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Abstract: Climate-smart agriculture involves practices and crop modelling techniques aiming to
provide practical answers to meet growers’ demands. For viticulturists, early prediction of harvest
dates is critical for the success of cultural practices, which should be based on accurate planning
of the annual growing cycle. We developed a modelling tool to assess the sugar concentration
levels in the Douro Superior sub-region of the Douro wine region, Portugal. Two main cultivars
(cv. Touriga-Nacional and Touriga-Francesa) grown in five locations across this sub-region were
studied. Grape berry sugar data, with concentrations between 170 and 230 g L−1, were analyzed
for the growing season campaigns, from 2014–2020, as an indicator of grape ripeness conditioned
by temperature factors. Field data were collected by ADVID (“Associação Desenvolvimento Da
Viticultura Duriense”), a regional winemaker association, and by Sogrape, the leading wine company
from Portugal. The “Phenology Modeling Platform” was used for calibrating the model with sigmoid
functions. Subsequently, model optimizations were performed to achieve a harmonized model,
suitable for all estates. Model performance was assessed through two metrics: root mean square error
(RMSE) and the Nash–Sutcliffe coefficient of efficiency (EFF). Both a leave-one-out cross-validation
and a validation with an independent dataset (for 1991–2013) were carried out. Overall, our findings
demonstrate that the model calibration achieved an average EFF of 0.7 for all estates and sugar
levels, with an average RMSE < 6 days. Model validation, at one estate for 15 years, achieved an
R2 of 0.93 and an RMSE < 5. These models demonstrate that air temperature has a high predictive
potential of sugar ripeness, and ultimately of the harvest dates. These models were then used to build
a standalone easy-to-use computer application (GSCM—Grapevine Sugar Concentration Model),
which will allow growers to better plan and manage their seasonal activities, thus being a potentially
valuable decision support tool in viticulture and oenology.

Keywords: berry sugar content model; computer application; sigmoid model; Portugal; Douro
wine region

1. Introduction

New climate conditions are affecting viticulture and the winemaking sector world-
wide [1,2], modifying crop spatial distribution [3], development timings [4], agronomic
techniques [5], and altering yields and quality [6,7]. From an agronomic viewpoint, climate
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change over the main viticultural regions in Southern Europe, such as the Douro winegrow-
ing region (Portugal), is driving progressively warmer and drier conditions, increasing
air, soil, and canopy temperatures [8,9]. In effect, air temperature is considered the main
forcing factor of grapevine phenology [10,11], harvest timings [12,13], solid soluble, and
aroma concentration [14,15]. Given the influence of atmospheric variables on this crop,
mainly temperature, as well as the projected climate change pathways for the future, it is
necessary to develop specific tools to predict the potential response of grapevines. This will
promote a more effective decision-making process and help growers maintain their income.

Phenological models enable either planning viticultural practices in the short term
(one season) or project the impacts of climate change on the medium-to-long term [16–18].
These models allow an improved understanding of the grapevine growing cycle and its
behavior under climate change conditions [19]. In the last decades, several models have
been developed for this purpose, such as the widely used conventional growing-degree
day model, GDD [20]. The sigmoid model [21] tends to be considered one of the most
suitable to predict grapevine development phases [13,19], given its relative simplicity and
ease of use. The sigmoid model follows a curve that can be used to characterize berry
development and sugar accumulation, starting with a rapid increase phase until it reaches
a plateau phase, when sugar content stabilizes [22].

Sigmoid models have been applied in several studies to assess phenological timings
in different winemaking regions worldwide [23–26] to model the main grapevine pheno-
logical stages, such as budburst (BBCH08), flowering (BBCH60), and veraison (BBCH81).
Grapevine harvest is likely the most important event of the annual cycle for growers,
though it is considered a pseudo-phenophase, as it depends not only on grapevine ripen-
ing, but also on the grower’s decisions. Although grapevine ripening can be a suitable
tracer of the potential harvest date, it is considered one of the most difficult periods to
simulate, due to the wide range of interactions within the growing cycle [27]. At the end of
the growing season, the desired equilibrium between berry acidity and sugar content sets
the technological maturity level. Companies decide to harvest based mainly on grape juice
sugar concentration, titratable acidity, and pH (technological maturity). Since the grape
berry maturity stage is determinant to berry and wine quality, deciding the harvest date
accurately is of major concern for the winemaking sector.

