Native OPA support in Terraform Cloud gives teams an additional framework choice when adopting a

policy as code approach. In some organizations, multiple teams are responsible for different policies,

such as compliance or operational best practices. Limiting these teams to a single policy framework

can lead to suboptimal policy enforcement processes. OPA and Sentinel can operate side-by-side so

each team can choose its preferred framework and work together seamlessly.

Sentinel and native OPA support in Terraform Cloud both include:

• Individually managed or VCS-connected policies: Edit policy code directly in the UI, or use the

recommended approach of connecting to a version control repository containing your policies.

• Policy sets: Group policies and enforce them on projects and workspaces.

• Enforcement levels: Define behavior for when policies fail as part of a policy check.

• Policy overrides: Enable authorized users to override a failed policy check and continue the

execution of a run.

• Role-based access control (RBAC): Grant team permissions to manage policies and override

policy failures.

• Auditing: Policy results are included in audit logs, enabling centralized visibility.

Run tasks

In addition to your integrated Terraform workflow, run tasks are a simple but flexible method for

integrating outside tools into your provisioning workflow. Third-party partner integrations are

discoverable in the Terraform Registry, are configured once in a Terraform Cloud organization, and can

be attached to any number of workspaces.

Depending on partner support, run tasks execute in the pre-plan, post-plan, or pre-apply phase of a

Terraform run. Pre-plan tasks are designed to evaluate Terraform code, while post-plan/pre-apply run

tasks gain the additional context of the computed plan including all resources to be provisioned.

Run tasks help your teams add additional security and cost conditions into every Terraform run. This

provides the additional functionality of these applications without required custom code and having to

ensure they are complying with the internal policies crucial to your organization. Relevant use cases for

run task integrations include:

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 16

Security and compliance: Scan for common compliance benchmark rules

There are thousands of basic security and compliance rules for provisioning in the cloud, defined by

frameworks such as CIS and NIST. You can avoid provisioning misconfigurations that cause security

issues using tools like Prisma Cloud Code Security, Snyk, Tenable, Moderne, Sophos, Aqua Security,

Firefly, and Lightlytics.

Additionally, run tasks help ensure compliance with regulations like HIPAA, GDPR, and PCI-DSS. Run

tasks enables your teams to scan for security and compliance threats across all of your workspaces

before any changes are ever applied.

Productivity: Increase provisioning velocity

Ensuring that any infrastructure change adheres to security, cost, and compliance benchmarks is

critical for any business. By shifting these concerns left into the Terraform workflow, your organization

can reduce manual review and increase productivity. The HCP Packer run task helps ensure only

approved images are provisioned, blocking the use of revoked versions.

Cost savings: Provide visibility and thresholds for costs

Operators often have no idea how much the infrastructure they provision costs. You can gain visibility

into the costs of infrastructure prior to any change using Infracost, Vantage, or Kion to help your

organization proactively work to reduce cloud spend.

Discover integrations in the growing run task ecosystem on the Terraform Registry. You can also build

your own custom Run Task integrations.

Terraform was built to allow for multiple policy creation and enforcement methods to best fit the

needs of your organization and development teams. Once you have built your policies and made them

accessible across your org, the next step is to ensure they are being enforced during provisioning.

4. Enforce guardrails at the time of provisioning

Creating policies and guardrails is the first step. Traditionally, these types of policies had to be

validated and enforced through manual processes. But that approach doesn’t scale. In the cloud, the

policies you created must instead be deployed and enforced through automated provisioning

processes so they are automatically validated against your confirmed requirements.

For example policies might validate that an end user is consuming approved modules rather than

custom code, make sure that your infrastructure resources are tagged for visibility, enforce the location

https://www.paloaltonetworks.com/prisma/cloud/cloud-code-security
https://snyk.io/
https://www.tenable.com/
https://www.moderne.io/
https://www.sophos.com/en-us
https://www.aquasec.com/
https://www.aquasec.com/
https://www.gofirefly.io/
https://www.lightlytics.com/post/lightlytics-run-tasks-integration
https://developer.hashicorp.com/packer/tutorials/hcp/setup-tfc-run-task
https://www.infracost.io/
https://www.vantage.sh/
https://kion.io/product/financial-management
https://registry.terraform.io/browse/run-tasks
https://developer.hashicorp.com/terraform/cloud-docs/integrations/run-tasks
https://developer.hashicorp.com/terraform/cloud-docs/integrations/run-tasks

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 17

of data storage for GDPR compliance, or check that storage buckets are not publicly accessible.

Terraform gives your organization the tools to integrate these types of security into automated

provisioning workflows while allowing you to establish the sophistication and methods of enforcement.

