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In agriculture, increasing attention is being paid to collect data in a non-destructive way

using optical systems which can be field distributed in a completely interconnected

network. To improve the irrigation scheduling management, the control of the plant's

water status is crucial. This work focused on the definition of optical specifications

(wavelength-selection in vis/NIR region) for the development of cost-effective sensors,

giving an initial bulk of information to design optical devices to be used in a network of

distributed field sensors. The analyses were performed on vines of cv. Pinot Blanc. Optical

data were collected on leaves before the analysis of water potential and moisture content.

Pearson-correlation analysis between predawn water potential (ѰPD) and moisture content

was performed (r ¼ 0.47 and p-value<0.05) highlighting a non-highly correlation between

the two parameters. The optical data (350e2500 nm) were used to build a PLS-model with

vis/NIR and ѰPD (RMSEP ¼ 0.056 MPa, R2 ¼ 0.7). The study identified the most significant

wavelengths related to the water potential at the leaf level to design a chemometric model

that was compared to the model based on the whole spectra. Therefore, related VIP-scores

were used to calibrate another PLS-model after the selection of most relevant optical bands

(530 ± 20 nm, 700 ± 20 nm, and 1400 ± 20 nm). Good predictive performance was obtained

with an RMSEP ¼ 0.056 and an R2 ¼ 0.60. These results paved the ground for further

development of integrated optical sensors capable to monitor vine water status in the field

in a distributed and autonomous fashion.

© 2021 IAgrE. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The fourth industrial revolution (Industry 4.0) overlaps auto-

mated and interconnected systems. Themodern technologies

classified as “enabling technologies”, series of wide and

multidisciplinary applications to different tasks, allow to

develop of new solutions able to reduce human error, to in-

crease production, to optimize energy consumption, and to

produce reliable information. For example, in the wine in-

dustry, recent technological developments have provided a

useful and efficient tool for remote and real-time monitoring

of important variables involved in grape production, pro-

cessing the data, and transmitting the required information to

the users (Matese & Di Gennaro, 2015). Additionally, the long-

term environmental sustainability of vineyards is dependent

on strategic water management due to global water scarcity.

These trends are increasing the pressure on grape growers to

continually seek opportunities to maximize the efficient use

of freshwater, highlighting the need for efficient and sus-

tainable viticulture management in terms of the water re-

sources (Pagay et al., 2016).

In the vineyard, the agronomic practices for water man-

agement include the selection of tolerant geneticmaterial, the

use of cover crops and the supply of water through irrigation

(Dai et al., 2011; Linares Torres et al., 2018). Indeed, in several

viticultural areas, irrigation is becoming an important strategy

to support production and to maintain the quality of the

grapes. A promising strategy to improvewatermanagement is

represented by precision irrigation, which optimises the

supply of water along the time and the space, increasing the

water use efficiency at field scale (Ortuani et al., 2019). New

technologies, for instance based onmodels fromproximal and

remote sensing data are required for precision irrigation to

quickly detect the water status of the vineyard (Mir�as-Avalos

& Araujo, 2021). The introduction of new technologies for

supporting vineyard management also allows the efficiency

and quality of production, synergically reducing the environ-

mental impact (Casson et al., 2020) in the viticulture sector.

The key proxy to assess andmanage irrigation practices is the

plant water status. Water status varies due to vineyard prac-

tices and environmental factors, such as meteorological con-

ditions, site topography, soil characteristics, which lead to

variability in grape composition at harvest, compromising the

wine composition (Yu & Kurtural, 2020).

In this context, water potential (J) has been world widely

accepted as a useful and reproducible parameter of the plant

water status. Thresholds for grapevinewater status have been

defined in terms of water potential and they can be used to

manage irrigation under different phenological stages (Ojeda

et al., 2002). Nevertheless, the measurement of water poten-

tial requires destructive sampling, it is labour-intensive, time-

consuming and potentially biased by the operator. One of the

most promising approaches to disrupt these current meth-

odological barriers is the use of optical-based strategies that

are intrinsically non-destructive and reproducible on a large

scale for completely interconnected IoT devices development.

