TECHNICAL WORKING GROUP

OPERATIONAL SUBGROUP

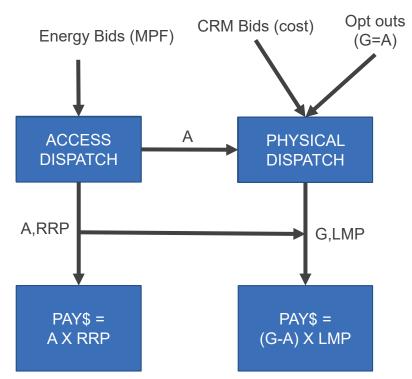
ENERGY SECURITY BOARD

25 AUGUST 2022



Time	Торіс
2:00	Welcome, objectives and agenda
2:05	Recap of dispatch and settlement architectures
2:15	Impact on out-of-merit generators
3:15	Impact on PPAs
3:55	Next steps and close

RECAP OF DISPATCH AND SETTLEMENT ARCHITECTURES



CMM CMM\$ = A x RRP + (G-A) x LMP

Access determined *after* dispatch

CRM CRM\$ = A x RRP + (G-A) x LMP

Access determined *before* dispatch

TREATMENT OF OUT OF MERIT GENERATORS

СММ

Access is decided by a rebate allocation method.

If the allocation does not consider costs, it will grant access to in-merit and out-of-merit generators.*

Access to in-merit generators is diluted.

CRM

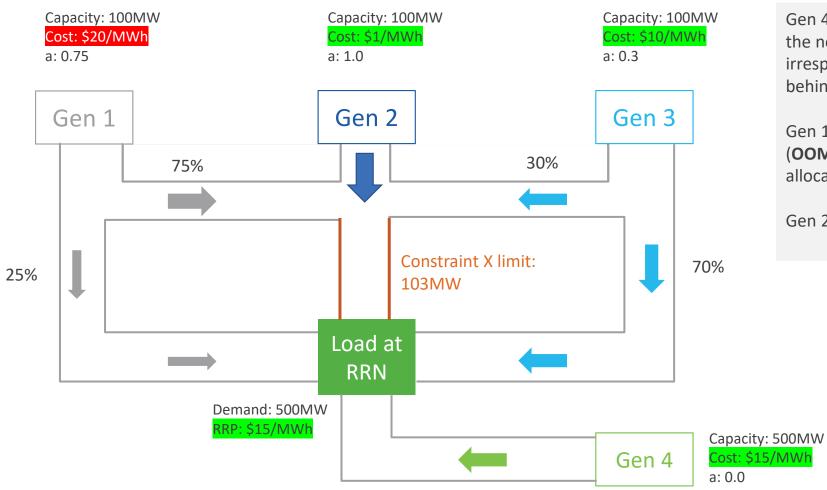
Access is decided by bids into the access dispatch (energy market).

Constrained generators can adjust their bids to secure access i.e. where *LMP* < *RRP*, bid -\$1000/MWh.

Access to in-merit generators is diluted.

* Unless the eligibility criteria are adjusted, access is granted to OOM generators in the following CMM rebate allocation methods: pro-rata access, prorata entitlement, winner takes all. The inferred economic dispatch method does factor in estimated costs and hence excludes OOM.

Status quo


The energy market determines access and physical dispatch at the same time.

If cost < RRP, the generator wants access.

If *cost* > *RRP*, it does not want access because it'll incur the cost of physical dispatch.

Generators only seek access to RRP if they are in-merit.

Reference scenario modified for Gen 1 costs (\$20/MWh)

Gen 4 offers \$15/MWh. As a large generator at the node, this ties the RRP to its offer price, irrespective of bidding behaviour by generators behind the constraint.

Gen 1 has costs of \$20/MWh and is out of merit (**OOM**). Under the status quo, Gen 1 will not be allocated access or physical dispatch.

Gen 2 and Gen 3 are in merit.

