TECHNICAL WORKING GROUP

OPERATIONAL SUBGROUP

ENERGY SECURITY BOARD

17 NOVEMBER 2022

Time	Торіс
2:00	Welcome, objectives and agenda
2:05	Open forum – discussion of Directions Paper
2:45	 Overview of the modelling approach Scope PLEXOS set up Model limitations Scenarios Overview of results (2023-24) Aggregate outcomes (cost, RRP and profit changes) Detailed snapshot (dispatch and financial outcomes under CRM/CMM variants)
3:55	Next steps
4:00	Close

MODELLING

Overview of modelling approach

MODEL SCOPE

The purpose of the modelling exercise is to show the differences in outcomes for market participants between options (including do nothing) rather than to replicate all the complexity of the NEM.

Model scope

The ESB has contracted NERA Economic Consulting (NERA) to perform an iterative market modelling exercise to quantify the outcomes resulting from different congestion management design options, focused on the operational timeframes.

The purpose of the modelling is to:

- consider the impact of the proposed design choices on the bidding incentives faced by market participants
- model the impact of changed bidding behaviour on dispatch and pricing outcomes
- present the market outcomes from different design options for different groups of market participants, including:
 - different types of plant (e.g. by fuel type, or scheduled versus semi scheduled)
 - generators who are eligible to receive congestion rebates versus those who are not
 - generators who are located in congested and uncongested locations.

Initial questions for modelling

- Does cost reflective bidding achieve a more cost-efficient outcome compared to today's disorderly bidding?
- What are the profit outcomes at an individual generator level, from the CRM design and CMM rebate allocation methods?
- How similar are these profit outcomes to today's market design?
- What is the system cost impact if there is partial participation in the CRM?
- How much profit gain can batteries achieve when charging at the LMP (versus RRP)?
- How do the results change over the modelled time horizon?

Preliminary draft results are shared for discussion today, but key insights are pending further model outputs.

- Initial draft results are shared for 2023-24 only. Key insights and conclusions are pending 2033-34 outcomes.
- 2023-24 is not the planned date of reform implementation. It provides a baseline of results to analyse the impact of the model options on today's generation fleet and transmission network.
- Cost-reflective bidding achieves a more cost-efficient outcome compared to today's disorderly bidding.
- Disorderly bidding exacerbates congestion and counter-price flows.
- Modelled outcomes can be difficult to understand at face value because of the complexities of the physical system and market design.
- LMPs give participants more transparency about why distorted market outcomes arise in the event of congestion.
- Modelled RRPs change between the cost-reflective and disorderly bidding scenarios. However, the RRP outcomes should not be given weight given the model scope and limitations.

We want to draw on TWG insights as part of our quality review of the modelling results.

Thursday 17 November, 2022 (today's TWG)

- 2023-24 aggregate results
 - o Cost outcomes
 - o RRP outcomes
 - Profit changes
- Dispatch and financial outcomes for detailed snapshot of congestion in south west NSW including:
 - \circ Counter price flows
 - CMM access allocations
 - CRM trading outcomes.

Thursday 1 December, 2022

- 2033-34 aggregate results (and comparison to 2023-24)
- Detailed snapshot of congestion in 2033-34
- Sensitivities/scenario analysis including:
 - CRM partial participation
 - Analysis of battery profits settling at RRP vs LMP
 - Exclusion of out-of-merit generators from CMM rebate allocation methods.

PLEXOS MODELLING

PLEXOS enables a simulation of dispatch and pricing outcomes at half-hourly intervals. It adopts a cost-minimization approach with inputs and assumptions from the ISP 2022. PLEXOS defines a nodal network in order to simulate the impacts of congestion for market participants.