Harvest date modelling is then an important resource to plan farming activities and
outline commercial strategies. Nonetheless, the harvest date simulation is still incipient,
though some efforts are already being undertaken. Suter et al. (2021) [28] quantified key
berry sugar accumulation in Bordeaux (France) vineyards and stated that sugar concentra-
tion can offer a good indicator of the ripening phase, though they also highlighted the roles
of genetic variation and phenotypic plasticity. Parker et al. (2020), using phenological data
from various winegrowing regions in Europe, showed the response of the grapevine to tem-
perature in the ripeness stage and created a new GDD-derived model, called “Grapevine
Sugar Ripeness”, and a new sigmoid-based model, named “best SIG”. This study laid
a path for new, upcoming studies and modelling solutions to accurately simulate sugar
concentration dates in different regions and apply them to different grapevine varieties.

The main objective of the present study is to provide new models to reliably predict
berry sugar concentration in the Douro Superior/Upper Douro (DS henceforth) wine sub-
region. For this purpose, berry sugar concentration data were obtained on certain days
of the year (DOY), for 7 years and at five vineyard estates. Sigmoid models were fitted to
the observational data at each sugar concentration level (ranging from 170 to 230 g L−1).
Models were calibrated and validated using field data from the selected vineyards. Cross-
validation and independent validation techniques were applied to improve the model
robustness. Optimized sigmoid models were then used to predict the DOY of each sugar
concentration level and at each location (concentration/site pairs). Based on the developed
models, a new computer application was developed, which may provide growers and
stakeholders with an easy-to-use decision-making tool to estimate annual harvest timings.
Section 2 will briefly describe the data and methodologies followed herein, while Section 3
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is devoted to the presentation of the main results. A discussion of our main findings will
be provided in Section 4, while a summary of the conclusions is given in Section 5.

2. Materials and Methods
2.1. Study Region

The DS is a sub-region of the world-famous Douro wine region, a protected designa-
tion of origin (PDO) located in Northern Portugal, along the innermost part of Portugal
over the course of the Douro River Valley (Figure 1). It is a unique mountainous steep-slope
viticultural region, with a singular landscape and environment, allied with century-old
viticultural traditions (demarcated and regulated since 1756), and a highly humanized,
cultural and evolutive landscape, classified by UNESCO as World Heritage. In this re-
gion, viticulture is, by far, the most important socioeconomic sector. For the present study,
five vineyard estates (“Quintas”) located in the DS and owned by private wine companies
were selected (Figure 1a). For conciseness, the selected vineyard estates are herein des-
ignated by the main cultivar grown at each location (TN—Touriga-Nacional, PRT52206;
TF—Touriga-Francesa, PRT52205), with numbering from west to east as follows: TN1, TN2,
TN3, TF1, and TF2.
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Figure 1. (a) Elevation (m) map of the Douro Superior (DS) winemaking region and location of the
5 selected vineyard estates (TN1, TN2, TN3, TF1, and TF2). (b) Annual mean temperature (◦C) in
the DS.

Several climate change impact assessment studies have been carried out over this
region, including different grapevine phenological studies [19] and climate change projec-
tions on viticultural zoning [6]. Overall, the DS corresponds to the warmest and driest part
of the Douro wine region (annual total precipitation of 400–600 mm). This can be explained
by the greater distance to the Atlantic Ocean, reinforced by the condensation barrier ef-
fect of the surrounding mountains and the relatively low elevations of the valley (from
approximately 100 m in the riverbanks up to 600 m at hilltops). The soils are commonly
shallow, acid, and dystrophic, derived mainly from old bedrock schist/slate formations of
parental material, but also some granite [29], commonly classified as Leptosols, Cambisols,
and Anthrosols [30].