In recent decades, optical instrumentation in the visible

(vis), and in the near-infrared (NIR) have been used as tech-

nological tools for remote and proximal sensing. These tools
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are capable to manage the different agronomic operations,

including the monitoring of water status (Seng et al., 2018).

Although remote sensing is a current landmark for the agri-

cultural sector (from an experimental point of view), it is still

unable to fully embrace this technology in real production

scenarios. Some reasons behind this include: (i) the techno-

economic benefits of such technologies, (ii) the limited avail-

ability and training of remote sensing-based decision-support

tools, (iii) the costs and, (iv) the interoperability of different

tools and data sources (Khanal et al., 2020). Moreover, the

discontinuous nature of grapevine canopies and their mod-

erate cover causes noisy backgrounds and shadows, which

influences the measured reflectance signals (Borgogno-

Mondino et al., 2018). For these reasons, the use of proximal

sensing techniques is a convenient option. Proximal sensors

are placed directly in contact or close by (fewmeters) a specific

target (e.g. soil, plant, crop, etc.). These sensors provide in-

formation related to the properties of the objects analysed

through signals coming from physical measures. Therefore,

spectroscopy (Fern�andez-Novales et al., 2018; Giovenzana

et al., 2018; Cotrozzi et al., 2017; Cozzolino, 2017; Tardaguila

et al., 2017; Gonz�alez-Fern�andez et al., 2015), multispectral

and hyperspectral imaging (Kotsaki et al., 2020; Pôças et al.,

2020; Loggenberg et al., 2018; Rapaport et al., 2015), and ther-

mal imaging (Guti�errez et al., 2018; Petrie et al., 2019) have

been successfully used in different contexts for modelling the

vineyard water status.

In order to design a future generation of real-time stand-

alone sensors capable to estimate the water status, it is

necessary to investigate different technical aspects that have

to be combined with a suitable operation protocol. Regarding

the sensors, several works have demonstrated the suitability

of leaf reflectance to evaluate grapevine water status (De Bei

et al., 2011; Rapaport et al., 2015; Pôças et al., 2020). Howev-

er, to achieve integrated, miniaturized, and low-cost data

assessment, variable (wavelength) selection has to be

considered (Pasquini, 2018). Variable selection can also

improve the prediction performance, make the calibration

reliable, and provide a simpler interpretation of the results

(Yun et al., 2019). Data mining strategies may be applied to

grapevine data retrieved with new non-destructive devices,

aiming for useful, reliable, and objective information

(Guti�errez et al., 2016).

Furthermore, some aspects related to the practical opera-

tion of the sensors also have to be studied. For example,

environmental and uncontrolled light conditions could be

cancelled out by performing signal acquisition during the

night or by using light modulation strategies. Moreover, it has

long been recognized that many important ecological pro-

cesses vary with leaf age, the time elapsed since leaf budburst.

During their lifetime, leaves exhibit variable photosynthetic

rates, morphological, allocation and transformation of

chemicals, epiphyll colonization, and defence against her-

bivory. Thus, leaf age is a critical parameter for interpreting

leaf function over time and for understanding how leaf traits

evolve over development (Wu et al., 2017). Accordingly, there

is the need to develop a stand-alone, cost-effective, sensor

and a relative operative procedure in a view of a network of

distributed optical sensors to make a rational decision about
proximal sensing approach to monitor the vine water status in a
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irrigation scheduling towards a more sustainable grape and

wine production.