OUT OF MERIT – STATUS QUO

<u>Status quo</u>

Unit	G <i>MW</i>	G x RRP \$	Cost \$	Profit \$	No dispatch,
Gen 1	0	0	0	0	no cost and no profit for OOM
Gen 2	73	1,095	73	1,022	,
Gen 3	100	1,500	1,000	500	
Total	173	2,595	1,073	1,522	

We are investigating the impact of OOM generators. Gen 2 and Gen 3 are dispatched efficiently in this simplified status quo scenario. It does not illustrate the issues of disorderly bidding. Refer to previous working papers for this concept.

OUT OF MERIT – CMM

ENERGY SECURITY BOARD

<u>Pro-rata access mode</u>	el including OOM	Gen 1 is (grante	OOM but d access				
Unit	A MW	G MW	A x RRP \$	(G-A) x LMP \$	Cost \$	Profit \$	
Gen 1	50	0	754	-226	0	528 -	Profit transfers
Gen 2	50	73	754	23	73	703	to OOM
Gen 3	50	100	754	537	1,000	291	
Total	150	173	2,261	334	1,073	1,522	
<u>Pro-rata access mode</u>	e excluding OOM			CMM achieves a cosi efficient outcome			
		Gen 1 is (exclude	d access				
Unit	A MW	-		(G-A) x LMP \$	Cost \$	Profit \$	
Unit Gen 1	A	G exclude	d access			Profit \$ 0	
	A	G MW	d access	(G-A) x LMP \$	Cost \$	\$	Profit retained
Gen 1	A MW 0	exclude G MW 0	d access A x RRP \$ 0	(G-A) x LMP \$ 0	Cost \$ 0	\$ 0	Profit retained by in-merit generators

Refer to <u>20220721</u> TWG working paper CMM allocation methods final for detailed calculations.

OUT OF MERIT – CRM

CRM bids for access and physical dispatch

Unit	Cost \$/MWh	Bid - access \$/MWh		nysical <i>\$/MWh</i>			
Gen 1	20	-1000		20 Ger	1 is OOM and bio	ls to	
Gen 2	1	-1000)	1 the t	floor to secure acc	ess.	
Gen 3	10	-1000)	10			Profit transfers
Gen 4	15	15)	15			to OOM 🔪
<u>Outcomes for access and</u> <u>including</u> OOM	physical dispate			ble contribution ecures access.		ieves the same ent outcome as nis scenario	
Unit	A MW	CRM <i>MW</i>	G MW	Total cost \$	Access profit چ	CRM profit \$	Total profit \$
Gen 1	97	-97	0	0	-487	1,509	1,022
Gen 2	0	73	73	73	0	0	0
Gen 3	100	100	100	1,000	500	0	500
Subtotal	197	-24.3	173	1,073	13	1,509	1,522
Gen 4	303	24.3	327	4,905	0	0	0
Total	500	0	500	5,978	13	1,509	1,522

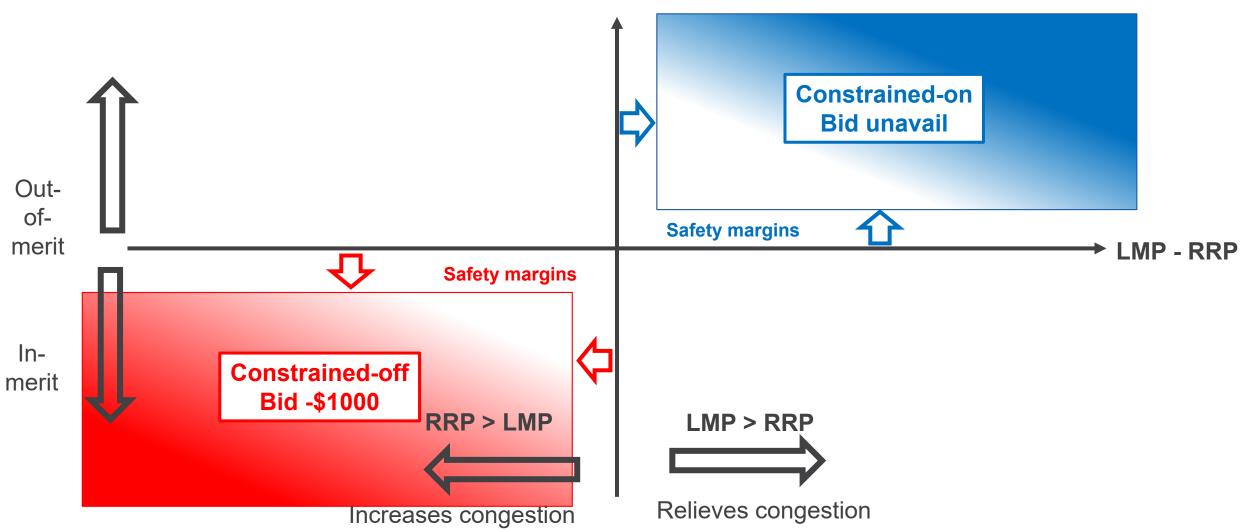
Refer to <u>20220721</u> TWG working paper CRM reference paper final for detailed calculations.