The five vineyard estates showed different mean air temperatures (Figure 1b) and were
also characterized by different elevations, which underlie different mesoclimates. Digital el-
evation models combined with climate data (Figure 1b) reveal an approximate temperature
range of 3–4 ◦C from the lower to the upper parts (annual mean temperatures ranging from
12–16 ◦C). TN1 and TN3 are the coolest estates, with annual mean temperatures of ~14.0 ◦C,
while TF2 (~15.0 ◦C), TF1, and TN2 (~15.5 ◦C) are the warmest (Table 1). Overall, the
region is characterized by warm temperatures in the growing season (April–October), and
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sub-humid to semiarid conditions [31]. This is corroborated by the ombrothermic diagram
in Figure 2, where the dry season (precipitation lower than 2 times the air temperature)
corresponds to the warmest period of the year and extends over four/five months, from
May/June to September. Therefore, this dry period extends from the beginning of the
grapevine flowering to harvest (Figure 2). During the growing season, warm and dry
conditions, with negative soil water balance, are strengthened by the typical “warm soils”
that promote early ripeness [32]. Hence, the viticultural and winemaking sector of DS is
considered particularly exposed and vulnerable to climate change [3,27].

Table 1. Characteristics of the 5 vineyard estates, namely: elevation (m), annual mean temperatures
(T), and annual precipitation totals (RR) computed over 7 years (2014–2020), along with the total
number of phenological observations (Ntot).

Estates Elevation (m) T (◦C) RR (mm) Ntot

TN1 620 13.5 541 33
TN2 225 15.5 557 16
TN3 530 14.0 493 17
TF1 160 15.5 533 26
TF2 300 14.5 541 19
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2.2. Datasets

In the context of the CoaClimateRisk project (http://coaclimaterisk.utad.pt (accessed
on 29 January 2022)), a 2014–2020 dataset was obtained from ADVID— “Associação Desen-
volvimento Da Viticultura Duriense”, and Sogrape, partners of the mentioned project. These
datasets include grapevine phenological timings and grape berry quality parameters, sys-
tematically collected over the years for two cultivars of Vitis vinifera L.: Touriga-Nacional
(TN) and Touriga-Francesa (TF). Although one estate has a longer time series (1991–2020),
this dataset was split to obtain calibration (2014–2020) and validation (1991–2013) periods.
Both field and laboratory data were recorded always following the same protocols and
were subject to quality-checking and homogenization procedures.

http://coaclimaterisk.utad.pt
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Grapevine phenological data were recorded in the five estates using the BBCH
scale [34] as a reference, namely the DOY of the main grapevine phenological stages,
i.e., budburst (BBCH08), flowering (BBCH60), veraison (BBCH81), and harvest (BBCH89).
For measurement purposes, each stage was considered attained when 50% of the grapevines
achieved it. To determine harvest, however, the technological maturity was considered,
which depends on several oenological/chemical factors, such as sugar level, pH, and total
acidity, as well as other human factors, such as sample tasting.

For grape berry ripening monitoring, field samplings of 200 berries from each estate,
randomly collected from the different pre-defined reference plots, were taken [35]. Data
collection frequency usually ranged from 5 to 10 days. After the berries were collected
and weighed, they were crushed using a pneumatic press (Agro-Moderna hydraulic grape
pressing machine, 1040 cm3), and the samples of grape juice were subjected to laboratory
analysis. Grape berry maturity control consisted of the determination of different param-
eters, such as potential alcohol, total acidity, and pH, which was carried out in certified
laboratories following standard techniques and protocols [36]. A digital refractometer
(HANNA Inst. HI996813, Woonsocket, Rhode Island, USA) was used to determine the total
soluble solids, equivalent to the potential alcohol content, and subsequently converted into
sugar concentration (g L−1). These data were first screened for possible methodological
errors, and outliers were removed (either lower than the 5% percentile or higher than the
95% percentile). The final result is the simple arithmetic mean of the readings from each
estate [36].

The present study aimed at analyzing sugar concentration in grapevines at the follow-
ing levels: 170, 180, 190, 200, 210, 220, and 230 g L−1. These levels of sugar concentration
were selected based on the methodology proposed by Parker et al. (2020). However, the
obtained datasets do not contain the sugar concentration at these very specific levels, since
field observations were not carried out daily. Therefore, to estimate the DOY of these fixed
levels, a statistical approach was first applied to the time series. Hence, for each year and
for each estate, a sugar content curve was estimated using the best adjusted polynomial
regression. The 1st or 2nd order polynomial functions were manually selected aiming at
both minimizing the quadratic error and maximizing the determination coefficient (R2).
For the curve fitting selection process, it was also taken into account the criterion that sugar
continues to accumulate with time until reaching a concentration plateau, as is described in
the literature [22]. The variability of the DOY corresponding to each sugar concentration
level for the full set of estates is shown in Figure 3.