The specific objectives of the study were to identify the

most sensitive wavelengths towater status at the leaf level, by

induction of stress under controlled conditions and to utilize

these indicative bands to design a chemometric model and to

compare the performance with the quantitative model using

the whole spectra deriving from a commercial portable

spectrophotometer.
Fig. 2 e Spectral acquisition setup carried out on the leaf

surfaces.
2. Materials and methods

2.1. Sampling

The experimental activity was performed from the beginning

of May to the end of July 2020 at the department of agriculture

and environmental sciences of the University of Milan. The

samplingwas carried out in 8 sampling times on 24 grapevines

of cv. Pinot Blanc, grafted onto two different rootstocks (1103 P

and M4). The vines were 4 years old, grown in 60 L plastic pots

and the substrate was composed of 70% sand and 30% peat,

supplemented with a layer of expanded clay aggregate on the

bottom of the pot to reduce water flooding. The training sys-

temwas Guyot. During the phenological phase of budding, the

plants weremaintained in well-watered conditions in order to

develop a well-expanded canopy. Moreover, phytosanitary

status was controlled in order to keep the same sanitary

conditions for each vine.

Soil water content was maintained at field capacity level

till the beginning of the experiment, after that the irrigation

was interrupted for thewhole experimental period. The plants

were divided into two groups (lines 1 and 2) based on the

rootstock genotype at 0.5 m from each other.

For each rootstock, 11 plants were used as a test (test plant)

and 1 plant was used as control (control plant), for a total of 22

test plants and 2 control plants as showed in Fig. 1.

The analyses were performed in predawn, from 03:00 to

05:30, when the water potential of leaves is in equilibrium

with the water potential of the soil. One median leaf per plant
Fig. 1 e Organization of the samples
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of about 30 days old was chosen from a primary shoot at each

sampling day. Therefore, each individual leaf was first sub-

mitted to the optical analysis followed by the water potential

and moisture content analysis, which are described in detail

in the next sub-sections.

2.2. Optical analysis

Optical data were collected (immediately after choosing the

leaf without any dark room) using a portable full-range spec-

trophotometer (ASD Quality SpecTrek, Malvern Panalytical,

UK) operating between 350 and 2500 nm. Each spectrum was

acquired using a black pad positioned at the opposite side of

the leaf acquisition surface. The black pad allows the acqui-

sition of only reflectance data avoiding eventual transflection

of the light. In a view of a future application of stand-alone

sensors, this procedure won't be needed because no reflec-

tive surfaces (for transflectance analysis) should be present

behind the leaf, and also no issues of moisture accumulation

and leaf damage will arise.

Four averaged reflectance spectra for each leaf were ac-

quired: two on the upper surface (adaxial) and two on the
analysed in controlled condition.

proximal sensing approach to monitor the vine water status in a
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lower surface (abaxial) as showed in Fig. 2. At the end of each

acquisition, which takes about 30 s, the spectrum of each

sample is automatically calculated as the average of 50 scans,

to obtain a more representative spectrum of each side of the

leaf.

2.3. Water potential and moisture content analysis

From the same leaf where the optical analysis was performed,

the predawn water potential (JPD) was measured by using a

Scholander pressure chamber (Scholander et al., 1965), pro-

duced by PMS Instrument Company, Corvallis, Oregon (USA).

Then, after optical and pressure analyses, to determine the

moisture content (MC) each leaf was weighed (fresh weight)

using an analytical balance (LAZ 30 P, Sartorius Lab Holding

GmbH, Goettingen, Germany). Then the leaves were stored to

be dried in an oven (UNB400, Memmert GmbH & Co, Schwa-

bach, Germany) at 90 ± 1.5 �C for 48 ± 0.25 h and dried until

constant weight. Once reached room temperature, leaves are

re-weighed (dry weight) for the MC determination (Eq. (1)):

MC ð%Þ¼ ðGW � DWÞ*100
GW

(1)

where:

MC ð%Þ ¼ percentage of moisture content;

GW ¼ gross weight;

DW ¼ dry weight.