Outcomes for access and physical dispatch excluding OOM

Unit	A MW	CRM MW	G <i>MW</i>	Total cost ¢	Access profit \$	CRM profit ج	Total profit <i>\$</i>
Gen 1	0	0	0	0	0	0	0
Gen 2	73	0	73	73	1,022	0	1,022
Gen 3	100	0	100	1,000	500	0	500
Subtotal	197	0	173	1,073	1,522	1,522	1,522
Gen 4	303	0	327	4,905	0	0	0
Total	500	0	500	5,978	1,522	1,522	1,522

Gen 1 is OOM and **excluded** from access dispatch

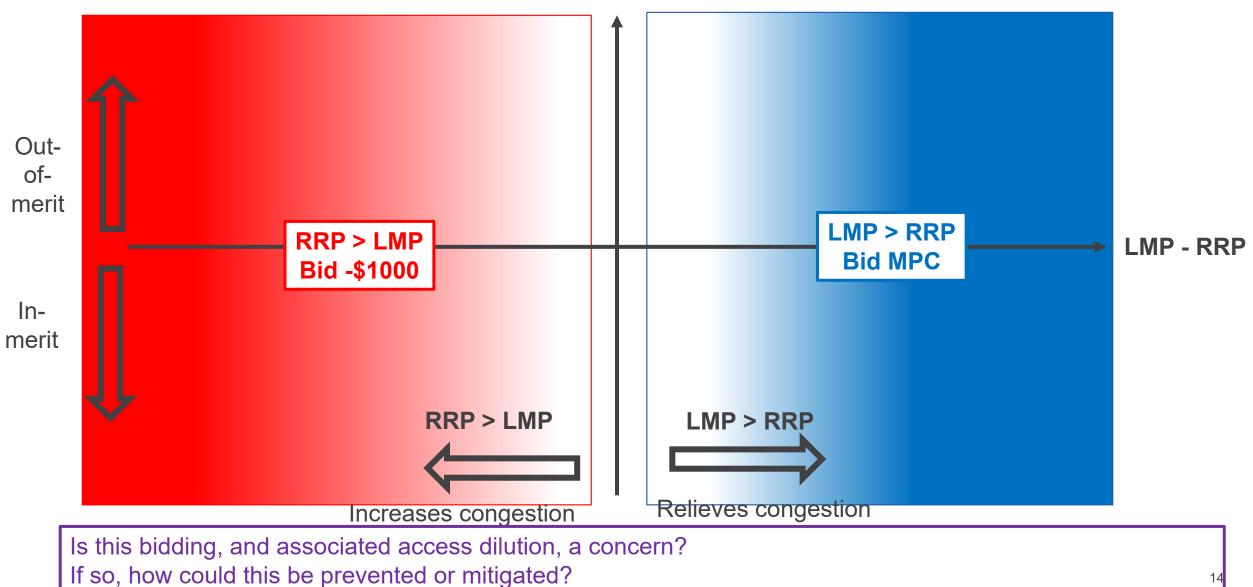
Profit retained by in-merit generators


Profit outcomes for access and physical dispatch - summary

Unit	Status quo \$	CMM incl OOM ¢	CMM excl OOM ¢	CRM incl OOM چ	CRM excl OOM ¢
Gen 1	0	528	0	1022	0
Gen 2	1022	703	1109	0	1,022
Gen 3	500	291	413	500	500
Subtotal	1522	1522	1522	1522	1522
Gen 4	0	0	0	0	0
Total	1522	1522	1522	1522	1522

