
Journal Pre-proof

A data mining tool for untargeted biomarkers analysis: Grapes ripening application

Sandia Machado, Luisa Barreiros, António R. Graça, Ricardo N.M.J. Páscoa, Marcela
A. Segundo, João A. Lopes

PII: S0169-7439(22)00256-8

DOI: https://doi.org/10.1016/j.chemolab.2022.104745

Reference: CHEMOM 104745

To appear in: Chemometrics and Intelligent Laboratory Systems

Received Date: 19 October 2022

Revised Date: 5 December 2022

Accepted Date: 22 December 2022

Please cite this article as: S. Machado, L. Barreiros, Antó.R. Graça, R.N.M.J. Páscoa, M.A.
Segundo, Joã.A. Lopes, A data mining tool for untargeted biomarkers analysis: Grapes ripening
application, Chemometrics and Intelligent Laboratory Systems (2023), doi: https://doi.org/10.1016/
j.chemolab.2022.104745.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier B.V.

https://doi.org/10.1016/j.chemolab.2022.104745
https://doi.org/10.1016/j.chemolab.2022.104745
https://doi.org/10.1016/j.chemolab.2022.104745


A data mining tool for untargeted biomarkers analysis: grapes 

ripening application 

 

Sandia Machado1, Luisa Barreiros1,2, António R. Graça3, Ricardo N. M. J. Páscoa1, 

Marcela A. Segundo1, João A. Lopes4 

 

1 LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, 

Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. 

2 Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino 

de Almeida 400, 4200-072 Porto, Portugal 

3 Departamento de Investigação e Desenvolvimento, SOGRAPE Vinhos S.A., Aldeia 

Nova, 4430-852 Avintes, Portugal 

4 Research Institute for Medicines (iMed-ULisboa) Faculdade de Farmácia, 

Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal. 

 

* corresponding author 

E-mail: jlopes@ff.ulisboa.pt 

Tel: +351 217946434  

Fax: +351 217946470 

  

Jo
urn

al 
Pre-

pro
of



2 
 

Abstract 

In metabolomics, data generated by untargeted approaches can be very complex due to 

the typically extensive number of features in raw data (with and without chemical 

relevance), dependence on raw data preprocessing methods, and lack of selective data 

mining tools to appropriately interpret these data. Extraction of meaningful information 

from these data is still a significant challenge in metabolomics. Moreover, currently 

available tools may overprocess the data, eliminating useful information. This work aims 

at proposing a data mining tool capable of dealing with metabolomics data, specifically 

liquid chromatography-mass spectrometry (LC-MS) to enhance the extraction of 

meaningful chemical information. The algorithm construction intended to be as general 

as possible in highlighting chemically relevant features, discarding non-informative 

signals specially background features. 

The proposed algorithm was applied to an LC-MS data set generated from the analysis of 

grapes collected over a developmental period encompassing a 4-month period. The 

algorithm outcome is a short list of features from metabolites that are worth to be further 

investigated, for example by HRMS fragmentation for subsequent identification. The 

performance of the algorithm in estimating potentially interesting features was compared 

with the commercial MZmine software. For this case study, the MZmine output yielded 

a final set of 37 features (out of 1543 initially identified) with noise features while the 

proposed algorithm identified 99 systematic features without noise. Also, the algorithm 

required 2 times less user-defined parameters when compared to MZmine. Globally, the 

proposed algorithm demonstrated a higher ability to pin-point features that may be 

associated with grapes developmental and maturation processes requiring minimal 

parameters definition, thus preventing user uncertainty and the compromise of 

experimental information. 
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1. Introduction 

Metabolomics is a scientific approach that aims to study the set of metabolites present in 

a sample, the metabolome [1, 2]. The metabolome is the result of the interaction between 

gene expression and environmental factors and its study may give rise to the 

characterization of phenotypes. Due to their participation in metabolic reactions, it is also 

possible to associate metabolites with physiological responses and use them as 

biomarkers [3, 4]. Mass spectrometry, used both for direct analysis or coupled to 

chromatographic techniques, has emerged as an extremely useful tool in metabolomic 

studies [5, 6]. 

In specific, liquid chromatography coupled to mass spectrometry (LC-MS) is considered 

a golden method because it allows efficient and selective separation and provides 

structural information of metabolites [5, 7]. In metabolomics, the metabolome profile can 

be assessed according to a targeted or untargeted analysis [2, 5]. Targeted analysis allows 

a sensitive detection of known metabolites and their quantification. This approach 

requires the use of standards, though its widespread use has increased the possibility of 

analyzing a wide range of metabolites, allowing, nowadays, the metabolome 

characterization on a large-scale [5]. The untargeted analysis performs a full scan of the 

sample giving access to the entire metabolome, such as in a footprint [8]. This approach 

allows global metabolomic profile analysis without a reasonable understanding of the 

sample composition and utilization of standards [5]. Nonetheless, the extraction of useful 

information from untargeted analysis can be a complex task due to the presence of signals 

without chemical relevance that may mask relevant features and introduce apparent 

complexity [9]. Signals generated by the ionization of metabolites such as ions-fragment, 

adducts and isotopes, and background signals, namely chemical and white noise are 

examples of information that should not be considered in the analyses [2].  In the absence 
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of adequate data processing tools, it is very difficult to interpret, and discriminate signals 

associated with the metabolites of interest [5, 10]. Another factor that increases the 

complexity of the analysis is the dataset size and number of dimensions.  

Each scan obtained at a specific retention time generates a mass spectrum featuring 

mass/charge values (m/z) and for each one a specific intensity [2, 5]. Additionally, shifts 

can occur in terms of m/z due to mass errors that are inevitable, even in the most 

sophisticated spectrometers, as well as in terms of retention time, which can cause 

misalignments, overlapping and even swapping in the elution order when comparing 

samples [11]. Also, missing values, defined here as signals that are not detected, may 

represent around 20% of all values in MS-based data sets. This means that, depending on 

the performance of the spectrometer, some metabolites may not be detected despite their 

presence in the sample. Due to these factors, intrinsic variability between runs of the same 

sample is often observed [2, 5, 12, 13]. 

There are several tools described in the literature designed to handle data from untargeted 

analyses that attempt at the extraction of chemically relevant features [2, 14]. However, 

most tools include extensive processing, such as noise removal, baseline subtraction, peak 

detecting, isotope removal, signal alignment or matching, identification, and 

normalization, that greatly reduce the complexity of the data but increase the risk of 

removing meaningful information from data [5, 15]. For instance, baseline subtraction 

can affect peaks shape due to the application of derivatives that smooth the signals. 