2.4. Data analysis

The data analysis was performed in the Matlab® environ-

ment, version 2021a (The MathWorks, Inc., Natick, MA, USA)

using both the PLSToolbox package (Eigenvector Research,

Inc. Manson, Washington) and in-house functions. The data

processing workflow included four steps: (i) the analysis of the

relationship between JPD and MC, (ii) the development of a

predictive model for predicting between JPD, (iii) the variable

selection based Variable Importance in the Projection (VIP)

scores and, (iv) the development of a simplified predictive

model based on the variables previously selected.

The first part is focused on finding the correlation structure

betweenJPD andMC using the Pearson correlation coefficient

and the relative significance was evaluated by p-value

calculation.

The second step was the calculation of the predictive

model using optical data for the prediction of JPD. In order to

reduce instrumental noise at the tails of the instrument

spectral range, the spectra were cut from 480 to 2200 nm.

Different pre-processing techniques were applied to highlight

spectral differences related to JPD and the most performing

one was identified in Savitzky and Golay second derivative

(Der 2) with a second-degree polynomial order and a window

size equal to 15. Considering the inhomogeneous physical

structure of the samples, the Der 2 pre-treatment can correct

the eventual baseline vertical shifts (offsets) and of the global

intensity effects (typically arising from unwanted light scat-

tering). Furthermore, the spectra weremean-centred focusing

on the variability among the sample (Biancolillo & Marini,

2018; Oliveri et al., 2019). A latent variable modelling using

the Partial Least Square (PLS) method, which maximizes the
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covariance among the vis/NIR spectra and JPD, was per-

formed (Oliveri et al., 2020). To build calibration and validation

datasets, leaves samples were averaged in pairs as described

in Fig. 3. Therefore, considering the 8 sampling times, 10

sampleswere used for calibration and 2 sampleswere used for

validation for a total of 80 calibration samples and 16 samples

as an external validation set. In particular, the calibration

model was built using only the test plants to have a wider

variability to be used for the model building.

The models' accuracy was evaluated using the RMSE (root

mean square error), as well as bias and R2 (coefficient of

determination); the lower the error and the bias and the

higher the R2 (as maximum equal to 1), the better the model

performances. Besides, the RPD (ratio between the standard

deviation of the response variable and RMSE) was calculated.

An RPD between 1.5 and 2 means that the model can

discriminate low from high values of the response variable; a

value between 2 and 2.5 indicates that coarse quantitative

predictions are possible, and a value between 2.5 and 3 or

above corresponds to good and excellent prediction accuracy,

respectively (Nicolai et al., 2007).

The third step included the variable selection, which was

performed using Variable Importance in the Projection (VIP)

scores. The VIP score is the squared function of the PLS

weights taking into account the amount of explained y vari-

ance in each dimension. The VIP score value is calculated for

each variable. Therefore, VIP scores provide information

about the significance of each variable on the latent variables

(LV). The greater the VIP scores, the more important the cor-

responding variable is. VIP score values greater than 1.0 are

used as a threshold criterion for variable selection since the

respective variables are considered to be the most influential

in the model.

Therefore, as the final step, the model was rebuild using

new optical variables applying Der 2 (as the full variable

model) and Autoscaling. This column pre-processing elimi-

nates systematic location and dispersion differences between

heterogeneous variables, thereby giving all of them the same a

priori importance (mean values equal to 0 and standard de-

viations equal to 1) and enhancing differences between the

samples. In the case of signals in which all of the variables

have different nature, measurement unit or spectral ranges,

column autoscaling it is important if there are variables that

are characterized by a relatively low mean value and/or

standard deviation but which contain useful information

(Oliveri & Downey, 2013).
3. Results and discussions

3.1. Reference data analysis

In order to bring the plants toward a more stressed condition

and obtain enough variability to build a reliable multivariate

model for the valuation of water potential, the test pots were

covered by a plastic film from the beginning to the end of the

sampling campaign. This covering procedure has prevented

the infiltration of water during rainfalls. However, it avoided

the evaporation of the water from the soil extending the time

required to obtain the situation of stress.
proximal sensing approach to monitor the vine water status in a
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Fig. 3 e Dataset organisation for model construction.