BIDDING INCENTIVES – STATUS QUO

ENERGY SECURITY BOARD



BIDDING INCENTIVES – CRM

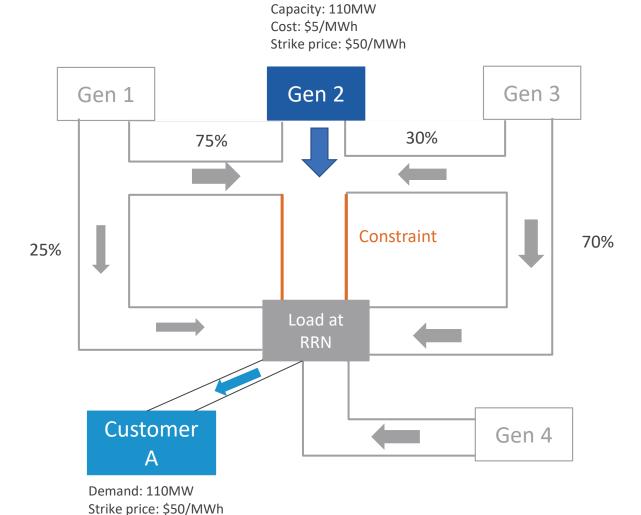
ENERGY SECURITY BOARD

COST - RRP

relevant for thermal

and some renewables.

SECURITY	BOARD	


Option 0	Option 1	Option 2	Option 3		Option 4a	Option 4b
Accept that OOM generators are allocated access.	Exclude OOM from access allocation based on physical bids e.g. exclude if physical bid > RRP. It is implicitly assumed that generators bid at or close to cost.	Bidding guidelines to prohibit OOM bidding lower than "normal" to gain access. Monitoring of bidding performed by AER to identify anomalies.	Exclude OOM fro access allocation based on estima generating costs exclude if estima costs > RRP. Costs could be estimated or infe by [AEMO].	n ated 5 e.g. ated	Exclude OOM from access allocation based on contracted and grandfathered costs e.g. new entrants nominate an operating cost. Higher nominated cost = less access = lower connection fee. Lower nominated cost = more access = higher connection fee.	Apply energy constraints in CMM/CRM i.e. relevant for hydro, pumped hydro, batteries.
What criteria would you use to assess the alternatives?What are your initial assessments?					Costs nominated by the generator during connection fee. More	

What additional analysis will support a decision on preference/s? •

CONTRACTUAL ARRANGEMENTS

PPA SCENARIO

Modified reference scenario with PPA

Simplified extract of contract terms

Contract term	Value
Party 1 – Buyer	Customer A
Party 2 – Seller	Gen 2
Capacity	110 Mwac
Contracted	100%
Minimum generation	[] MWh
Туре	Contract for difference
NEM spot price	Regional reference price (RRP)
RRP floor	[]\$/MWh
Strike price	\$50/MWh

17

PPA SCENARIO – STATUS QUO

<u>Status quo</u>

Illustrative results for reference scenario

PPA \$ = G x (RRP – strike price)

Generator profit = $G \times RRP - G \times cost - PPA \$$

= G x (strike price – cost)

Generator receives fixed price for its output

- Customer cost = $D \times RRP PPA$ \$
 - = G x strike price + (D-G) x RRP

Customer is hedged for quantity G and only exposed to spot price (RRP) for differences between D and G

Where

- G Generator's physical output
- D Customer load
- PPA \$ CfD payment/receipt between parties

	Value	
<u>Input</u>		
RRP	\$100/MWh	
Strike price	\$50/MWh	Gen 2 is
Cost	\$5/MWh	constrained and dispatches 100MW
G	100MW	
D	110MW	Customer A pays strike
		price for 100MW and RRP for 10MW
<u>Output</u>		
PPA \$	\$5,000	
Gen 2 profit	\$4,500	
Customer A cost	\$6,000	