Forecast demand

based on ISP 2022 forecast

allocate load to nodes based

on 'load participation factors'

derived from AEMO data

demand (POE 10)

PLEXOS modelling software

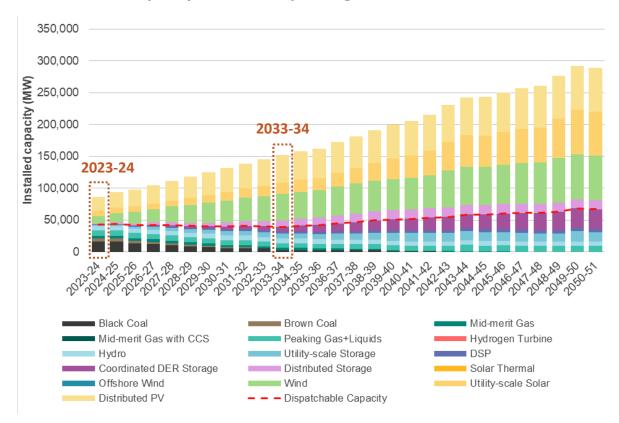
- cost-minimising marketmodelling and system planning software package
- optimises the short-term optimal dispatch patterns in the nodal framework
- dispatch and pricing outcomes in each half hour of the modelling horizon in order to determine outcomes under different scenarios

Defining the nodal network

- based on the ESOO and ISP 2022 generation and transmission outlook
- modified based on AEMO locational data and ISP 2022 Step Change scenario
- 1,068 nodes and 1,942 lines

Summary of nodes per region

	Number of nodes	Reference node	RRN voltage (kV)
NSW	334	Sydney West	330
QLD	304	South Pine	275
SA	217	Torrens A Power Station	275
TAS	93	George Town	220
VIC	120	Thomastown	220


Forecast capacity and storage mix

- recreate ISP 2022 capacity outlook in a nodal dimension
- cap on new capacity by technology based on ISP capacity outlook
- generator and battery properties from 2022 Inputs and Assumptions Workbook
- updated with additional ESOO properties for short-term dispatch e.g. minimum up time, must-run units, fixed load, min load, max ramp up, max ramp down, forced outage rate, outage factor, min time to repair.
- availability of renewable plants based on traces from ISP 2022 databases for solar and wind plants

TIME HORIZONS

Two time periods are modelled for 2023-24 and 2033-34, which adopt the generation and transmission assumptions of the ISP 2022.

Forecast NEM capacity to 2050, Step Change, CDP12

Source: AEMO (June 2022), 2022 Final ISP Results Workbook – Step Change – Case CDP12

Scenarios modelled for two annual snapshots; 2023-24 and 2033-34 (latter results are pending).

ISP projects

Project Name	ISP Status	Timing (Step Change)
QNI Minor	Committed	Mid-2023
Eyre Peninsula Link	Committed	Early 2023
VNI Minor	Committed	November 2022
Northern QLD REZ (Stage 1)	Anticipated	September 2023
Project EnergyConnect	Anticipated	July 2026
Central West Orana REZ Transm. Link	Anticipated	Mid-2025
Western Renewables Link	Anticipated	July 2026
New England REZ Transm. Link	Actionable	July 2027
Sydney Ring (reinforcement)	Actionable	July 2027
HumeLink (Stage 2)	Actionable	July 2026
Marinus Link Cable 1	Actionable	July 2029
Marinus Link Cable 2	Actionable	July 2031
VNI West (Stage 2, via Kerang)	Actionable	July 2031
Central to Southern QLD (Stage 1)	Future	2028-29
Darling Downs REZ Expansion (Stage 1)	Future	2028-29
South-East SA REZ Expansion	Future	2028-29
Gladstone Grid Reinforcement	Future	2030-31
QNI Connect	Future	2032-33
Facilitating Power to Central QLD (Stage 1)	Future	2033-34
South-West VIC REZ Expansion (Stage 1)	Future	2033-34
Mid-North SA REZ Expansion (Stage 1)	Future	2033-34

Source: AEMO (30 June 2022), 2022 Integrated System Plan – Appendix 5: Network Investments.⁸

BIDDING ASSUMPTIONS

'Cost reflective' bidding and 'disorderly' bidding are critical assumptions that define the scenarios. Disorderly bidding is only applied to in-merit generators that are facing a binding constraint (it is not applied to all market participants).

Cost reflective bidding

All generators bid their short-run marginal cost as an offer price and PLEXOS selects the cost-minimising dispatch.

Assumptions

- Thermal ISP 2022 assumptions on fuel prices
- Variable renewable energy ISP 2022 assumptions
- Hydro PLEXOS optimises the dispatch of hydro plant over a one-year horizon i.e. considers the marginal value of storage based on the global hydro resource availability for the year
- Batteries a 'medium term' optimisation run is executed before the short-term one. This simulation models a schedule of charging and discharging and passes the information onto the short-term model run.