Regarding the climatic data used to develop the sugar ripeness models, the 2 m
daily mean air temperatures were retrieved from the E-OBS dataset [37], supplied by the
Copernicus Climate Change Service (C3S) platform. This widely used dataset provides
observational gridded air-temperatures over a European-wide domain, at a relatively high
spatial resolution (0.1◦ latitude × 0.1◦ longitude regular grid, ~10 km grid spacing) and
includes data from, at least, one weather station located at the trial sites used for this work.
Data for the five estates in the DS were extracted from the specific grid-box that covers each
site. Ombrothermic diagrams for each year and each estate are shown as Supplementary
Material (Figures S1–S5).
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2.3. Model Parametrization and Calibration

Our approach attempts to model sugar concentration levels based on daily temperature
observations. For this purpose, sigmoid models [21] were fitted to the existing sugar content
data. Sigmoid models have been largely used to simulate grapevine phenology [13,22],
and are considered some of the best modelling methodologies for this goal [19]. Model
parametrization was carried out in the Phenological Modelling Platform (PMP, version 5.5),
developed by INRAE (Paris, France) [38]. The PMP is a digital interface that aims to
optimize, construct, and fit phenological models. It has been widely used in previous
studies [13,16,25]. The Metropolis optimization algorithm [39] was herein used for the
calibration and validation of temperature-based non-linear sigmoid models, presented in
Equations (1) and (2):

fsigmoid = 1/(1 + exp[d(T − e)]), (1)

Forc = ∑i=SCLD
i=t0 fsigmoid (2)

where fsigmoid corresponds to the daily forcing rate, T to daily mean air temperature, the
d-parameter to the sharpness of the sigmoid curve, and the e-parameter to the mid-curve
temperature. The thermal forcing (Forc) necessary to reach the required sugar concentration
level corresponds to the sum of the fsigmoid from flowering (t0) until the sugar concentration
level DOY is reached.

The onset of the Forc accumulation was set at flowering in order to improve model
accuracy, as the flowering date is an observational metric that can be easily obtained for
real-time model calibration, and this date precedes sugar accumulation in berries, as they
are not yet formed. Furthermore, the possibility to predict different sugar concentration
dates at an early stage, such as flowering, is feasible and of foremost relevance for growers.
This procedure was also undertaken by Rodrigues et al. (2021) in the Portuguese Dão
wine region. In each of the five estates, flowering usually occurs in May, between DOY
120 and 150 (Figure 4). Flowering tends to occur later in TN1, mostly due to the higher
elevation and consequently lower temperatures, while this stage occurs earlier in TF1 and
TN2, owing to the higher temperatures during the growing season (Table 1). To better
understand the prevailing conditions in the DS, the accumulated Forc between flowering
(t0) and each level of sugar concentration until harvest were also estimated using PMP.
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For the optimization of the developed models, different e- and d-parameters were
tested to achieve the best fit, which provides the highest performance at each location and
variety. As such, different e- and d-parameter values were thoroughly combined until a
comprehensive and harmonized grapevine sugar ripeness model was found, which can
subsequently be applied to the whole DS. Thus, three versions of the model were tested
before reaching the final solution (Table S1). In the first version, the e- and d-parameters
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were computed by the PMP platform (free e and d in Table S1). This computation process is
iterative, while the platform automatically selects the best performing parameters. Different
values of e and d for each estate were then attained. Nonetheless, our goal is to deliver a
model that is harmonized for the different estates in the DS and, ultimately, for the entire
Douro. In version 2, the d-parameter was fixed, using the median value of all d-parameters
in version 1 (d = −30). Lastly, in version 3, the e-parameter was also fixed, but dependent on
location/estate. This approach was carried out to maximize the model efficiency, while still
providing a regionally adapted model. A leave-one-out methodology was also performed
to provide cross-validation (CV) of the model outputs. This methodology is often used
whenever validation with an independent dataset is not possible due to small sample sizes.
In our approach, we used both methodologies, i.e., CV and validation using an independent
dataset. This is indeed a very common procedure, used in many different studies to assess
model fitting performances [26].