Fig. 4 e Water potential results for control plants (a) and test plants (b) for both rootstocks.

b i o s y s t em s e ng i n e e r i n g x x x ( x x x x ) x x x 5
The predawn water potential is reported in Fig. 4. Overall,

the control plants (P12 and P24, Fig. 4a) water status remain

steady along the whole sampling period showing values of

water potential of 0.25 ± 0.1 MPa. Instead, the plants used as

test (Fig. 4b) show a general increasing trend (from about 0.15

to 0.55 MPa) caused by the decreasing water availability.

Though only one variety was considered (cv. Pinot Blanc)

two rootstock genotypes have been used in this work. Fig. 5

shows the mean and the standard deviation of water poten-

tial of the test plants with rootstock 1 (Fig. 5a) and rootstock 2

(Fig. 5b). Overall, no significant differences in water potential

have been highlighted from t0 to t5 in both rootstocks. While,

concerning the samples measured in t6 and t7, a more pro-

nounced condition of stress was expressed by rootstock 2.

Moreover, considering the eleven vines (from each rootstock)

as replicates, a direct estimation of the measurement error of

the analysis with Scholander pressure chamber has been
Please cite this article as: Pampuri, A et al., Optical specifications for a
distributed and autonomous fashion, Biosystems Engineering, https://d
performed calculating the mean of the standard deviation

obtained from each sampling time. The mean standard devi-

ation showed a measurement error (in absolute value) of the

reference method equal to 0.045 MPa.

In order to define the relationships between the predawn

water potential and leaf water content, a Pearson correlation

analysis was performed (Fig. 6). The plots matrix shows cor-

relations among both variables considered (MC and Ѱ). His-

togram distribution plots of the variables appear along with

the matrix diagonal and scatter plots of variable pairs appear

in the off-diagonal. The slopes of the least-squares reference

lines represent highly significant (p-value<0.05) correlation

coefficients equal to 0.47. Even though the Pearson correlation

shows that a significant link between the two parameters

exists, it is clear that the water content of the leaf is not

directly related to the water pressure and, thus, it can not be

used as a proxy of water potential. This suggests that for a
proximal sensing approach to monitor the vine water status in a
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Fig. 5 e Mean and standard deviation of water potential for rootstock 1 (a) and for rootstock 2 (b).

Fig. 6 e Pearson correlation analysis and frequency (on diagonal) plot for MC and ѰPD.
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supervised modelization using optical data, the OH- bonds

(highly related to the water absorption) need to be taken into

consideration for the construction of a multivariate model.

3.2. Spectra exploration

Concerning the optical analyses, in order to reduce the physi-

ological variability of leaves along the whole sampling

campaign (Santesteban et al., 2019) the median leaf from the

primary shootwas picked at each sampling day. This procedure

guaranteed the reduction of the optical noise related to the leaf

color change that is part of the ageing process. Furthermore,

only the spectra acquired from the abaxial surface were used

for the analysis. Even though the analysis was conducted in
Please cite this article as: Pampuri, A et al., Optical specifications for a
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controlled conditions (keeping the sanitary status monitored

and constant for all vines), the common treatments could affect

the spectra acquisition on the adaxial surface producing optical

noise. Considering the different types of sanitary treatments

which can also be carried out in a real commercial vineyard, the

adaxial surface is unsuitable to be used to obtain optical in-

formation related to water potential. Therefore, the use of only

the abaxial surface is recommended to develop optical models

for the estimation of this parameter.

Figure 7 shows the mean raw (Fig. 7a) and pre-treated

spectra acquired from the abaxial surface of sampled leaves.