Similarly, noise removal requires setting a threshold, which may cause the elimination of 

low intensity signals, though with potential chemical relevance [16]. In addition, many 

tools require user-defined parameters that often cause uncertainty for the user in the 

definition of the most suitable parameters. [12, 17]. Some tools provide default values for 

these parameters, but users may also find it difficult to assess their suitability to specific 
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data sets and how they impact the results [2, 12]. For example, many tools incorrectly 

assume that the order of elution is maintained, in the step of matching the signals [5, 12]. 

This step should not be performed through systematic alignment, but through a mapping 

of identical characteristics because the variation factor is not stable across the 

chromatogram [12]. There are few comparative assessments among tools because many 

of them are not described with sufficient detail for their comprehension and 

implementation [12]. Also, some of the comparative studies have reported different 

results with the same data but using different tools [18]. These challenges still make the 

topic of mass spectrometry-based metabolomics a current subject of critical review [1-3, 

10, 13, 14, 18-21]. 

In this work, we present a data mining tool developed to reduce the complexity of data 

from untargeted LC-MS analyses. It distinguishes from other available tools in the way it 

overcomes some of the concerns mentioned above. This data mining tool is based on an 

algorithm which processes LC-MS data and transforms them into a simple and intelligible 

data matrix that highlights the chemically relevant features requiring minimal parameters 

and easily defined by the user. The proposed algorithm was applied to the study of the 

grape metabolome. The idea is to understand the timeline evolution of the grapes 

metabolomic profile and assess the typical metabolites at each developmental stage. The 

algorithm, in specific, has the purpose of showing the features that may be associated 

with these typical metabolites and allowing the optimization of the subsequent 

fragmentation process by MSn and use of high-resolution mass spectrometry for the 

identification of metabolites. The efficiency of the developed algorithm was evaluated 

submitting the same data to the open source MZmine software version 2.53 and 

comparing the approaches. 
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2. Material and methods 

2.1. Chemicals 

Acetonitrile (LiChrosolv LC-MS grade), methanol (LiChrosolv LC-MS grade) and 

formic acid were acquired from Merck (Darmstadt, Germany). Chloroform stabilized 

with c.a. 0.6% ethanol (AnalaR NORMAPUR) was obtained from VWR International 

S.A.S. (Fontenay-sous-Bois, France). Water from arium water purification system 

(resistivity >18 MΩ cm, Sartorius, Göttingen, Germany) was used for the preparation of 

all solutions. 5-Carbamimidamido-2-(2,2-diphenylacetamido)-N-[(4-hydroxyphenyl)methyl] 

pentanamide (BIBP-3226), used as internal standard, were purchased from Tocris 

(Bristol, UK). BIBP-3226 stock solution was prepared in a water:methanol mixture 

(33:67, v/v) to achieve a final concentration of 3 µg mL-1. Stock solution was stored at -

20 °C. 

 

2.2. Sample preparation 

Grape samples (bunches) of Touriga National variety were collected from eight different 

locations of a vineyard in a Portuguese wine region (Dão region) during different 

developmental stages, including green grapes (collected in June and July) and mature 

grapes (collected in August and September) in order to assess the metabolomic changes 

during grape evolution. Samples were prepared using a protocol previously described 

[22]. Briefly, the samples were grounded into powder with liquid nitrogen and 2 g were 

extracted using a mixture of water:methanol:chloroform (20:40:40, v/v/v). The 

chloroform fraction was discarded and the aqueous methanolic fraction was filtered 

through a 0.2 µm PTFE filter. The aqueous methanolic fraction was used for direct 

analysis of polar metabolites with liquid chromatography coupled to mass spectrometry 

using an untargeted approach. Prior to analysis, the internal standard BIBP-3226 was 
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added to every 32 grape samples. A blank sample was prepared using only the grape 

sample medium (water:methanol mixture) in the ratio used in the extraction (33:67, v/v), 

and a standard solution was prepared by adding BIBP-3226 to the water:methanol mixture 

(33:67, v/v). 

 

2.3. Instrumental analysis 

Grape samples, blanks and standard solutions were analyzed by liquid chromatography 

coupled to mass spectrometry (LC-MS). Chromatographic analysis was performed in a 

Nexera X2 UHPLC system comprising two LC-30AD pumps, a DGU-20A5R degassing 

unit, a SIL-30AC autosampler and a CTO-20AC oven (Shimadzu Corporation, Kyoto, 

Japan). The MS system was a triple quadrupole LCMS-8040 mass spectrometer equipped 

with an electrospray ionization source (ESI) (Shimadzu Corporation). Chromatographic 

separation was performed using a reversed-phase RRHD Eclipse Plus C18 column (1.8 

µm, 2.1 × 100 mm; Agilent, California, USA) at 40°C and using elution in gradient mode 

with a flow rate of 0.3 mL min-1. The mobile phase was constituted by water as solvent 

A and acetonitrile as solvent B, both containing 0.1% (v/v) formic acid. The gradient was 

established as follows (min/A%): 0.0/95, 4.0/80, 5.7/80, 12/55, 14.7/0, 17.3/0, 20/95, 

22/95. The injection volume was 2 µL and the samples were kept at 6°C during analysis. 

The analysis by mass spectrometry was performed in scanning mode (untargeted 

approach) to maximize the number of detected instrumental signal. The spectra were 

collected in positive ionization mode over a range of 100-1000 m/z and a scan speed of 

13000 m/z s-1. The analysis of the 32 grape samples (8 sampling locations in the same 

vineyard × 4 months) was performed once and sorted by 4 groups, corresponding to each 

month. An injection of blank was included in the middle of each group and at least two 

blanks before and after a new group, with a total of 16 blank injections. The following 
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parameters were used for analysis: nebulizing gas (N2) flow rate at 2.6 L min-1, 

desolvation gas (N2) flow rate at 15 L min-1, desolvation line temperature at 300 °C, heat 

block temperature at 425 °C, capillary voltage: 3.5 kV in positive mode. 

 

2.4. Data analysis 

The developed algorithm was created and executed in MATLAB version R2021b 

(MathWorks Inc., Massachusetts, USA) in combination with PLS Toolbox Version 7 

(Eigenvector Research Inc., Manson, WA), using the raw data files in a CDF format. 

Open source MZmine software, version 2.53, developed by MZmine Development Team 

and distributed by the website http://mzmine.github.io/download.html, was chosen to 

analyze the data processed by the algorithm. This procedure was performed to compare 

the results from both methodologies and to evaluate the effectiveness of the proposed 

algorithm [23]. 