2.4. Model Evaluation

Two evaluating metrics were used to assess the performance of the selected model,
namely the root-mean-squared-error RMSE, Equation (3), the Nash–Sutcliffe coefficient
efficiency EFF, and Equation (4), defined as follows:

RMSE =

√
∑n

i=1(Xobsi − Xpre)2

n
(3)

EFF =

(
∑n

i=1(Xobsi − xobs)2 − ∑n
i=1(Xobsi − Xprei)

2
)

∑n
i=1(Xobsi − xobs)2 , (4)

where Xobs and Xpre are the observed and estimated values of each phenological phase,
respectively, xobs is the mean value of the observed dataset, and n is the number of
observations used to optimize the model (sample size).

2.5. Model Validation

After model calibration, it is important to validate the models using different datasets.
As was previously mentioned, the TF2 estate has a significantly longer temporal dataset
of grape berry sugar concentration measurements, spanning from 1991–2020. Therefore,
data from 1991–2013 (15 years) were also used to validate the sigmoid model results, thus
allowing a more robust assessment of their performance.

2.6. Computer Application

Upon model development, a new computer application was developed (GSCM—
Grapevine Sugar Concentration Model, Version 1.0, Vila Real, Portugal), which incorpo-
rates all the above-mentioned modelling procedures. This application was developed in
MATLAB® App Designer version R2020b for the Windows operating system, although
it could easily be converted/compiled into a web-application. The GSCM application
uses the developed model and provides estimated dates for attaining the selected sugar
concentrations. These projections are based on a time series of climatic data of the selected
location, until the flowering date, combined with future temperature curves based on the
climatology method [40]. This method is a simple technique for generating forecasts of spe-
cific sugar concentration timings based on statistics of the data gathered over multiple years
(a 30-year period is usually recommended). Herein, we present three different statistics: the
25th, 50th, and 75th percentiles. Therefore, the application provides predictions depending
on whether the target year will be within the median temperatures or cooler/warmer than
average. The application is available within the CoaClimateRisk consortium for a testing
period and will then be open-sourced for the general public.
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3. Results
3.1. Model Training

A model sensitivity analysis was performed by exploring the d- and e-parameter
values (Table S1). The d-parameter was eventually fixed at –30 (sharp direct sigmoid),
whereas e was set independently at each location (TN1 = 18, TN2 = 21, TN3 = 19, TF1 = 19,
and TF2 = 20). These values were selected based on the most skillful version of the sigmoid
model (Table S1), aiming to achieve the highest EFF, while still reaching a model that can
be easily adapted to different locations. The e-parameter corresponds to the mid-curve
temperature in the sigmoid response function and is dependent on the grapevine variety
(more or less heat demanding, or earlier or later ripening). However, it also tends to be
related to the temperature at each location, suggesting some varietal adaptability to local
conditions. These values are indeed strongly related to the annual mean temperatures of
the five selected estates, showing a correlation coefficient of 0.69 (statistically significant
at 99% confidence level). Our findings demonstrate that the optimized sigmoid models
accomplished relatively high performance for all estates (Figure 5), showing that 69% (43%)
of the models depict an EFF higher than 0.7 (0.8) (Table 2).

Concerning the RMSE of the predictions (Figure 5), these were relatively low (<6 days
on average), and lower than 4 days in 20% of the results. The highest errors (>10 days)
were only found in 11% of the results. More specifically, an EFF of 0.9 was found for the
sugar levels of 180, 210, and 230 g L−1, for TN1, TF2, and TF1, respectively, with an RMSE
of 2–5 days. The lowest RMSE (<2 days) was found in TN2 for 210 g L−1 (Table 2). The
highest RMSE was found in the first sugar levels (170 and 180 g L−1) for TN2 and TF2,
surpassing 10 days, also showing the lowest EFF. At these two latter estates, the models
performed worst in the first two sugar levels (170 and 180 g L−1), which may be attributed
to the weaker relationship with the flowering date (t0). In effect, the model EFF increases
significantly when simulating the following sugar levels (190, 200, 210, 220, and 230 g L−1).
It is also worth noting that the two locations present higher e-parameter values, which may
underlie these outcomes. Overall, the values of EFF and RMSE show a strong negative
correlation (–0.83), thereby highlighting a high consistency between two performance
metrics (Figure 5).
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Table 2. Metrics of the modelling of the sugar concentration (g L−1) for the five estates, including
the RMSE and EFF (d- is fixed at −30 and t0 at the flowering date). All results shown are after
leave-one-out cross-validation (CV).

