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Marta Teixeira b, Natacha Fontes b, Antonio Graça b 

a Barcelona Supercomputing Center (BSC-CNS), Plaça d’Eusebi Güell 1-3, 08034 Barcelona, Spain 
b Sogrape Vinhos SA, Rua 5 de Outubro 4527, 4430-852 Avintes, Portugal 
c Department of Applied Physics, University of Barcelona, Av. Diagonal 647, 08028 Barcelona, Spain  

A B S T R A C T   

In the context of climate risk mitigation strategies seasonal forecasts have been often proposed as a potential climate risk management tool for the wine industry. 
However, in spite of the recent research advancements, the adoption of climate predictions in strategic decision-making remains complex. This paper aims to support 
decision-making in the wine sector by providing a methodology to establish the probability thresholds that can trigger a decision based on seasonal forecasts, in an 
illustrative setting where precipitation occurring in spring could heavily affect the effectiveness of plant protection and canopy management. The results show the 
probability thresholds obtained for the user involved and the specific decision under three different predicted scenarios. The advantages of this co-production 
methodology consist in the trust created by the engagement with the user and the high level of tailoring of the analysis performed, posing the basis for user risk 
profile analysis. The drawbacks lay in the use of a simplified theoretical framework and the need of engaging new users for replication.   

Introduction 

Practical implications 

The current prospects of climate change, increasing climate vari
ability and rising extreme events’ frequency and intensity are posing a 
pressing need for adaptation and mitigation strategies in almost every 
sector of the economy. Climate predictions are one of the available tools 
that can support climate-dependent activities facing climate change. 
These predictions usually come in the form of probabilistic forecasts that 
estimate the evolution of climate in the upcoming seasons and years. 

However, despite the recent research advancements, the application 
of climate predictions in strategic decision-making remains complex. 
The barriers are entailed both in the nature of the climate information 
and in the way it is applied. Climate services aim at improving the us
ability of this information and this study contributes to inform climate 
services’ design to improve potential applications. In particular, we 
address one common barrier detected while engaging with potential 
users: “what is the minimum probability that makes the associated 
forecasted occurrence worth considering in my decision?”. When look
ing at seasonal forecasts, this is one typical question that refrains from 
integrating the climate information in a real-life decision. Although the 
answer to this query is always user- and decision- specific, the process to 

obtain it is rather general. This paper illustrates this path by trying to 
establish which is the optimal application of probabilistic seasonal 
forecasts considering their potential impacts in a wine-maker decision- 
making workflow. 

Although the approach built in this study can be extrapolated to 
different decisions and users from different fields, this analysis is applied 
to the viticultural sector which stands out due to its strong dependence 
on stable climate conditions. In this framework, the vineyard manager 
has pointed out a set of decisions that suffer from climate uncertainty 
and Spring rain has been identified as an indicator of primary impor
tance to assess. The Spring Total Precipitation (SprR) is a bioclimatic 
indicator that has been defined according to the vineyard managers’ 
need to adapt to the impacts of spring rain variability. More specifically, 
SprR is the total precipitation from 21st April to 21st June (for the 
Northern Hemisphere) which influences canopy management and plant 
protection strategies that benefit from being defined as early as January 
of the target year. 

The close collaboration with the user continued in the entire process, 
allowing for co-design of the methodology for forecasts’ assessment. We 
have economically characterised different decisions that could be 
adopted in each scenario, as well as the business as usual (BaU) to 
compare with. Finally, we have put forward a methodology to consider 
the minimum probability for having positive results when including 

* Corresponding author. 
E-mail address: ilaria.vigo@bsc.es (I. Vigo).  

Contents lists available at ScienceDirect 

Climate Services 

journal homepage: www.elsevier.com/locate/cliser 

https://doi.org/10.1016/j.cliser.2023.100418 
Received 30 May 2022; Received in revised form 19 June 2023; Accepted 19 September 2023   

mailto:ilaria.vigo@bsc.es
www.sciencedirect.com/science/journal/24058807
https://www.elsevier.com/locate/cliser
https://doi.org/10.1016/j.cliser.2023.100418
https://doi.org/10.1016/j.cliser.2023.100418
https://doi.org/10.1016/j.cliser.2023.100418
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cliser.2023.100418&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Climate Services 32 (2023) 100418

2

costs, losses and benefits in each decision scenario. 
These results inform the user about the minimum probability asso

ciated with predicted SprR (above normal, normal, or below normal) 
that should trigger earliest decisions. The advantages of this co- 
production methodology consist in the trust created by the engage
ment with the user and the high level of tailoring of the analysis per
formed, posing the basis for user risk profile analysis. The drawbacks lay 
in the use of a simplified theoretical framework and the need of 
engaging new users for replication. In summary, what stands out in this 
study is the contribution to the integration of seasonal forecasts in a real 
risk management workflow. 