 

2.5. Algorithm development 

The algorithm was conceived to highlight only the features with potential chemical 

interest, ensuring minimal processing to avoid distortion of the original instrumental 

signals and minimal compromise of experimental information. The algorithm does not 

assume any threshold, allowing the inclusion of possible interesting low-intensity 

compounds that may be hidden in the noise, something that is normally excluded from 

many available software [10]. The output of the algorithm is a data matrix that was 

designed to provide an intuitive and simple overview of the features present across 

multiple samples.  

The algorithm comprises different steps, such as the database preparation, the processing 

of information through a programming code created in MATLAB and the treatment of 
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the final data matrix. Before starting the code development, the database was cleaned up. 

This step consists in organizing a database by indexing the variables to access them easily. 

A flowchart plan was drawn to code functions, methods, and variables in order to extract 

information from the database (Fig.1). The code was written in the MATLAB program 

and comprises two main stages: 1) signal pre-processing and 2) benchmarking. A 

treatment to the matrix generated by the code was performed removing possible noise 

that may have remained and removing isotopes in order to simplify the data. 

 

2.5.1. Programming code 

The code proceeds as follow (Table 1): 

a) Reset the variables analyzed before (stored in samples and blanks). 

b) User-defined samples based on the index of the previous organized databased. It is 

possible to add more samples in each set or more sets (according to the blanks). 

c) User-defined blanks based on the index of the previous organized databased. It is 

possible to add more blanks in each set or more sets (according to the samples). 

d) Samples and blanks are compiled. Three “for loops” were created to access the 

database information of the samples and blanks defined in the previous step. 

e) All the samples and blanks are analyzed in a loop by the function “vid_peaks”. This 

function allows to detect all the peaks from samples and blanks and to remove chemical 

noise from samples. This function results are stored in “R”. “Result1” is the database 

containing all the information concerning the retention time in which the scans were 

performed, the m/z values that were detected in each scan and their respective intensity. 

“S{k,1}” and “S{k,2}” are the information compiled previously based on the user-defined 

samples and blanks (pre-processing stage). “Flag” is a user-defined parameter to display 

or not an image of the results, “1” or “0”, respectively. “mz” is a user-defined parameter 
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to set the range of m/z values. Peaks in samples and in blanks are respectively detected 

by “peakparamS” and “peakparamB”, when both of this user-defined parameters are set 

with a width, tolfac and w. To remove chemical noise, peaks from blanks are subtracted 

from the samples regarding the user-defined parameter “tol” comprised by the tolerance 

of m/z, retention time and intensity. In cases where more than one blank is used in the 

subtraction process, the “flagblank” user-defined parameter defines if the peaks to be 

considered are the total present in the blanks (sum = “1”) or only the common ones 

between blanks (intersection = “0”) 

f) The function “vid_new” allows to compare and align the results (Benchmarking step) 

generated by the previous step (“R”) in a data matrix which are stored in “Result”. 

Whenever different samples have the same m/z value and have a retention time less than 

the defined tolerance (“RT tol”), they are aligned in a matrix line together with 

information on their intensity and number of peaks and points. 

 

2.5.1.1. Pre-processing: peak detection and noise removal 

The pre-processing stage is composed by two steps, specifically peak detection, and noise 

removal, which combined allows to highlight the chemically relevant features from each 

sample.  

 

2.5.1.1.1 Peak detection 

The first step is to make the detection of peaks from each individual spectrum to generate 

a matrix that encompasses all the features with the corresponding retention times and 

intensities. This step is performed using the peakfind function from the PLS Toolbox, a 

tool for use within the MATLAB environment, and allows the automatic identification of 

peaks through the definition of three parameters, namely, width, tolfac and w. Width is 
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the number of points in the Savitzky-Golay filter. The tolfac parameter is defined by the 

tolerance of the residues. Peaks are selected when their intensity are higher than the 

product of tolfac and the residues. The w parameter is the width of the window that allows 

the detection of local maxima. This function defines the center of each peak, allocating 

the retention time and intensity at this point, thus reducing the size of data. For each 

detected peak, the output displays the number of points that surround the local maxima. 

 

2.5.1.1.2. Noise removal by subtracting blanks  

The noise removal step aims to discard mainly background signals, namely chemical 

noise (ionization of mobile phase ions) from samples by subtracting the blank signal [15, 

17]. This strategy aims to compare samples with blanks to exclude common 

characteristics that do not provide relevant information about the sample composition [2, 

17]. These common features are most likely associated with chemical noise considering 

the fact that blanks and samples share the same features generated by the mobile phase 

(water:acetonitrile:formic acid), by their common solvent (water:methanol), and by the 

interaction of both. Therefore, features with the same m/z value and within a specific 

retention time tolerance were considered common. However, by coincidence there may 

be the possibility that relevant features have the same m/z value as features from noise, 

particularly when using generated data by low resolution MS. In order not to erase these 

relevant features, a differentiation is made based on their intensity, since this must be 

higher when compared to the noise feature. The tolerance of the retention time was not 

considered very important, because noisy instrumental signals may be present over a 

longer period of the chromatographic run and usually with an erratic distribution. 

Therefore, the tolerance to be used must be large and can even have the value of the entire 

chromatographic run. This is only possible because the algorithm also considers the 
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intensities, which can prevent an instrumental signal from a chemical species present in 

the sample to be eliminated by a noise instrumental signal from the blank with the same 

m/z value but present in a completely different retention time. 

 

2.5.1.2. Benchmarking  

The next stage, designated benchmarking, allows the alignment of the previous 

preprocessed data. To be considered as the same feature in different samples, the m/z 

value must be equal and the retention time must be similar within a given tolerance. This 

procedure generates a data matrix in which each row represents a feature with indication 

of the m/z value in the first column and the information of retention time and intensity 

annotated in the columns of the sample where the feature appears. This alignment allows 

to examine several samples simultaneously (without a limit number), to make a 

comparative study among the metabolomic profiles. The recognition of certain 

metabolites within a specific group of samples (e.g., pertaining to a month of 

development) allows to suggest them as a response to the conditions of that group, which 

can be useful for biomarkers search. 

 

2.5.2. Data treatment 

2.5.2.1. Noise removal regarding peaks and points 

This strategy allows to reduce the noise that may have remained from the previous noise 

removal process, improving the elimination of all sample noise. Besides removing 

chemical noise, this procedure also removes white noise, which are random signals 

generated by interferences from the instrumental system [15, 17]. This step is performed 

considering the number of peaks and the number of points that constitute a peak, based 

on the empirical observation that is possible to used them to assess different types of 
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signals. The peak of an analytical signal, for example, is formed by several continuous 

points with a relationship in terms of intensities (Gaussian peak) [2, 16, 24]. Therefore, 

peaks with higher areas are defined by a higher number of points. White noise is 

characterized by a random manifestation of a single point with no width or peak shape. 