The spectra have been labelled (from dark blue to yellow) ac-

cording to the respective value of water potential measured

with the Scholander pressure chamber.
proximal sensing approach to monitor the vine water status in a
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Fig. 7 e Raw (a) and second derivative pre-treated (b) spectra from leaves abaxial surface. Spectra were coloured according to

ѰPD values.
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From raw spectra (Fig. 7a), the water stress seemed to

cause a progressive reflectance increasing trend in the green

(530e550 nm) and red (700e750 nm) regions. While, in the

pure NIR a decreasing reflectance trend was observed around

the eOH bands (970e1000, 1380e1420, and 1900e2000 nm)

which can be related to water absorption. The moisture con-

tent in grapevine leaves is higher than 60%. In this sense, the

bands at 978, 1454, and 1930 nm are related to the OH second

overtone, the OH stretch first overtone, and the harmonic and

combination bands of OH bonds in hydroxyl groups, respec-

tively (Tugnolo et al., 2021). The water content, besides

altering the spectrum with changes in the strength of

hydrogen bonds, causes other changes due to the combina-

tion of the OH-groups engaged in hydrogen bonds with other

molecules. Water associates strongly with ions, organic

monomers, and polymers by hydrogen bonds; therefore,

water absorption bands in the near-infrared spectrum are

influenced by the effects of other molecules with water

(Büning-Pfaue, 2003).

However, especially in the NIR region (700e2200 nm), a

clear scattering effect appears in the raw data causing sig-

nificant repercussions in the global intensity of the optical

signal. Therefore, the entire spectrum of each sample has

been mathematically pre-treated using a Der 2 transformed

(Fig. 7b). After pre-treating, amore in-depth visual analysis of

the spectra was performed. The individuation of the most

representative spectral ranges for the prediction of the water

potential is crucial for a future application in low-cost optical

devices for water potential evaluation. Three important op-

tical ranges (two in the visible, the green and red regions, and

one in the NIR, theeOH bond) were identified as the ones

with higher variability when analysed together withѰ values

obtained from the reference method. Overall, the Der 2

transform improved the stability of the optical signal. How-

ever, the reference method error can affect the supervised

modelling phase (0.045 MPa, deriving especially from the

different manual operations necessary to carry out the

analysis). Therefore, to reduce the associated error derived

from the use of one leaf as one sample, an averaging process

was performed. Indeed, the mean result from the analysis of

two leaves (at least) was considered. No particular consid-

erations were performed for the choice of the two leaves to

be averaged. This procedure was performed at each sampling
Please cite this article as: Pampuri, A et al., Optical specifications for a
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time. The mean value of water potential and the mean

spectrumwere obtained coupling the results from two plants

as described in Fig. 3. Then, the second derivative transform

was applied to the spectra. Fig. 8 shows the pre-treated

spectra (used for calibration model) highlighting the main

three ranges of the vis/NIR spectrum where a clear effect of

water stress exists. Similar results were observed by

Rapaport et al. (2015) that showed the existence of opposite

reflectance trends (in hyperspectral data) at 530e550 nm and

around 1500 nm (associated with independent changes in

photoprotective pigment contents and water availability)

indicative of stress-induced alterations in midday leaf water

potential (Ѱl) on plants of Vitis vinifera L. cv. Cabernet

Sauvignon.

3.3. Regression model and variables selection

The spectral data (pre-treated with Der 2 transformed and

then mean-centered) were used to build a PLS regression

model to predict values of predawn water potential to eval-

uate the level of water stress of the grapevine. Fig. 9 shows the

figures of merit and the regression model using the entire vis/

NIR spectral range. The calibration, cross-validation and

external validation results have been reported.

Overall, a good predictive performance was obtained with a

low error (RMSE CV ¼ 0.051 MPa, RMSEP ¼ 0.056 MPa) and a

satisfactory R2 equal to 0.78 and 0.7 in cross-validation and pre-

diction, respectively.Comparable resultswereobtained incross-

validation by De Bei et al. (2011) using spectral vis/NIR data, and

inpredictionbyRapaport et al. (2015)andPôças etal. (2020) using

hyperspectral vis/NIR data. These already promising results

could be further improved by increasing the variability and the

number of samples employed. However, the capability of the

model to predict enough accurately the new samples (coming

from the external validation set) left the floor to move toward a

simplification of the model using few optical variables.