Disorderly bidding

In-merit generators facing a binding constraint have an incentive to bid to the market floor price (-\$1,000/MWh) in order to secure dispatch and earn the RRP.

Assumptions

Identify generators for disorderly bidding from the cost-reflective run:

•

- short-run marginal cost < RRP, by more than \$1/MWh;
- LMP < RRP, by more than \$1/MWh.
- All other generators bid at short run marginal cost.

In scope (for disorderly bidding)

- Coal
- Gas
- Coal
- Solar
- Wind

Out of scope (always cost reflective)

- Battery
- Hydro

MODEL LIMITATIONS

Modelled outcomes must be interpreted carefully given the model limitations.

Simplification of PLEXOS simulation

- No modelling of stability constraints
- No modelling of transmission losses

Limitations on bidding behaviour

- No disorderly bidding for hydro and batteries
- No strategic bidding beyond bidding at cost or market price floor

No clamping for counter price flows

- There are instances of counter-price flows between regions in the PLEXOS model i.e. energy flows from a high-priced region to a flow-priced region.
- In practice, when the accrued value of counter-price flows across an interconnector exceeds \$100,000, AEMO "clamps" the interconnector i.e. intervenes in dispatch so that the counter-price flow ceases to avoid large negative inter-regional settlement residues.
- PLEXOS modelling does not simulate this clamping procedure.

Value and volume of counter price flows

		Cost-re	eflective	Diso	Disorderly		
Interconnecto	or	Value \$'000s	Flow GWh	Value \$'000s	Flow GWh		
NSW-VIC		-204	-5,047	-46,404	-3,411		
NSV	/ to VIC	-131	1,383	-46,313	2,490		
VIC	to NSW	-73	6,430	-91	5,901		
TAS-VIC		-0	1,364	-0	1,175		
TAS	to VIC	-0	2,470	-0	2,413		
VIC	to TAS	-0	1,106	-0	1,238		
NSW-QLD		-75	-3,096	-6,883	-3,200		
NSV	/ to QLD	-12	1,866	-13	1,623		
QLD	to NSW	-63	4,962	-6,869	4,823		
NSW-SA		-	-	-	-		
NSV	/ to SA	-	-	-	-		
SA te	o NSW	-	-	-	-		
VIC-SA		-24	4,537	-1,237	4,907		
VIC	to SA	-22	5,035	-1,235	5,309		
SA t	o VIC	-2	499	-2	402		

SCENARIOS

Bidding assumptions are tailored to each CRM and CMM scenario.

	Base case	CRM scenarios			CMM scenarios			
Field	Status quo	100% opt in with RRP _{NEM}	100% opt in with RRP _{CRM}	Partial opt in with RRP _{NEM}	Pro rata access	Pro rata entitlement	'Winner takes all'	Inferred economic dispatch
Bidding – energy market								
Unconstrained and/or out of merit generators	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost
Constrained in-merit generators	Market floor price	Market floor price	Market floor price	Market floor price	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost
Bidding – CRM								
All generators	n/a	Short run marginal cost	Short run marginal cost	Short run marginal cost	n/a	n/a	n/a	n/a

CRM scenarios reflect a design choice from the Directions Paper about the calculation of RRP (based on the energy market, or the CRM).

	Base case	CRM scenarios			CMM scenarios			
Field	Status quo	100% opt in with RRP _{NEM}	100% opt in with RRP _{CRM}	Partial opt in with RRP _{NEM}	Pro rata access	Pro rata entitlement	'Winner takes all'	Inferred economic dispatch
Bidding – energy market								
Unconstrained and/or out of merit generators	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost
Constrained in-merit generators	Market floor price	Market floor price	Market floor price	Market floor price	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost
Bidding – CRM								
All generators	n/a	Short run marginal cost	Short run marginal cost	Short run marginal cost	n/a	n/a	n/a	n/a

The Directions Paper includes a design choice as to whether the RRP is based on the energy market or CRM.

 RRP_{NEM} where the RRP is based on the energy market, as it is currently calculated.

RRP_{CRM} where the RRP is based on the CRM i.e. the marginal cost of an additional unit of load at the RRN in the CRM.