Estate e Forc Sugar (g L−1) RMSE(CV) EFF(CV)

TN1 18

78.4 170 3.2 0.8
82.8 180 3.0 0.9
87.6 190 3.6 0.8
92.3 200 5.1 0.8
99.8 210 6.6 0.7
102.1 220 7.6 0.7
109.7 230 8.8 0.7

TN2 21

40.0 170 17.2 0.3
44.1 180 13.5 0.4
51.2 190 9.0 0.6
57.2 200 4.9 0.8
64.7 210 1.9 0.9
70.8 220 5.4 0.5
78.8 230 5.8 0.7

TN3 19

50.1 170 3.2 0.8
54.3 180 5.7 0.5
65.8 190 3.2 0.8
72.3 200 7.9 0.4
78.3 210 7.5 0.5
83.9 220 5.3 0.7
91.2 230 4.4 0.8

TF1 19

65.7 170 8.7 0.6
74.9 180 3.7 0.9
79.2 190 6.2 0.7
87.8 200 5.6 0.8
96.5 210 7.1 0.7
102.8 220 6.4 0.8
107.6 230 5.6 0.9

TF2 20

51.7 170 18.3 0.2
53.7 180 12.7 0.2
60.5 190 7.7 0.4
72.2 200 4.1 0.7
78.9 210 4.5 0.7
91.4 220 5.1 0.8
97.0 230 5.3 0.9

3.2. Thermal Accumulation and Sugar Relations

It is well known that grapevine responds directly to air, soil, and canopy tempera-
tures [32]. The non-linear sigmoid function is directly connected to the critical sum of
temperature units required to achieve a given sugar concentration level. Therefore, the
sum of fsigmoid values (daily forcing rates) from t0 (accumulation onset) until the DOY of a
given sugar level corresponds to the thermal accumulation threshold to reach that level
(Forc). Figure 6 shows the Forc values, as a function of the sugar concentration and the
e-parameter value. As expected, the Forc values tend to increase in response to higher
sugar concentrations, inversely to the e-parameter value. Therefore, at locations with
higher e values, such as the warmer TN2 and TF2, lower thermal accumulations are found,
due to higher mid-curve temperature responses. Figure 6 also allows for the application
and recreation of these models in additional locations, as long as an e-parameter value
is defined.
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3.3. Model Validation

Apart from using leave-one-out cross-validation, the model developed was also tested
against an independent dataset, which was not used for calibration. Taking into account
the chart in Figure 6 and the data in the validation period (1991–2013), the sigmoid model
achieved an R2 = 0.93 (93% of represented variance by the model) and an RMSE < 5 days
when compared to the observational and simulated sugar concentrations at the TF2 estate
(Figure 7).
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4. Computer Application

Given the high model efficiencies found, a standalone computer application was
developed targeted at growers/farmers. This application (Figure 8), “GSCM—Grapevine
Sugar Concentration Model” version 1.0, uses the following inputs: a climatic series of the
chosen site (.csv file); the flowering date (t0); the e- and d-parameters; and the target sugar
concentration to be modelled. As outputs, the application provides the estimated date in
which the selected sugar concentration will be achieved, as well as a graphical display of
the current year temperature (in comparison to the 25th, 50th, and 75th percentiles of all
the mean temperatures found in the climate series file), as well as a graphical display of the
estimated evolution of the sugar levels. The application also allows for the estimation of
the best e-parameter (if the user does not know which is the e-parameter for his specific
location). The e-parameter estimate is based on the previously mentioned relationship
between the e-parameter values and the annual mean temperatures of each location, found
in Figure 6.

Agronomy 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

days when compared to the observational and simulated sugar concentrations at the TF2 
estate (Figure 7). 

 
Figure 7. Comparison between observed and simulated sugar concentration levels at harvest dates 
for the validation period (1991–2013) in the TF2 estate. 