Chemical noise, as a representative signal of the mobile phase, can be present 

continuously during the chromatographic run, without sudden variations in intensity and 

fitting into the baseline structure. Like an analytical signal, this type of signal can be 

translated in Gaussian peaks, as small variations in intensity can also lead to the detection 

of local maxima. But, unlike an analytical signal, these peaks end up being small, defined 

by a low number of points and, due to the constant presence in the chromatographic run, 

this signal is characterized by a higher number of peaks (Fig. 2). Therefore, an appropriate 

definition of the number of peaks and points can help to discriminate noise features, so 

that they can be excluded from samples. This process is performed after the sample 

alignment step to minimize erratic elimination of relevant analytical signals with low 

number of points (possibly associated with low-intensity compounds), as these could be 

confused with noise signals, according to the modus operandi of this strategy. As in the 

alignment step, each feature can be common between different samples, it is enough to 

prove the relevance of the feature in one of the samples (meet the peaks and peak 

requirements), so that it is not excluded from the other samples, even if these do not meet 

the requirements. Therefore, this process allows keeping the relevant features present at 

low intensities. This step can be performed using a spreadsheet program and is performed 

defining, for a specific feature, the maximum number of points and the minimum number 

of peaks that was detected considering all samples where it appears. These values are later 

used to verify compliance with peak and point requirements and if not even one sample 

meets the requirements, the respective feature is deleted in all the samples. 
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To assess the typical number of peaks and points of noisy analytical signals, random 

blanks, composed predominantly by chemical noise, were processed by the code so that 

they could be further and easily studied. 

 

2.5.2.2. Isotope removal 

To simplify the data matrix generated by the code, isotopes were excluded as they do not 

provide useful information in this work. However, the information about its existence was 

maintained by marking the molecular ion in blue colors when isotopes were associated. 

This marking helps to easily visualize possible major compounds, as isotopes are 

normally associated to more intense features. 

The parameters used to locate isotopes and remove them, was defined studying the feature 

profile of the internal standard. 

 

2.6. Evaluation of the algorithm performance 

To evaluate the effectiveness of the algorithm, the same data was processed by the 

MZmine software as similar as possible to the algorithm, to compare the results. As 

suggested by the MZmine instructions, several steps are required to process raw data. 

First, Baseline correction was applied. The option RollingBall was chosen as baseline 

corrector for allowing the descent of the baseline without visually changing the structure 

of the peaks (Fig. 3). The second step applied and considered one of the most critical is 

Mass detection, as it allows the detection of the peaks present in each scan, creating a 

mass list with the features present above a noise level defined by the user. Noise level 

defines the minimum intensity below which masses are excluded and should correspond 

to the noisy area. Mass detection was performed using the Centroid mass detector 

algorithm, as it is the only option for raw data that is already centroid. The other 
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algorithms work only with continuous type data. Subsequently, Chromatogram builder 

was applied to connect the points of the mass list and build the chromatograms of each 

feature. To separate each extracted ion chromatogram into different peaks, the step of 

Chromatogram deconvolution was required. To finish, Alignment was applied to align 

peaks from different samples as performed in the algorithm. This alignment applies a 

match score calculated based on the mass and retention times tolerance defined by user. 

In all these steps, the user is asked to define different parameters. To compare the results, 

when possible, parameters of MZmine were defined as similar as possible to those of 

MATLAB, specifically the tolerances for the retention time and m/z value. 

 

3. Results and discussion 

A total of 8 grape samples collected in 4 different months (n=32), were analyzed by the 

proposed algorithm to identify typical features of each stage of grape development. 

Before the code analysis, the m/z values were rounded to the nearest unit since uncertainty 

can be 0.10 in most abundant peaks (Fig. 4) and 0.25 in the less abundant peaks due to 

the equipment's scan accuracy. A highest precision for m/z values was not considered 

necessary, because, on one hand, the aligning in terms of retention time will already 

reduce the likelihood of matching equal m/z values that come from different metabolites, 

and on the other hand because the algorithm was not developed for identification 

purposes, but to give an overview of the areas with metabolic changes for further 

fragmentation and identification using MS/MS. 

 

3.1. Definition of parameters 

3.1.1. Peak detection (pre-processing) 
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Peakfind function was applied to six samples for the detection of all peaks through the 

definition of width, tolfac and w. Blanks were also submitted to this process to allow the 

comparison with samples and to exclude chemical noise. Width values were tested 

between 0 and 15. As can be seen in Fig. 5a a lower width (5 points) provided the 

definition of smaller peaks, maintaining its originality, and led to a higher number of 

features (77) contrary to what happens with a larger width (15 points) that lead to an 

inferior number of features (63) (Fig. S1). Therefore, an intermediate width (10 points), 

as shown in Fig. 5b, was chosen because a lower width can also cause the separation of 

the largest chromatographic peaks, being one of the reasons for the highest number of 

features, as can be seen by the duplicates in the Fig. S1. As the result of this function 

represents only the center of the peak, the smallest width was chosen for blanks (3 points) 

in order to segment each peak, as much as possible, and reflect all the typical mobile 

phase signals in the maximum of retention times. This is especially useful in the next 

procedure, when samples are compared with blanks to exclude features from noise. A 

value of 3 was chosen for tolfac and w parameters as it is the recommended default of the 

peakfind function. 

 

3.1.2. Noise removal by subtracting blanks (pre-processing) 

Regarding the first strategy to remove noise by subtracting the common features between 

samples and blanks, parameters related to m/z value, intensity and retention time 

tolerance were chosen for the present data. For the m/z value, no tolerance was used, 

which means that if a feature from a sample is found in a blank with the same m/z value, 

this feature is excluded. Nevertheless, if the intensity is 3 times higher in the sample 

compared to the blank (signal-to-noise ratio of 3:1, defined as limit of detection - LOD), 

the feature should not be excluded as it can be an analytical signal. In the present case, 5 
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minutes was chosen as the retention time tolerance. If in the current data the entire runtime 

were used as tolerance, the intensity parameter might not be effective, since the gradient 

mode used in this analysis is normally associated with a constant increase in baseline 

intensity. 