CMM scenarios refer to the four rebate allocation methods previously discussed with the TWG.

	Base case		CRM scenarios			CMM s	cenarios	
Field	Status quo	100% opt in with RRP _{NEM}	100% opt in with RRP _{CRM}	Partial opt in with RRP _{NEM}	Pro rata access	Pro rata entitlement	'Winner takes all'	Inferred economic dispatch
Bidding – energy market								
Unconstrained generators	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost
Constrained generators	Market floor price	Market floor price	Market floor price	Market floor price	Short run marginal cost	Short run marginal cost	Short run marginal cost	Short run marginal cost
Bidding – CRM								
All generators	n/a	Short run marginal cost	Short run marginal cost	Short run marginal cost	n/a	n/a	n/a	n/a

Pro-rata access – based on offered availability. It allocates access to each generator in proportion to their available capacity in each interval.

Pro-rata entitlement – based on a combination of constraint coefficients and offered availability. It allocates entitlements (access x coefficient) (rather than access) in proportion to availability.

'Winner takes all' – assigns access in ascending order of constraint coefficients. The generator with the lowest constraint coefficient in the constraint receives entitlements up to its full availability in the constraint; the generator with the next lowest factor then receives access, continuing until the constraint limit is met. Inferred economic dispatch - allocates access on a combination of constraint coefficients and inferred marginal costs.

MODELLING

Overview of results (2023-24)

Cost reflective bidding achieves lower system costs than disorderly bidding

	Total system costs \$m				
Model run	2023-24	2033-34			
Disorderly (status quo)	2,881	tba			
Cost-reflective (CRM/CMM)	2,841	tba			
Difference	40	tba			
	(1.4%)				

DRAFT results (17 Nov 2022)

RRPs are affected by the change in bidding strategies, but it is complex to model and PLEXOS does not include AEMO's procedures for clamping

Draft results redacted given results have been superseded.

Final model outcomes will be published online.

Model limitations

- No clamping of counter price flows.
 - Clamping could significantly change RRP outcomes. The impact of RRP changes is separately itemised (see overleaf).
- No modelling of stability constraints (thermal constraints only)
- No strategic bidding
- Draft results provided for 2023-24 only (direction and size of RRP changes may vary over time, 2033-34 pending)

There are three key components to the change in profits between status quo (disorderly) and the CRM/CMM (cost reflective) scenarios

Profit change\$ = DE\$ + DA\$ + DP\$:

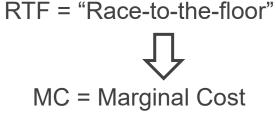
where:

 $DE\$ = \Delta G \times (LMP - cost) = profit change due to a change in$ *dispatch* $DA\$ = \Delta A \times (RRP_{SCEN} - LMP) = profit change due to changes in$ *access* $DP\$ = \Delta RRP \times G_{SQ} = profit change due to changes in$ *RRP*

```
G = dispatched output
A = access
SQ means status quo
Δ means change
A<sub>SQ</sub> = G<sub>SQ</sub>
```

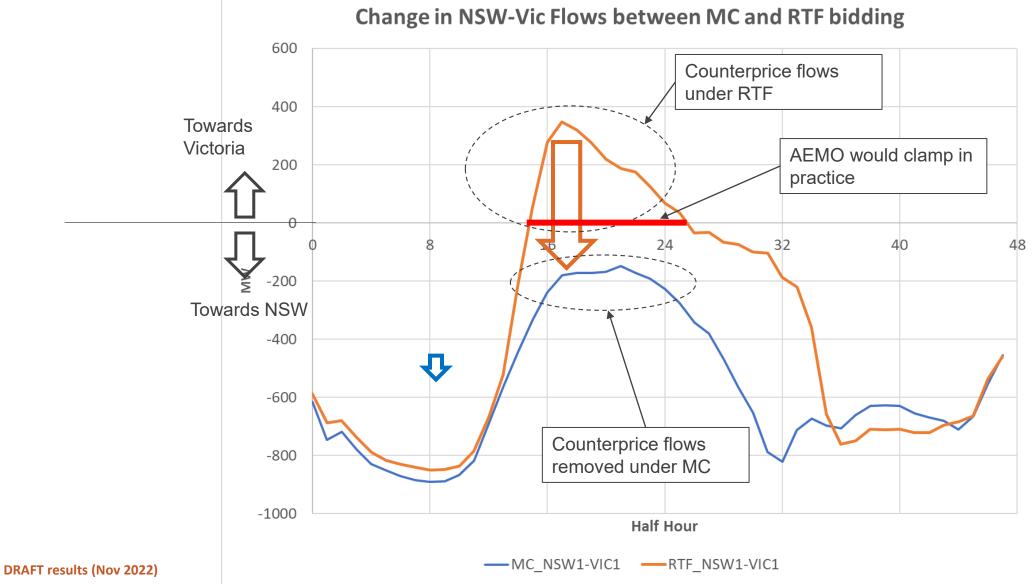
Notes:

Decomposition of the profit change by reform option/scenarios

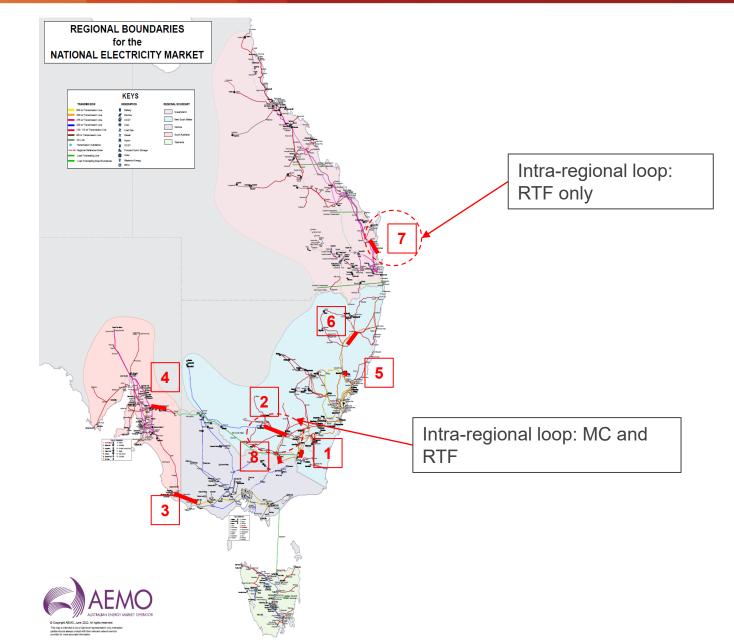

Scenario	Bidding	DE \$m	DA \$m	Subtotal \$m - profit change versus status quo disorderly	DP \$m	Total \$m - Profit change versus status quo disorderly
CRM scenarios						· · · · · ·
RRP _{CRM} - 100% part.	Energy market disorderly, CRM	tbc	tbc	tbc	tbc	tbc
RRP _{NEM} - 100% part.	cost-reflective	tbc	tbc	tbc	<mark>tbc</mark>	tbc
CMM scenarios						
Pro-rata access	Cost-reflective	tbc	<mark>tbc</mark>	tbc	<mark>tbc</mark>	tbc
Pro-rata entitlement		tbc	tbc	tbc	<mark>tbc</mark>	tbc
Winner-takes-all		tbc	tbc	tbc	<mark>tbc</mark>	tbc
Inferred economic dispatch		tbc	tbc	tbc	tbc	tbc

DRAFT results (16 Nov 2022)

where:

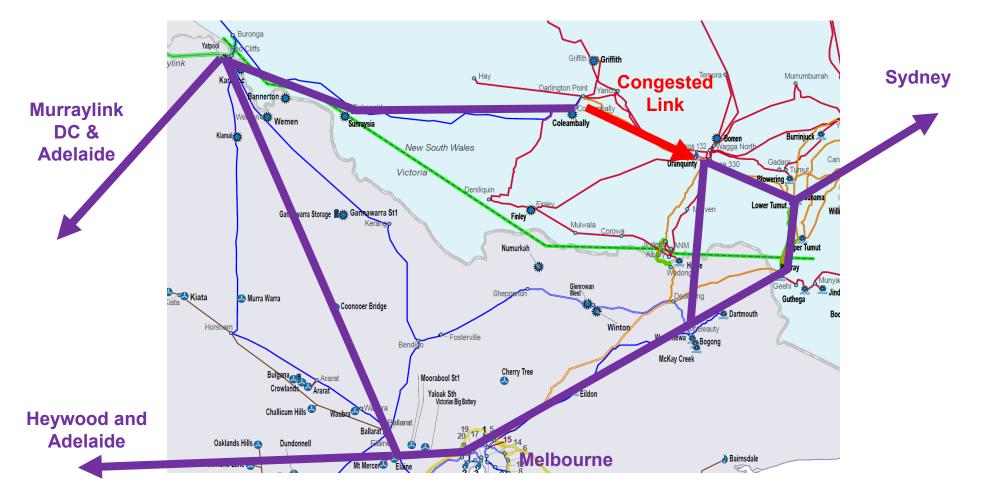


2023 DISPATCH RESULTS

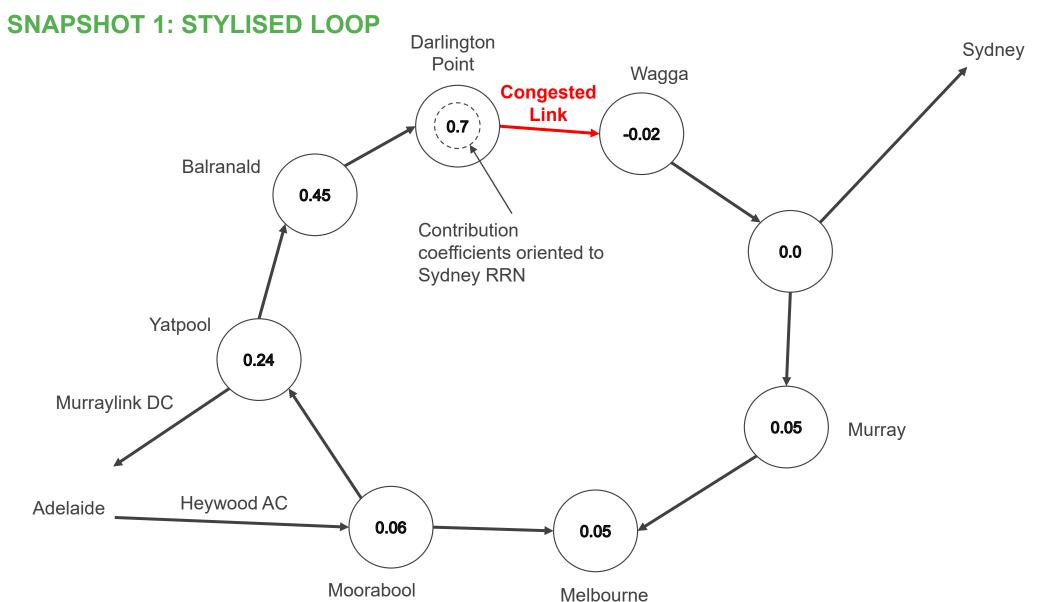

MAIN POINTS OF CONGESTION

	٢	Key congestion			U U	er congestion to MPF bids	prices
Index	From Node	To Node	region	#DIs MC	#DIs RTF	total MC	total RTF
1	Tumut1_2	Murray	NSW	5064	4375	(\$k) 52	(\$k) (39)
2	Darlington Pt	Wagga330	NSW	2309	2292	20	777
3	Heywood	South East	Vic	1691	1464	6.3	4.6
4	Tailem Bend	Tungkillo	SA	785	771	1.8	2.1
5	Bayswatr	Liddell	NSW	303	174	0.5	0.4
6	Armidale	Tamworth	NSW	206	88	0.7	0.5
7	Woolooga	Palmwoods	Qld	76	527	0.3	603.3
8	Dederang	Wodonga	Vic	11	357	0.0	21.1