4. Computer application 
Given the high model efficiencies found, a standalone computer application was de-

veloped targeted at growers/farmers. This application (Figure 8), “GSCM—Grapevine 
Sugar Concentration Model” version 1.0, uses the following inputs: a climatic series of the 
chosen site (.csv file); the flowering date (t0); the e- and d-parameters; and the target sugar 
concentration to be modelled. As outputs, the application provides the estimated date in 
which the selected sugar concentration will be achieved, as well as a graphical display of 
the current year temperature (in comparison to the 25th, 50th, and 75th percentiles of all 
the mean temperatures found in the climate series file), as well as a graphical display of 
the estimated evolution of the sugar levels. The application also allows for the estimation 
of the best e-parameter (if the user does not know which is the e-parameter for his specific 
location). The e-parameter estimate is based on the previously mentioned relationship be-
tween the e-parameter values and the annual mean temperatures of each location, found 
in Figure 6. 

 
Figure 8. Example of the computer application developed in the current study. 

  

Figure 8. Example of the computer application developed in the current study.



Agronomy 2022, 12, 1404 13 of 17

5. Discussion

Bearing in mind the principles of efficiency and parsimony in model development,
our study seeks to find the best-fitted parameters, also avoiding overfitting problems. On
this basis, after testing several models in PMP, new models were built. The performance
metrics (EFF, RMSE) of the chosen model parametrizations indicate good performance
using the same d- (–30) and changing e- for each site. The analysis of model sensitivity to
changes in parameters (e and d) enabled the selection of the same sigmoid model, adapted
at site-specific locations [27]. The calibration presented herein, based on efficiency and
error metrics (performed under cross-validation), can be considered satisfactory, with
an average EFF of 0.7 and an RMSE of 6 days (Table 2). The validation outputs show
a very high performance in the TF2 site, reaching an R2 = 0.93 (Figure 7). Nonetheless,
with the enlargement of the datasets from the CoaClimateRisk project partners, these
can be improved in the future. In comparison, Parker et al. (2020), following a similar
approach, modelled sugar ripeness reaching EFF > 0.5 and RMSE < 7 days. Our results
hint at similar efficiency. Although the latter is one of the few available studies analyzing
the development of a harvest date model based on sugar concentrations, the sigmoid
models have been demonstrating a good response in phenology simulation. For instance,
Reis et al. (2020) used different d- and e- parameters for modelling phenology in four
Portuguese wine regions using sigmoid models. Moreover, for the Dão wine region [27],
these models (EFF > 0.81, RMSE < 6 days) were used to simulate sugar concentration and
acidity at harvest.

Other aspects related to the specific site conditions of the DS region should also be
considered, which may enhance the robustness of the developed models. During the
calibration period (2014–2020), harvest dates in the DS took place between 15 August
(DOY 227) and the end of October (DOY 304), considering TN and TF cultivars and the
five locations (Figure 2). This is quite a large interval in comparison to other winemaking
regions in Europe, thus supporting the temporal variability in our results and their validity.
Hence, the developed model can be accurately applied in the warm and dry conditions
of the DS, by duly taking into account the commonly large interannual variability. As
such, this new model, based on daily air temperature, can be easily implemented by local
growers, with minimal fine-tuned changes depending on the location.

The characteristics of the grape berries directly influence the quality of the wine and
the harvest schedule. Information about sugar accumulation, combined with compound
concentrations, such as anthocyanins and polyphenols, total acidity, and pH, may determine
the adequate harvest time for each growing cycle and year. Nonetheless, the harvest date is
extremely difficult to accurately model and simulate, particularly in the DS. As an example,
Van Leeuwen et al. (2019) [41] state that, in the Bordeaux wine region, white grapes
are picked around a grape sugar level of 210 g L−1 (12.5 % potential alcohol), while red
cultivars tend to be harvested approximately 15 days later, as they are generally picked at a
sugar level of roughly 230 g L−1 (13.5 % potential alcohol). This is not exactly the case of
the DS, where terrain characteristics and elevation may also play major roles, besides air
temperature variability. Furthermore, in the DS, port fortified wines and Douro table wines
tend to follow different pathways regarding the choice of the maturation as a function of
grape berry quality parameters, which is another aspect to consider.