Therefore, with the view to developing a new concept of

customized optical devices using few optical variables for

water status evaluation, the VIP scores were calculated

(Fig. 9b). The VIP revealed the most important variables used

to predict the grapevine water potential and confirmed the

spectral visual inspection. In particular, wavelengths in the

visible around 530 nm and the NIR around 730, 1000, 1400, and
proximal sensing approach to monitor the vine water status in a
oi.org/10.1016/j.biosystemseng.2021.11.007
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Fig. 8 e Spectral ranges where variations related to the ѰPD were highlighted after pre-treating with second derivative. Two

ranges in the visible (from 520 nm to 570 nm and from 680 nm to 750 nm) region and one in the near-infrared (from 1380 nm

to 1440 nm) region. Spectra were coloured according to ѰPD values.

Fig. 9 e Figure of merits (a) of the PLS model built using the entire spectral range (from 480 nm to 2200 nm). Variable

importance in projection (b) of the PLS model.
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1900 nmwere identified to be themost suitable for developing

a new model with fewer variables.

Despite that, three main important spectral ranges were

identified (from the visual spectral analysis and the VIP
Table 1 e Figure of merits (in cross-validation, RMSE-CV and R
built using the full spectrum and the wavelengths selected fro
deviation (SD) for ѰPD were reported. The number of latent var
were highlighted.

PLS models Mean SD ѰPD (MPa)
Range

LVs Cal
samples

Full spectral range �0.28 0.107 �0.1 < Ѱ

<-0.575
6 80

Selected spectral

bands

�0.28 0.107 �0.1 < Ѱ

<-0.575
7 80

Please cite this article as: Pampuri, A et al., Optical specifications for a
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calculation) as more informative and technically (in terms of

costs and engineering) more suitable for the development of

customized optical systems with few wavelengths that could

be applied directly on the leaf. The two ranges in the visible
2CV, and prediction RMSEP and R2Pred) of the PLS models
m the VIP scores analysis. The mean and the standard
iables (LVs), calibration (Cal) and prediction (Pred) samples

Pred
samples

R2CV RMSE-CV
(MPa)

R2Pred RMSEP
(MPa)

RPD

16 0.78 0.051 0.70 0.056 1.91

16 0.78 0.05 0.60 0.058 1.84

proximal sensing approach to monitor the vine water status in a
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Table 2 e Strengths, weaknesses, opportunities, and threats related to the application of the experimental outputs and
concepts of this work in the viticulture sector.

Positive Internal Negative

Strengths Weaknesses

Selection of vis/NIR bands easily available on

the market

High variability of environmental conditions

Design a network of distributed proximal

sensors characterized from 3 optical bands for

real-time leaf water status evaluation

High variability of crops and soil

Design of operative procedure easily applicable

infield contest

Difficult to positioning infield the stand-alone sensors

Opportunities Threats

Monitoring of crop water status in a

semi-continuous way

Research efforts in optimizing water potential estimation

Improvement of irrigation management Strong link with traditional methods by wine operators

Reduced orientation towards innovation by wine operators

External

b i o s y s t em s e ng i n e e r i n g x x x ( x x x x ) x x x 9
(530 ± 20 nm and 700 ± 20 nm) and one in the range related to

the first OH- overtone (1400 ± 20 nm) were used to develop a

new PLS regression model (Table 1). The same samples were

used for calibration and prediction but, in this case, the data

were pre-treated using Der 2 and scaled using autoscale, to

give the same importance to all the optical variables included.

Overall, a comparable error was obtained (both in cross-

validation and prediction) using 7 LVs with respect to the

PLS model using the entire spectral range.