PPA SCENARIO – CRM

ENERGY SECURITY BOARD

<u>Congestion relief market – potential modification to PPAs</u>

 $CRM \text{ profit} = (G - A) \times (LMP - cost)$ If CRM bidding at cost, CRM profit\$ > 0

PPA \$ = A x (RRP – strike price) + k x CRM profit\$; Profit sharing efficiency gain

Generator profit = $A \times RRP - (G - A) \times LMP - G \times cost - PPA$ = $A \times (strike price - cost) + (1-k) \times CRM profit$

Customer cost = D x RRP – PPA \$

= A x strike price + (D-A) x RRP + k x CRM profit\$ D is hedged for quantity A and receives share of CRM profit\$ ≥ 0

Where

- G Generator's physical output
- D Customer load
- LMP Locational marginal price
- 0 < k < 1 Negotiated sharing of efficiency gain

Illustrative results for reference scenario

	Opt out	Opt in		
Input				
RRP	\$100/MWh	\$100/MWh		
LMP	n/a	\$55/MWh		
Strike price	\$50/MWh	\$50/MWh		
Cost	\$5/MWh	\$5/MWh		
A	100MW	100MW		
G	100MW	110MW		
D	110MW	110MW		
k	n/a	0.5		
<u>Output</u>	Gen 2 profit has increased			
CRM profit\$	n/a	\$500		
PPA \$	\$5,000	\$5,250		
Gen 2 profit	\$4,500	\$4,750		
Customer A cost	\$6,000	\$5,750		
Customer A costs 19				

Potential modifications to PPAs

- Negotiated outcome for sharing efficiency gain 0 < k < 1</p>
 - If k = 1, customer receives full benefit of efficiency gain and generator has no LMP exposure.
 - If k = 0, generator receives full benefit of efficiency gain and customer has no LMP exposure.
 - Potential impact on strike prices depending on % efficiency gain shared between parties and/or appetite for LMP exposure.
- Price floors / caps for the net price outcomes for both parties in each dispatch interval
- Cumulative cap for payments by customer to generator for LMP impacts e.g. \$[x] per annum or per contract term where [x] is a bid value as part of negotiations (initial position for negotiation in the draft generation LTESA)
- Exclude constraint events from minimum generation guarantees (may pass price risk to customers for increased firming).

Group discussion

- What are your views on potential commercial responses to the CRM and CMM for the customer, retailer and generator?
- What other factors determine whether parties will 'opt in' to the CRM?
- Are there key commercial items missing from our considerations?

GROUP DISCUSSION

NEXT STEPS

Upcoming meetings – *amended to reflect latest schedule*

Date	ent	nal	Description
	Investment	Operational	
1 September 2022	V		Focus area 1 working papers
			Initial discussion of focus area 3 issues
15 September 2022	V		Discussion of focus area 1 working papers
			Focus area 2 working papers to be shared
22 September 2022		V	Workshop: interconnectors (access allocation, inter-regional settlement residue and settlement residue auction)
29 September 2022	\checkmark	\checkmark	Review outputs of NERA modelling
			Focus area 3 working papers (as necessary)
6 October 2022		V	Workshop: follow up discussion on energy storage and scheduled load
October 2022			Draft report (date to be confirmed)

Focus area 1

Parties subject to the access arrangement

Quantifying available transmission hosting capacity

Process used to quantify transmission hosting capacity Basis of connection fees

Focus area 2

Process for allocating transmission queue positions Maximising hosting capacity of available transmission

(incl. safety net) Signals for congestion relief

Focus area 3

Efficient retirement decisions

Treatment of pre-existing generators Governance

Payment arrangements

Integration with jurisdictional schemes

Interaction with other

schemes

Focus area 4

Modelling of impacts
Implementation
Transitional arrangements
I Cost benefit analysis
Use of revenues

Contact details	Energy Security Board
	Level 15, 60 Castlereagh St
	Sydney NSW 2000
Email	info@esb.org.au
Website	http://www.energyministers.gov.au/market-bodies/energy-security-

board