Harvesting is ultimately a grower’s decision, making the mechanistic forecast chal-
lenging. According to Figure 3, harvest in the DS is usually carried out at different levels of
sugar concentrations (usually from 190 to 230 g L−1), showing that from harvest decision
to harvest operation there is indeed an influence by factors other than maturity. In the
past, the use of sugar concentration as a measure of “ripeness” was not usually considered
for the classification of grapevine varieties regarding their thermal requirements. The
present study approach follows the work laid out by Parker et al. (2020), using Portuguese
cultivars under warm climate viticulture. The model developed may provide growers with
an optimum timeframe for sugar concentrations, which, in turn, may provide forecasts of
technical maturity and harvest timings. These simulations will be of key importance for
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growers since the harvest date is one of the most important events for the proper planning
of the annual vineyard activities and in defining the initial quality potential of wines to
be produced. Several important resources must be scheduled for planning this major
event in the vineyards, such as human resources, proper machinery tuning, distribution,
management, and financial aspects.

Some limitations of the current modelling approach should also be outlined. The
difficulty in comparing cultivars at different locations is amongst the most relevant, on
top of not controlling the clonal diversity existing in plantations of such varieties. Another
aspect is related to the wine type, e.g., the Douro table wines versus port fortified wines. It
should also be stated that maturation is not exclusively dependent on sugar concentration.
Other factors, such as pH and total acidity, may also play a key role. Other atmospheric-
driven variables besides air/plant temperature, such as soil water content, air humidity,
radiation fluxes, wind, extreme weather events (e.g., hail, wind gusts, heavy precipita-
tion, heat waves, late frost), as well as canopy microclimates, may also contribute to the
grapevine phenology and grape berry maturation. Furthermore, management issues, such
as human/labour resources or machinery, frequently influence harvest timings, though
these driving factors are out of the scope of the present study.

The DS winemaking region is located in a “climate change hotspot”, meaning that the
impacts of climate change in this region may be particularly severe [42]. Current studies
indicate that this particular sub-region of the Douro PDO may be negatively affected in
terms of viticultural productivity [43], particularly due to the increase in extreme weather
events [42,44]. In effect, climate change impacts on viticulture are already being reported in
different regions worldwide, such as the shift in phenology, higher sugar concentration,
and late spring frost problems [45–49]. Although the grapevine is a very resilient species
to adverse climatic conditions, future climates may threaten the winemaking economic
revenue in this region [43]. Grapevine phenology is being increasingly modified by higher
temperatures in DS, enhancing the need for adaptation strategies, in both the short [17] and
long term [18]. Adaptation measures that allow better planning of harvest dates, avoiding
the hottest and driest period of the year (summer maximum, August), and, in some cases,
also avoiding periods with excessive precipitation, are particularly pertinent.

6. Conclusions

Grapevine sugar concentration models were developed in this study and may be used
for forecasting harvest dates in the Douro Superior winemaking sub-region. By developing
a methodology that can be easily adapted for any specific location, it was possible to
calibrate the models with an efficiency of more than 0.7, and an error lower than 6 days. A
model validation, using 15 years of independent data, showed a very high correlation with
observational data. A computer application was then developed, allowing a practical use of
the developed models by growers and stakeholders. These modelling tools can not only be
easily adopted by the DS growers to better plan their viticultural and winemaking activities,
but can also be used as a decision-support instrument to adapt against the detrimental
impacts of climate change, reducing risks and enhancing long-term sustainability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy12061404/s1, Figure S1: Bagnols & Gaussen diagram
for each year separately and for estate TN1. Yellow curves correspond to the daily mean temperature
(in ◦C, left y-axis), while blue bars correspond to the daily total precipitation (in mm, right y-axis).
Figure S2: As in Figure S1 but estate TN2. Figure S3: As in Figure S1 but estate TN3. Figure S4: As
in Figure S1 but estate TF1. Figure S5: As in Figure S1 but estate TF2. Table S1: Three versions of the
models used in the present study. All models are performed under cross-validation for each location.

https://www.mdpi.com/article/10.3390/agronomy12061404/s1
https://www.mdpi.com/article/10.3390/agronomy12061404/s1
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