Automatic policy enforcement

Different types of policies require different levels of enforcement. The automation of your enforcement

must match the use case. In some cases it might be OK to deploy non-compliant code, perhaps

because of a necessary exception, or to fix a larger issue that could cause downtime or greater risks

to your systems. On the other hand, certain types of deployments can never be allowed, like posting

critical security information on a publically accessible node or changes that will break your network

infrastructure. Terraform allows platform and security teams to define how to deal with different types of

policies and infrastructure to fit the larger needs of your organization. These flexible enforcement levels

are:

• Advisory: Warns when a policy breaks, but doesn’t stop the code from being run.

• Soft mandatory: Warns of the broken policy and won’t allow it to run without a manual override that

explicitly gives permission for the policy to be broken and recording the incident.

• Hard mandatory: When a policy is broken, the code will not be allowed to run and the apply will be

halted until it is brought into compliance.

5. Enforce guardrails continuously post Day 1 provisioning

Once an organization is provisioning consistent, compliant resources from the start, they must deal with

the challenges of remaining in compliance. This means ensuring that nothing is improperly updated or

changed on Day 2 and beyond. Changes made outside of the normal provisioning process, or health

events that occur during operations, can bring your infrastructure out of compliance or compromise its

security. As a result, you need tools to watch your infrastructure and look for potential infrastructure drift

to inform you when these resources unexpectedly change from their initial state.

Drift detection and continuous validation

Here’s why drift is so important to manage. As cloud adoption grows, organizational resources and

processes become increasingly complex, which can create inconsistencies around the state of

the infrastructure. Without standard procedures, notifications, and guidelines for adjustments, even

temporary changes or the smallest tweaks to infrastructure can have significant impacts on the

business, including unplanned downtime, security incidents, and unused resources.

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 18

Most importantly, unrecognized infrastructure drift creates multiple risks that need to be addressed

before they become real problems. Drift can dramatically increase the probability of critical data

exposures, perhaps due to mission-critical systems mistakenly left open to public access or unknown

resources being left unsecured.

Additionally, development teams unaware of production environment changes not reflected in the IaC

systems will almost certainly have to contend with applications suddenly crashing and deployment

projects that unexpectedly fail.

The challenge is that once infrastructure is provisioned, how do you ensure the actual state of

infrastructure reflects the known and recorded infrastructure state? If changes occur, notifications or

alerts need to be sent and action must be taken to correct the detected infrastructure drift. To help you

do this, Terraform’s drift detection functionality runs continuous checks against the infrastructure to

validate that it matches the last known Terraform state. It detects when resources have changed from

what Terraform has reflected in the state file and sends an alert to the team so they can take action.

Drift detection is a key tool to ensure the continued security and compliance of your infrastructure,

minimizing risk, downtime, and costs.

Centralized visibility is critical for drift detection

Ultimately, security teams must be concerned with risks inherent in infrastructure drift. Terraform can

solve this by functioning as a development team’s all-in-one automated provisioning and central

management system, enabling development teams to continuously monitor the infrastructure state

to detect changes. Operating from a consolidated environment, the system should be able to send

immediate notifications to the appropriate teams so they can take specific corrective actions any time a

resource is altered.

For CISOs concerned with narrowing security gaps — both the kind they know about and the

previously undetectable ones created by infrastructure drift — this type of solution can help strengthen

the organization’s overall security posture without adding undue operational burdens.

Continuous validation

Continuous validation, the next step in Terraform’s investment in infrastructure management, expands

checks on your infrastructure beyond just configuration drift. This feature provides long-term visibility

and checks on the health of your infrastructure to ensure it is working as expected. Users can add

custom assertions to a Terraform configuration and/or modules via check blocks. Terraform Cloud

then continuously validates these assertions and notifies operators when a check fails.

https://www.hashicorp.com/campaign/drift-detection-for-terraform-cloud

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 19

This paints a more comprehensive picture of your infrastructure health beyond a single point-in-time

validation of the run prior to an apply. This helps organizations standardize their usage of Terraform for

Day 1 provisioning and Day 2 infrastructure management, minimizing risk, downtime, and costs.

Once you have tools in place to establish and maintain your guardrails as well as drift detection to

warn you of unwanted or unexpected changes, the final step is to establish auditing and observability

systems to fully understand and report on your compliant infrastructure to key regulatory bodies and

internal stakeholders.