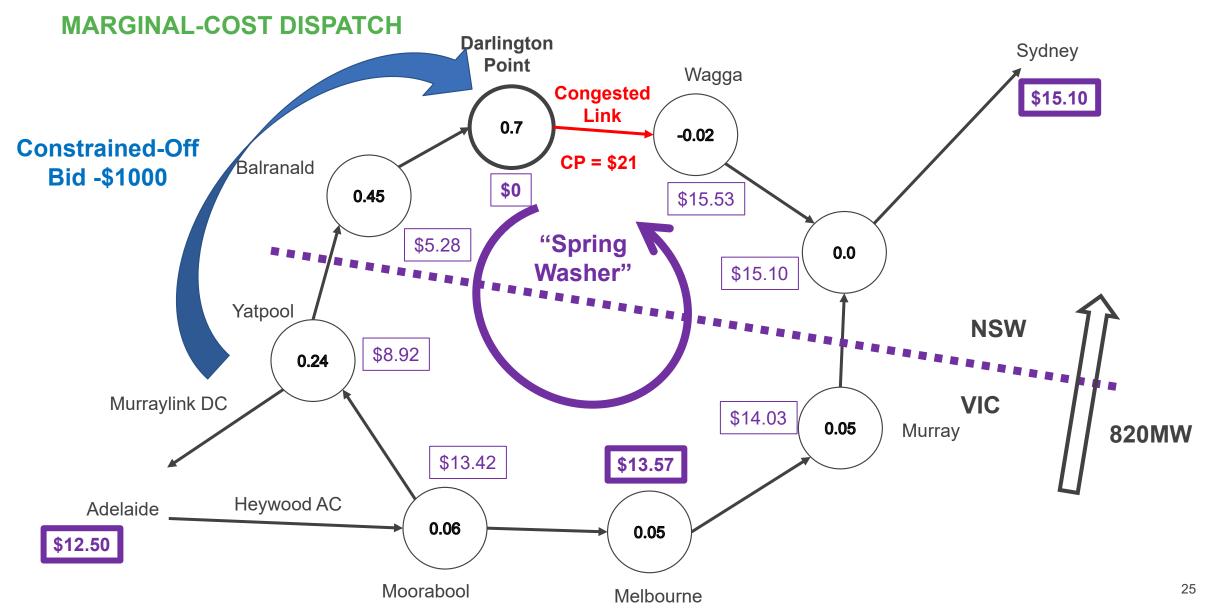
2023 DISPATCH RESULTS

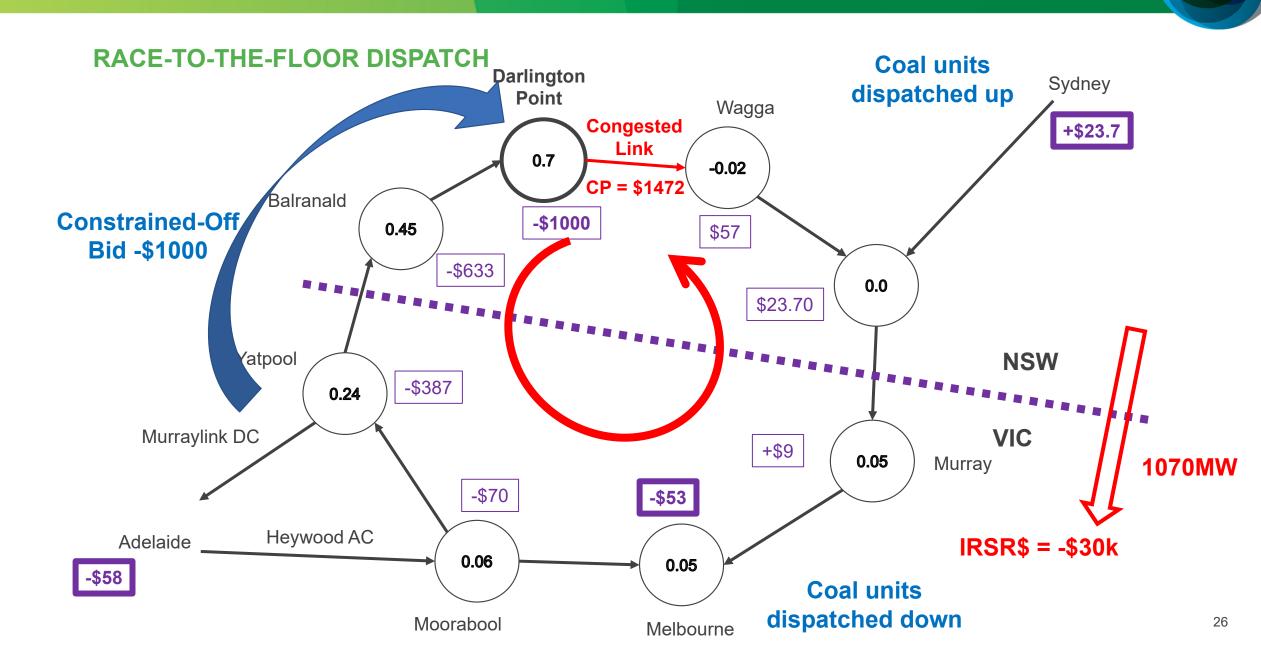


CONGESTED LOCATIONS



SNAPSHOT 1: CONGESTION IN SW NSW, EAST OF DARLINGTON POINT

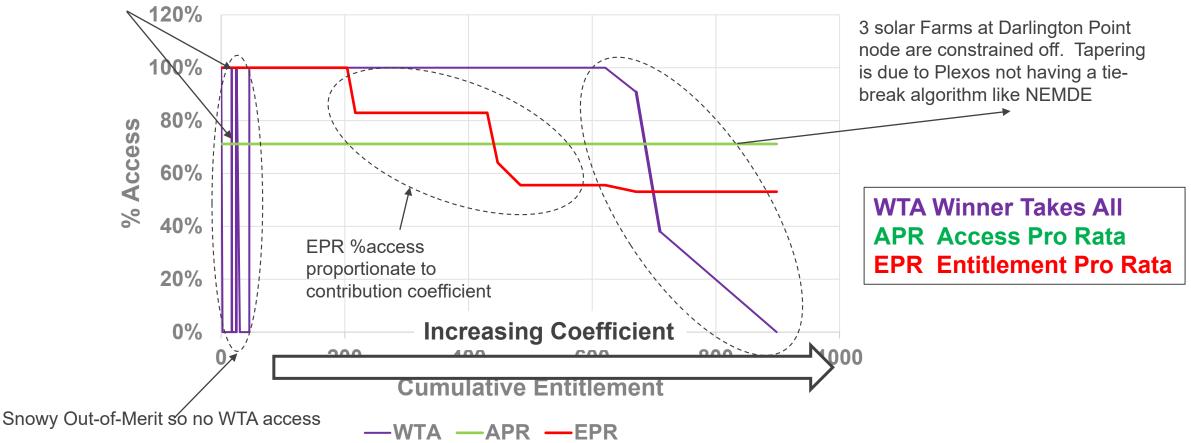

29/10/2023 12:00



CRM TRADING OUTCOMES: SELECTED GENS

Change between RTF dispatch and MC dispatch

Gen	Region	Traded` MW	Traded CR	CRM price	inferred cost	CRM profit	Comments
Bayswater 1	NSW	-396	0	15.15	11.18	-1568	Apparent loss, since LMP>cost ¹
Callide B2	QLD	-91	0	16.10	12.40	-337	Apparent loss, since LMP>cost ¹
Loy Yang B1	VIC	+110	0	13.57	6.84	739	Profitably increase output ²
Darlington SF	NSW	-139	-97	0.00	0.00	0	Reduce output to zero at cost ³
Glenrowan SF	VIC	+86		14.07	0.00	1212	Profitably Increase Output
Bungala SF2	SA	+97		12.44	0.00	1208	Profitably Increase Output
Stockyard Hill WF	VIC	+24		13.44	0.00	318	Profitably Increase Output
NSW-Vic Interconnector	n/a	-189	-985	1.5	0	06	But does not offset


1. NSW and Qld coal gens are de-loaded in MC dispatch, despite RRP being above cost

- 2. Vic coal gens increase output to full load and have RRP > cost
- 3. Darlington SF is the marginal generator and so has LMP=cost and is profit-neutral from CRM trading
- 4. The NSW-Vic interconnector changes from 1070MW south (counterprice) to 820MW north
- 5. The interconnector has a participation of 0.05 in the binding constraint: so $0.05 \times 1890 = 98$
- 6. AC interconnectors receive no CRM profit because their "cost" is equal to their "LMP"

CMM ACCESS ALLOCATIONS

Snowy Receives CMM access despite being OOM, but this has minimal value

CMM Access Allocations

Contact details	Energy Security Board
	Level 15, 60 Castlereagh St
	Sydney NSW 2000
Email	info@esb.org.au
Website	http://www.energyministers.gov.au/market-bodies/energy-security-

board