 

3.1.3. Benchmarking 

Although the samples, in the present case, are from 4 different months of development, 

the alignment was performed for the total of samples since a feature can be present for 

more than a month and it is important to have this information aligned. Subsequently, the 

groups of each month were highlighted for a better interpretation of the information. A 

feature is aligned whenever it has the same m/z value across different samples and the 

same retention time, within a specific tolerance. This tolerance was chosen examining the 

retention time variation of a specific feature among different samples. The assessment of 

this variation was performed using the internal standard (m/z=474) as it corresponds to a 

compound added to all samples (Table S1). A tolerance value of 0.10 min was set, 

corresponding to the maximum value observed for the retention time (RT) variation. 

Nevertheless, this value can be increased when the intensity of a peak is lower (e.g., 

m/z=476), probably due to the greater difficulty in defining the center of the peak. 

 

3.1.4. Noise removal regarding peaks and points (data treatment) 

For the proper choice of parameters for this strategy of noise removal, more specifically, 

to eliminate the noise features from samples just regarding the number of peaks and 

points, blanks, predominantly composed by noise, were analyzed to understand the profile 

of this type of signals. Results were obtained considering the data from 4 blanks, 

randomly chosen, and which combined contain 14246 features. 
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Regarding white noise, the parameters were defined to remove peaks with just 1 point, as 

it cannot be assigned as a random signal or generated by a metabolite. 

Regarding the number of points that define a peak, the results showed that, of the 14246 

features present in blanks, 14197 have 6 or less points, which is equivalent to a percentage 

of 99.7% of total data and there were no noise peaks with 9 or more points. Regarding 

the peaks with between 6 and 9 points, 75.7% of the peaks with 7 points and 33.3% of 

the peaks with 8 points were considered noise. This indicates that a smaller number of 

points in a peak increases the possibility of a m/z value being noise. This is predictable, 

as the noise constituted the baseline structure whose signal is composed by low intensity 

peaks and, therefore, by a low number of points. As features of interest are normally more 

intense, having more points can help to distinguish them from noisy features when both 

have the same m/z value. 

Regarding the number of peaks, the results showed that, in the total run, 98.7% of the 

features from blanks have more than 10 peaks. This indicates that a greater number of 

peaks increases the possibility of a m/z value being noise. This is predictable, as the noise 

is part of the mobile phase and therefore appears repeatedly in the chromatographic run. 

It is important to consider the number of peaks and points strategies together, as one 

increases the confidence of the other, resulting in a more efficiently noise exclusion, 

without compromising the relevant information. However, to define a compromise 

solution between peaks and points it is important to keep in mind that the probability of 

including noise in the results increases as the number of points decreases and the number 

of peaks increases. 

As in the present study, it is intended to obtain a general idea of the typical compounds 

of each stage of development, we believe that the use of 9 points is sufficient and ensured 

the exclusion of noise more safely and without the need to defining a number of peaks. 
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To increase the amount of data, the procedure was also tested including features with 8 

points. However, given the higher probability of this features being noise (33%), we 

decided to set a low number of peaks, specifically 3 (included), to increase the likelihood 

of not including noise. 

Lower point numbers, for example 7, were not tested because the probability of it being 

noise is at least double compared to the 8 points, creating a higher risk of including noise 

in the data. 

 

3.2.2. Isotope removal (data treatment) 

For the proper choice of parameters to locate isotopes and remove them, the feature 

profile of the internal standard was studied. When isotopes are involved, an isotopic 

pattern can be observed, in which the isotopes are less intense than the molecular ion and 

continue to decrease as their mass/charge value increases, as can be verify by the 

molecular ion (m/z=474.35) and respective isotopes (m/z=475.35 and 476.40) of BIBP-

3226 compound used as IS (Fig. 6). Also, it is possible to verify that the difference 

between neighboring isotopes is one neutron. The approximate mass of a neutron is 

1.008665 Da, however this small difference only become significant with high-resolution 

MS data, which is not the case. Therefore, features present at the same retention time with 

a difference of 1 m/z value between them are considered part of an isotopic pattern. 

Among these, the one with the highest intensity is considered the molecular ion. This 

strategy allowed the recognition of 24 isotopes. 

 

3.2. Application to a dataset 

The application of the algorithm generated a data matrix that summarize the features 

present in the 32 samples. Since 2 different parameters were used for noise removal using 
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the peaks and points (section 3.1.4.), 2 different results were obtained. Through this step, 

noise was removed eliminating all features that have less than 9 points provided a data 

matrix with 91 features. Removing features with less than 8 points and more than 3 peaks, 

increases by 8 features the matrix obtained previously (99 features) (Table S2). This last 

matrix was used for further studies as it contains more information. After removing the 

isotopes, the data matrix with 99 features was reduced to 75 features (Table 2). As the 

objective of this study was to focus on the metabolomic profile changes during the 

developmental stages, we chose to consider the result of the 8 samples together for each 

month. As the grapes were collected in different locations, features in common can be 

more confidently associated to the grape stage than features that only appear in one site, 

as they can be an artifact or caused by other reasons besides the ripening of the grape (for 

example, response to the terroir). Thus, Table 2 is summarized, providing, for each month, 

the number of samples that presented a specific feature (frequency). When present, this 

information is accompanied by the RT average and the maximum intensity found for each 

month. The formation and transformation of specific metabolites during grape 

development can occur continuously and for this reason a feature can appear in more than 

one month with decreasing or increasing intensity. When the intensity of a feature 

decreases to lower levels, the equipment may not be able to detect it causing the feature 

to be found in less samples (lower frequency). This can help to verify the month in which 

a particular feature is mostly found, allowing its use as a biomarker of this development 

phase. Therefore, data were ordered and marked in two shades of green according to 

features frequency in more or less than 50% of the samples. Features present in at least 5 

samples were marked in dark green and in light green those that appear at most in 4 

samples (Table 2). Considering that the June and July grape samples were green and that 

the August and September grape samples were already ripe, the data were ordered 

Jo
urn

al 
Pre-

pro
of



22 
 

considering the predominant features in each of these two developmental stages. As 

shown in Table 2, this ordering allows a clear distinction of the typical features of each 

developmental stage. Each of these two groups were then organized in terms of retention 

time to highlight groups of features that can be associated with the same compound. 

 

3.2. Evaluation of the algorithm performance 

As the composition of samples is unknown, one of the biggest challenges in the analysis 

of untargeted data is the discrimination between features of interest and those originated 

from noise. The idea of creating this tool came precisely from the need to work around 

this problem and minimize the amount of noise in the data without an extensive 

processing.  