3.4. Potential field application

Research has been focusing on the development of simplified

systems (Dhillon et al., 2019; Pichon et al., 2021; Das et al.,

2017) for the estimation of the water status of different

crops (bib_Elvanidi_et_al_2017Elvanidi et al., 2017). In partic-

ular for sectors inwhich the product is characterized by a high

added value as in the grape and wine sector.

Currently, no commercial cost-effective stand-alone de-

vices capable to estimate rapidly the water status directly in

the field are available on the market. However, the ongoing

optical technology is ready to be used directly in the field

without the presence of human resources.

The consumer electronics industry is driving the conver-

gence of digital circuitry, wireless transceivers, and

microelectro-mechanical systems (MEMS), which makes it

possible to integrate sensing, data processing, wireless

communication, and power supply into low-cost millimetre-

scale devices (Sadowski & Spachos, 2020). The resulting

miniaturization and cost reduction of electronic components

is leaving space for a completely new method of data acqui-

sition and management using wireless sensor networks

(WSNs) based on small battery-powered nodes. A WSN con-

sists of small and low-cost Internet-of-Things (IoT) devices in

a network of peripheral nodes equipped with sensors and a

wireless module for data transmission to an online database,

where the data are stored and accessible to the end-user.

These nodes are energy independent and could be installed

in specific areas of the vineyard to provide more representa-

tive information of the entire vineyard variability (Dhillon

et al., 2017).

To transfer this optical technology from a controlled con-

dition (using full range spectrophotometer) in the real field
Please cite this article as: Pampuri, A et al., Optical specifications for a
distributed and autonomous fashion, Biosystems Engineering, https://d
conditions (using optical sensors with few wavelengths) it is

important to respect different crucial aspects: (i) reproduce at

best the controlled conditions in the field (analysis during the

night on several plants of the same parcel), (ii) design a sam-

pling campaign to maximize the variability of the whole

vineyard related to the leaf water potential (iii), minimize the

noise related to the leaf ageing and phytosanitary treatments

and (iv) introduce into the optical dataset the data from sen-

sors which monitor the vineyard environmental conditions

(temperature, relative humidity, and leaf wetness). This work

has been focusing on the definition of the optical specifica-

tions for the development of simplified and cost-effective

sensors to be used in a network of distributed field sensors.

In order to summarize the strengths, weaknesses, opportu-

nities, and threats related to the application of the experi-

mental outputs and concepts of this work in the viticulture

sector, a SWOT table was created (Table 2).
4. Conclusions

In this preliminary work performed in controlled conditions, a

model using optical data from a full range vis/NIR spectro-

photometer (350e2500 nm) was proposed to predict leaf water

status and relate with plant water stress in order to replace

the traditional time-consuming destructive method (Scho-

lander pressure chamber). The optical outputs (combined

with a chemometric approach) have shown a good capability

to be used as predictors of the PLS model for the prediction of

the JPD (RMSEP ¼ 0.056 MPa, R2 ¼ 0.7).

Moreover, to further simplify the computation of the PLS

model, a variable selection strategy was proposed using the

VIP scores obtained from the PLS model using the full vis/NIR

range. The new model has shown comparable results

(RMSEP ¼ 0.058 MPa, R2 ¼ 0.6) using only three spectral bands

(two in the visible and one in the NIR). This model simplifi-

cation had the main goal to be implemented with a future

simplified optical hardware. Indeed, the technology is in sharp

development and is reaching a considerable level of minia-

turization. Therefore, the development of a new generation of

non-invasive IoT devices capable to monitor the leaf water

status in a distributed and autonomous fashion in a cost-

effective manner has the potential to revolutionize the
proximal sensing approach to monitor the vine water status in a
oi.org/10.1016/j.biosystemseng.2021.11.007

https://doi.org/10.1016/j.biosystemseng.2021.11.007


b i o s y s t em s e n g i n e e r i n g x x x ( x x x x ) x x x10
vineyard irrigation management system, projecting the viti-

culture towards a new paradigm.
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