6. Add observability and visibility

All organizations, and especially those in highly regulated industries, need observability into their

infrastructure to ensure they are remaining compliant and secure. They also need to audit and report

on their infrastructure, whether for internal stakeholders or external regulators. The tools you leverage

to create and manage your infrastructure should be built with this in mind, with turnkey auditing and

reporting so that both technical and non-technical team members can leverage and share it. This

helps limit time-consuming manual processes burdening a small group of your DevOps team and

ensures that new issues are quickly alerted to the larger team for remediation. Terraform has a number

of key integrations to help with both the observability and remediation of issues with your infrastructure

as well as the auditing and reporting of relevant information:

Observability of your infrastructure

As the system of record for all types of infrastructure, Terraform provides inherent visibility into your

cloud estate. Workspaces in Terraform Cloud collect and isolate everything Terraform needs to run:

the configuration, variable values, and state data. State represents Terraform’s mapping of real world

resources to your configuration. Terraform Cloud provides encrypted and versioned state storage with

role-based access controls to prevent unauthorized access to sensitive state data. State versioning

allows teams to gain insight into how a workspace’s resources have changed over time, and in extreme

cases, an entire state can be rolled back to respond to mistakes.

The projects and workspaces view gives organizations visibility across all Terraform configurations.

Workspaces can be filtered by project, run status, health state, and tags. Tags are custom metadata

applied to workspaces to bring additional contextual information and assist with filtering and reporting

on workspaces. Tags are also made available to the Sentinel policy as code framework, so you can

dynamically apply policies based on whether or not a specific tag has been applied to a workspace.

Explorer for Terraform Cloud provides an even wider range of valuable workspace data across your

organization. This includes information on providers, modules, and Terraform versions in use. Explorer

https://developer.hashicorp.com/terraform/cloud-docs/workspaces
https://developer.hashicorp.com/terraform/language/state
https://developer.hashicorp.com/terraform/cloud-docs/workspaces#listing-and-filtering-workspaces
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/explorer

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 20

also provides a consolidated view of health checks from drift detection and continuous validation.

These views help teams ensure their environments have the necessary up-to-date versions of

Terraform, modules, and providers while tracking health status to ensure security, reliability, and

compliance.

Audit logs and sharing

Another key requirement for maintaining compliant infrastructure is the ability to audit and compile

reports that can be reviewed by internal security and compliance teams as well as shared externally

to regulators and other interested parties. This can be challenging, as improperly managed cloud

resources can become a black hole once they are provisioned and deployed. To avoid this, Terraform

offers a rich audit logging feature set for organizations that need to oversee retrospective activities

on their infrastructure over time. Audit logs emit information whenever any resource managed by

Terraform is changed, so teams can understand what changes were made and by whom. Audit logs are

exposed in Terraform Cloud via the audit trails API, and Terraform Enterprise provides log forwarding.

Here are examples of Terraform audit logging use cases leveraged by HashiCorp Terraform customers:

• Monitor provisioning activities: Audit logs track all activity happening in the platform including user

logins, changes to settings and variable values, and provisioning runs.

• Policy check overrides: If a soft mandatory policy fails, users with permission to override policies

will be presented with an Override & Continue button in the run. With access to these logs,

organizations can see who overrode a policy and when.

• Policy-related events help you see the effects of new policies or policy changes: If an organization

notices a lot of policy failures or overrides, it can educate developers or update the policy

evaluation itself.

• Keeping track of destroyed infrastructure: Through the audit trail, you can identify destructive

actions like the execution of a destroy plan or deletion of a workspace, see which user or team was

responsible, and apply measures to prevent a recurrence.

Audit logs help capture events that can show who did what activity and how the system behaved.

With audit logs, administrators, developers, and site reliability engineers (SREs) can get a complete

picture of normal and abnormal events on the organizational level. Additionally, these logs can be

collected by one or more external systems to provide increased observability, assistance complying

with log-retention requirements, and information gathering and sharing during troubleshooting.

https://developer.hashicorp.com/terraform/cloud-docs/api-docs/audit-trails
https://developer.hashicorp.com/terraform/enterprise/admin/infrastructure/logging

HASHICORP | BUILDING SECURE AND COMPLIANT INFRASTRUCTURE IN THE MULTI-CLOUD ERA 21

The way forward

The transition to cloud infrastructure can be challenging, but also presents an opportunity for a fresh

start. As outlined in this paper, proven tools and best practices can help organizations establish and

maintain secure infrastructure. HashiCorp and its cloud infrastructure automation tools, including

Terraform, were created to help organizations successfully deliver business outcomes at scale across

multiple clouds.

Establishing secure workflows and infrastructure guardrails is just the beginning of the larger cloud

security journey. After setting up secure and compliant infrastructure, the next step is to establish zero

trust security best practices across your organization. HashiCorp’s approach to identity-based security

and access provides a solid foundation for companies to safely migrate and secure their infrastructure,

applications, networks, and data. We are working hard to support and accelerate the adoption of zero

trust thinking across all aspects of your cloud infrastructure. Learn more about next steps and how we

can help on our Zero Trust Security page.

https://www.hashicorp.com/solutions/zero-trust-security

www.hashicorp.com Copyright © 2023