The performance of the algorithm was evaluated comparing the results with those 

obtained by the MZmine processing and verifying the amount of noise and chemically 

relevant features presented in each one of the tools. 

Blanks were initially investigated to define the typical noisy features. Since there is a 

large number of features in blanks, we chose to rely on the features present in at least 2 

of the 4 blanks randomly chosen. Table S3 summarizes the most evident noise features 

from the blanks. This table present the m/z value of the feature, the frequency (number of 

samples) which the feature appears, and the number of peaks found for each feature and 

the duration of the feature appearance (initial and final RT). 

 

3.2.3. Results comparison 

For the MZmine processing, two strategies were tested to remove the maximum of noise 

from the data, specifically using the noise level parameter and applying the Alignment 

step to align samples with blanks and to exclude the common values between both 
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(possibly belonging to the chemical noise). Regarding the noise level parameter, two 

values were tested, specifically a null noise level to verify the possibility of avoiding the 

use of this processing and a noise level based on the maximum intensity of the noise line 

before the void volume (no analytical peak present). For the null noise level, a matrix 

with 1543 features was generated of which at least 75% of the features belonged to noise. 

In the case of the noise level defined by the maximum intensity before the void volume, 

the result gave 143 features, and the same percentage of noise was found. The application 

of different noise levels showed a strong influence over the number of detected features 

but proved to be ineffective in excluding noise. The presence of noise in the last case may 

be due to the fact that the baseline is not constant in terms of intensity during the 

chromatographic run, especially since it was operated in a gradient mode. The baseline 

correction was expected to minimize this problem, but according to the results it was not 

enough since several noise features remained in the sample. The possibility of a highest 

noise level was not considered because typical noise features were found with intensities 

in the same order of magnitude as the intensity of some chromatographic peaks, with the 

feature with m/z value 143 (pertaining to noise) being the base peak almost in the entire 

run (Fig. S2). Therefore, the increase of the noise level would not only exclude noise but 

could also exclude features of interest. 

The strategy of aligning the samples with blanks to exclude the common features was left 

to last, because, contrary to what our algorithm allows, the exclusion of common features 

would be done without considering the intensities. This means that if the sample has a 

feature equal to a feature from blank it would be excluded even if it has an intensity three 

times greater, which could be indicative of a relevant feature. However, without this step, 

features from noise would remain in results and it would be impossible to discriminate 

them the relevant features. To consider the intensities, this process would have to be 
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carried out manually, which would become unfeasible mainly for large amounts of data. 

The alignment of the samples with the blanks and the subtraction of the common features 

was tested in both noise levels previously defined. The purpose of performing this 

procedure on data with the null noise level was to understand whether this, by itself, 

would be sufficient to exclude noise, in order to avoid extensive data processing. This 

gave rise to a matrix with 477 features, of which approximately 21% belonged to noise. 

As this option still contains features from noise, the step of Alignment was performed in 

the data already processed with the noise level to verify the effective of both strategies in 

excluding the noise in its entirety. However, one feature from the noise remained in a 

total of 37 features (Table 3). Regarding that both of June and July samples were green 

grapes and that samples from August and September were already mature grapes, the data 

were sorted firstly by the predominant features in each of these two phases and 

subsequently by the retention time to highlight groups of features that can be associated 

with the same compound. 

Regarding the 99 features obtained by the proposed algorithm (without excluding 

isotopes), none corresponded to the typical noisy features. Comparing the results with 

those that present less noise in MZmine, it is possible to verify that the algorithm was 

able to find almost three times more features, some of which were also detected in more 

samples than in MZmine. This means that, in the present case, the algorithm allowed the 

extraction of more information when compared to MZmine, and it integrates less noisy 

features in the results. This probably happens because the algorithm does not exclude 

signals based on the intensity and so it has the ability to bypass the noisy features 

including the more intense ones and accessing a larger number of peaks that would be 

excluded if a noise level was defined. 
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Regarding the implementation part of the two tools, MZmine includes 6 processing steps 

and requires 21 user-defined parameters, and the proposed algorithm includes 4 

processing steps and requires 9 user-defined parameters (Table 4). Due to the highest 

number of processing steps and user-defined parameters, it was possible to ascertain that 

the processing performed by the MZmine may increase the possibility of compromising 

the experimental information. Also, some of the parameters may be more difficult to set 

by the user in the case of MZmine. This is a very important aspect because, as previously 

mentioned, if the user does not know which inputs are most suitable for the data, one can 

skew the results. In the case of algorithm, the definition of parameters does not require 

the same effort from the user, as they can be easily estimated from a simple observation 

of the data. 

Additionally, some frameworks have been proposed for denoising and feature extraction 

concerning mass spectrometry data. For instance, an alternating direction minimization 

based denoising framework for extracted ion chromatograms has been proposed and 

successfully applied to proteomic analysis, with enhanced suitability for quantitative 

tasks [25]. Nevertheless, this is only suitable for data preprocessing, as feature selection 

is not included in the algorithm. Recently, a suite of R language-based software enabled 

feature extraction and importance ranking, following an untargeted metabolomics 

approach for wine analysis [26]. However, different software packages must be used for 

preprocessing and peak detection. Also using MATLAB, the Finnee toolbox allows the 

plotting of mono-dimensional representations and the profiling of spectra along the 

separation from X-MS data (where X represent any separative technique such as LC, 

capillary electrophoresis or GC) [27]. Additionally, it can convert the original continuous 

profile to a discrete spectrum (centroidization) or to a chromatographic based dataset but 

it is not tailored for feature extraction as in the algorithm proposed here. 
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4. Conclusions 

The aim of this study was to create a tool to turn complex untargeted LC-MS data into an 

intelligible matrix minimizing noise and highlighting relevant features. Algorithm was 

applied to LC-MS data of grape samples to highlight the metabolic differences among 

developmental stages and to find possible biomarkers associated to grape ripening, which 

can be further submitted to fragmentation for identification purposes. The strategy of 

alignment of the algorithm allows the comparison of different samples and resuming the 

information by groups related to the month of development allow to surpass missing 

values. Missing values are features that exist in a sample but are not detected for reasons 

inherent to the equipment. When only one sample is studied, a missing value is naturally 

excluded, but considering it as part of a group, it is possible to detect its absence in a 

sample if it exists in the other samples of the same group. Although the algorithm was 

applied to data with a significantly high baseline and no chromatographic analysis 

replicates, it was nonetheless more efficient generating a matrix with relevant information 

and free from noise when comparing to MZmine. The proposed algorithm has the 

advantage of quickly obtaining results without the need of a detailed study of the data to 

define parameters and it does not work by excluding features based on intensity, having 

the ability to maintain relevant features present below the noise level. This algorithm 

shows to be useful handling data from untargeted analyses without an extensive 

preprocessing that could compromise experimental information. Although it remains a 

method that, like the others, cannot guarantee that no important feature is lost, it has been 

shown to identify a higher number of relevant features, basically by increasing its ability 

to keep minor compounds, contributing with a new routine for the metabolome toolkit. 
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Figure captions 

 

Fig. 1. MATLAB code flowchart encompassing the pre-processing and benchmarking 

stages. 

 

Fig. 2. Profile of a noisy feature originated by the mobile phase (feature with m/z value 

105 from a blank). 

 

Fig. 3. RollingBall baseline corrector. 

 

Fig. 4.  Natural variation of the m/z value of the internal standard due to the equipment's 

scan accuracy. 

 

Fig. 5. The influence of Savitzky-Golay width filter on peak detection. a: width = 5 points; 

b: width = 10 points. 

 

Fig. 6. Isotopic pattern of Internal Standard (BIBP-3226). 
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Table 1. MATLAB programming code (example). 

a) 

b) 

 

 

c) 

 

 

d) 

 

 

 

 

 

 

 

 

e) 

 

 

 

f) 

 

clear R samples blanks S 

%Define Samples 

samples{1}=[5,6,7,8,10,11,12,13]; 

samples{2}=[38,39,40,41,43,44,45,46]; 

%add more if needed 

%Define blanks 

blanks{1}=[3,4]; 

blanks{2}=[36,37]; 

%add more if needed 

%Compile samples and blanks 

i=0; 

for k=1:length(samples) 

for j=1:length(samples{k}) 

i=i+1; 

S{i,1}=samples{k}(j); 

S{i,2}=blanks{k}; 

end 

end 

%Analyse all samples and blanks 

for k=1:size(S,1) 

R{k}=vid_peaks(Result1,S{k,1},S{k,2},1,[100,1000],[10,3,3],[3,3,3],[0,5,3],1) 

end 

%Compare samples 

Result=vid_New(R,0.12); 
 

 

  

flagblank peakparamB m/z 

RT tol 

tol peakparamS flag 
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Table 2. List of features generated by the algorithm. Features present in at least five 

samples were marked in dark green and in at most in four samples in light green. 
  JUNE JULY AUGUST SEPTEMBER 

m/z 
value 

Freque
ncy 

RT 
(min) 

Intensit
y 

Freque
ncy 

RT 
(min) 

Intensit
y 

Freque
ncy 

RT 
(min) 

Intensit
y 

Freque
ncy 

RT 
(min) 

Intensit
y 

479 6 3.49 0.02 1 3.52 0.02 
      

351 8 3.49 0.09 8 3.49 0.04 
      

376 8 3.50 0.18 8 3.50 0.06 
      

704 8 3.51 0.06 6 3.50 0.03 
      

363 8 3.51 0.02 6 3.51 0.02 
      

373 8 3.51 0.09 8 3.51 0.07 
      

488 8 3.51 0.08 8 3.51 0.03 
      

222 8 3.51 0.13 8 3.51 0.07 
      

258 8 3.51 0.13 8 3.51 0.11 2 3.51 0.04 
   

433 8 3.51 0.05 8 3.51 0.05 1 3.50 0.02 
   

163 8 3.50 0.08 8 3.51 0.05 4 3.50 0.02 4 3.48 0.02 
474 8 3.53 0.03 8 3.51 0.03 

      

238 8 3.53 0.04 8 3.51 0.04 
      

205 8 3.58 0.67 8 3.59 0.83 8 3.58 1.51 8 3.58 0.98 
246 8 3.58 0.38 8 3.58 0.54 8 3.58 0.66 8 3.58 0.46 
188 8 3.58 0.09 8 3.58 0.14 8 3.58 0.21 8 3.58 0.14 
209 8 3.58 0.06 8 3.61 0.05 

      

209 2 3.80 0.03 8 3.81 0.04 
      

579 8 3.86 0.19 8 3.87 0.18 8 3.87 0.08 6 3.87 0.04 
579 8 4.12 0.14 8 4.11 0.13 2 4.12 0.04 

   

250 8 4.29 0.09 8 4.27 0.04 
      

455 7 4.28 0.05 5 4.28 0.04 
      

417 8 4.29 0.10 8 4.31 0.07 
      

332 8 4.32 0.06 8 4.32 0.11 
      

291 8 4.32 0.57 8 4.32 0.98 3 4.32 0.08 2 4.33 0.06 
247 7 4.33 0.04 8 4.33 0.07 

      

867 8 4.34 0.06 8 4.38 0.05 
      

439 8 4.45 0.18 8 4.45 0.17 4 4.45 0.03 
   

441 1 4.63 0.03 5 4.63 0.05 6 4.62 0.04 6 4.62 0.04 
579 2 4.68 0.04 8 4.66 0.12 8 4.66 0.11 8 4.66 0.09 
351 1 5.05 0.03 8 5.04 0.20 

      

247 8 5.05 0.11 8 5.04 0.21 2 5.05 0.09 1 5.05 0.06 
292 3 5.04 0.05 8 5.04 0.19 2 5.07 0.03 

   

239 1 5.02 0.02 8 5.08 0.04 
      

332 2 5.06 0.03 8 5.04 0.17 
      

268 
   

8 5.06 0.05 
      

579 4 5.40 0.05 4 5.40 0.04 
      

731 8 5.41 0.22 8 5.41 0.23 2 5.39 0.06 
   

443 6 6.28 0.08 8 6.29 0.26 
      

323 6 6.29 0.09 8 6.28 0.19 
      

344 
   

6 6.29 0.04 
      

479 8 6.30 0.18 7 6.29 0.14 7 6.30 0.11 6 6.30 0.09 
867 

   
4 5.17 0.03 1 5.18 0.02 

   

465 
      

8 3.84 0.24 8 3.85 0.21 
449 

      
5 4.24 0.05 4 4.24 0.04 

479 
      

8 4.37 0.46 8 4.36 0.32 
463 

      
8 4.75 0.41 8 4.76 0.50 

493 
      

8 4.85 1.80 8 4.88 1.88 
507 

      
6 5.14 0.09 6 5.16 0.06 

535 
      

5 5.52 0.04 3 5.53 0.04 
481 

      
8 5.59 0.07 8 5.60 0.09 

319 
      

6 5.59 0.04 5 5.60 0.05 
322 

      
6 5.59 0.04 4 5.62 0.04 

521 
      

8 5.63 0.25 8 5.63 0.23 
493 

      
6 5.63 0.05 5 5.63 0.05 

349 
      

8 5.65 0.09 8 5.65 0.10 
511 

      
8 5.65 0.08 8 5.65 0.09 

337 
      

8 5.66 0.06 8 5.65 0.05 
505 

      
8 6.06 0.21 8 6.07 0.24 

535 
      

3 6.08 0.91 4 6.08 0.99 
535 

      
5 6.11 1.47 5 6.12 1.57 

611 
      

8 6.27 0.19 8 6.28 0.16 
465 

   
4 6.34 0.04 7 6.35 0.11 6 6.34 0.12 

303 
   

2 6.33 0.03 5 6.34 0.07 3 6.35 0.06 
314 

      
6 6.34 0.07 4 6.35 0.06 

655 
      

5 6.77 0.06 5 6.76 0.05 
595 

      
5 6.91 0.04 3 6.92 0.03 

625 
      

8 7.09 0.19 8 7.08 0.18 
639 

      
1 7.68 0.06 

   

509 
      

4 7.70 0.04 6 7.69 0.06 
639 

      
4 7.71 0.11 7 7.71 0.11 

639 
      

1 8.12 1.75 
   

609 
      

8 8.13 0.36 8 8.13 0.58 
639 

      
8 8.18 1.88 8 8.17 1.94 

288 
   

1 13.50 0.03 5 13.49 0.04 6 13.50 0.05 
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Table 3. Results after MZmine processing ordered by the retention time in each month. 

  JUNE JULY AUGUST SEPTEMBER 

m/z 
value 

Freque
ncy 

RT 
(min) 

Intensi
ty 

Freque
ncy 

RT 
(min) 

Intensi
ty 

Freque
ncy 

RT 
(min) 

Intensi
ty 

Freque
ncy 

RT 
(min) 

Intensi
ty 

373 8 3.49 1.0E+06                   

376 7 3.47 1.6E+06                   

258 8 3.51 1.2E+06 4 3.53 5.4E+05             

206 4 3.56 1.0E+06 1 3.55 6.1E+05 6 3.56 1.4E+06 5 3.57 7.3E+05 

188 6 3.56 1.0E+06 3 3.56 8.2E+05 5 3.57 1.6E+06 5 3.56 8.0E+05 

205 8 3.56 7.4E+06 8 3.56 5.1E+06 8 3.56 1.0E+07 8 3.56 7.1E+06 

246 8 3.56 4.4E+06 8 3.56 3.3E+06 7 3.57 5.3E+06 8 3.57 3.4E+06 

332 1 4.30 5.9E+05 3 4.30 5.9E+05             

291 8 4.30 5.9E+06 8 4.30 4.9E+06             

292 2 4.30 1.1E+06 5 4.30 8.2E+05             

292 2 4.30 1.1E+06 5 5.02 1.2E+06             

291 8 4.30 5.9E+06 8 5.02 7.4E+06             

247 7 5.01 1.2E+06 8 5.01 1.3E+06             

351       6 5.01 1.2E+06             

332       6 5.02 1.0E+06             

731 8 5.39 2.1E+06 2 5.40 5.3E+05             

479 7 6.28 1.6E+06 1 6.27 5.1E+05             

323 4 6.27 8.3E+05 3 6.27 7.3E+05             

443 3 6.27 7.0E+05 3 6.28 9.6E+05             

143 4 13.44 1.2E+06 3 13.48 1.2E+06             

247             2 3.57 8.0E+05 4 3.57 5.6E+05 

479             4 4.37 1.4E+06 3 4.35 8.2E+05 

464             1 4.73 4.4E+05 3 4.80 5.1E+05 

463             6 4.77 1.8E+06 8 4.77 2.1E+06 

495             5 4.82 6.2E+05 7 4.82 6.0E+05 

493             8 4.83 8.2E+06 8 4.83 8.3E+06 

494             8 4.83 2.9E+06 8 4.83 2.3E+06 

521             4 5.60 9.7E+05 2 5.64 9.5E+05 

349                   1 5.65 4.1E+05 

505             3 6.06 5.7E+05 4 6.06 7.9E+05 

536             8 6.07 1.5E+06 8 6.07 1.5E+06 

535             8 6.07 5.3E+06 8 6.07 5.6E+06 

609             8 8.12 2.1E+06 8 8.12 2.9E+06 

610             6 8.13 6.6E+05 6 8.13 1.0E+06 

639             8 8.15 9.3E+06 8 8.15 9.8E+06 

640             8 8.15 4.1E+06 8 8.15 4.7E+06 

641             8 8.16 1.0E+06 8 8.16 1.0E+06 
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Table 4. Differences in operating mode and user-defined parameters between MZmine 

and the MATLAB algorithm. 

MZMINE 

PROCESSING STEPS (6) USER-DEFINED PARAMETERS (21) 

Baseline correction: 
 

- Choose type of baseline correction 
- m/z bin size 
- Width of local window for 
minimization/maximization 
- Width of local window for smoothing  

Mass detection: 
 

- Choose type of mass detection 
- Noise level 

Chromatogram builder: 
 

- Minimum time span 
- Minimum peak height 
- m/z tolerance 

Chromatogram deconvolution: 
 

- Choose type of algorithm 
- Minimum peak height 
- Peak duration range 
- Noise amplitude 

Normalization: 
 

- m/z tolerance 
- Retention time tolerance 
- Minimum standard intensity 

Alignment (Join aligner): 
 

- Choose type of alignment 
- m/z tolerance 
- Weight for m/z 
- Retention time tolerance 
- Weight for retention time 

 

ALGORITHM 

PROCESSING STEPS (4) USER-DEFINED PARAMETERS (9) 

Peak detection - width 
- tolfac 
- w 

Noise removal subtracting blanks - Choose blanks average or intersection 
- m/z tolerance (corresponding to the 
variation among scans) 
- Retention time tolerance (corresponding to 
the variation among samples) 
- Intensity tolerance (advisable to use a 
minimum of 3 as it is the signal-to-noise 
ratio of 3:1) 

Benchmarking - Retention time tolerance 

Noise removal considering peaks and points - Typical number of points and peaks that 
define different signals 
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Figura 5
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Figura 6
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Highlights 

 

• An algorithm for complex untargeted LC-MS data analysis was developed. 

• The algorithm highlights features that are worth to be further investigated. 

• Application to grape metabolomic profile originated 99 features. 

• The algorithm provided almost 3 times more features than MZmine using fewer 

inputs. 
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