The current prospects of climate change, increasing climate vari
ability and rising extreme events’ frequency and intensity, are posing a 
pressing need for adaptation and mitigation strategies in almost every 
sector of the economy (O’Neill et al., 2022). Amidst all, the viticulture 
sphere stands out due to its strong dependence on stable climate con
ditions. In this sector climate change has been already identified to 
potentially impact grapevine cultivation areas, grape varieties, grape
vine development and phenology, pests and diseases, grape and wine 
quality and yields (Cunha and Richter, 2016; Ramos et al., 2008; Fraga 
et al., 2014a). Climate predictions are one of the available tools that can 
enable grape growers and winemakers to face this challenge. These 
predictions usually come in the form of probabilistic forecasts that es
timate the evolution of climate in the upcoming seasons and years 
(Terrado et al., 2018). In this context, seasonal predictions based on 
tercile categories have gained attention as a possible mitigation tool to 
face mid-range adverse events (Porras et al., 2021). 

However, in spite of the recent research advancements in seasonal 
climate predictions targeted to the viticultural sector (Giannokopoulos 
et al., 2019, Santos et al., 2020, Droulia and Charalampopoulos, 2021), 
there is still little evidence of their adoption in current decision-making 
workflows. Various European-funded projects (e.g., H2020 Vineyards 
Integrated Smart Climate Application - VISCA, Turning climate-related 
information into added value for traditional Mediterranean Grape, 
Olive and Durum wheat food systems - MED-GOLD, and Vineyard 
Innovative Tool based on the Integration of Earth Observation Services 
and in-field Sensors - VitiGEOSS) have directed efforts to boost the up
take of such predictions by developing climate services tailored to viti
culturists. In particular, the MED-GOLD project (https://www.med- 
gold.eu) targets the production of grapes, olives and durum wheat in the 
Mediterranean region and its adaptation to climate change and applies a 
co-production approach to the development of a climate service plat
form. The platform delivers readily available predictions of essential 
climate variables (e.g., temperature, precipitation) and sector-specific 
indicators (e.g., Spring Rain, Growing Degree Days) useful to inform 
the decisions of farmers. 

In this context, the co-production of climate services is fundamental 
to identify the key users’ challenges and create targeted forecasts and 
tailored products to transform climate predictions into actionable in
formation. Precisely, the collaboration with users in climate services 
projects has revealed there is substantial interest in understanding how 
to best integrate climate information in viticulturist risk management 
practices. The major barriers to this adoption arise from the complexity 
entailed in the integration of the technical climate information into the 
strategic planning of each user. As a matter of fact, each user needs to 
overcome a learning curve to correctly interpret probabilistic climate 
information prior to reshaping any decision based on these predictions. 

To undergo the learning process entails an investment of time and 
resources both from climate service providers and users where trust is a 
necessary condition (Hermansen et al., 2021). To facilitate this 
requirement, economic impact evaluations have been often used to 
provide simulations of the potential benefits generated using these ser
vices. These expected savings and/or gains, combined with the 
increasing risks posed by climate change, drive the interest in under
going the process. Actually, climate services’ evaluations are already 
performed in various sectors and for different forecast types (e.g., 

Portele et al., 2021; WMO, 2015; H2020 Subseasonal to Seasonal 
Climate Forecasting for Energy - S2S4E, Climate Forecast Enabled 
Knowledge Services - CLARA, and European Market for Climate Services 
- EU MACS, WMO, 2015). To this aim, some commonly applied meth
odologies are contingent valuation, revealed preferences, economic 
decision modelling, avoided costs, benefit transfer, and participatory 
methods (WMO, 2015; Suckall and Soares, 2020). For example, with 
respect to impact evaluations of climate predictions in the agri-food 
sector, Materia et al. (2020) use a cost–loss model approach to eval
uate the impact of sub-seasonal forecasts on hazelnut agribusinesses for 
the prediction of Spring cold spells. Regarding the wine sector, an 
evaluation of seasonal forecasts has been already performed by Santos 
et al. (2020). This analysis suggests a positive impact for winemaking 
through the application of a logistic model of wine production in the 
Douro Valley of Portugal, based on monthly mean air temperatures and 
monthly total precipitation. These impact evaluation studies offer a 
picture of the potential benefit of climate services assuming that the 
climate predictions are integrated in the decision-making process and 
properly used. However, as we have seen, this is neither straightforward 
nor trivial. 

Wilks (2001) was the first one that attempted to evaluate forecasts 
based on the cost loss ratio of decision makers, constructing a skill score 
based on economic value. However, his model does not allow for mul
tiple decision options, which need to be considered in studies such as the 
one presented in this paper. In another approach, Portele et al. (2021) 
used the potential economic value as a direct way to achieve action 
recommendations based on forecast probabilities. Nevertheless, their 
methodology (applied to the hydro-management decision making) aims 
at minimising the interactions with the decision-maker and assumes no 
risk aversion. This makes their approach easily replicable but lacks 
flexibility for accommodating the multiplicity of users and needs. 

In this work, we apply a user-centred methodology designed to ease 
forecasts’ uptake while increasing the trust in the service provided. This 
is done by applying a transdisciplinary approach to knowledge co- 
production, involving climate scientists, social scientists, and users. 
The approach allows for knowledge exchange and helps in finding a 
common language, ultimately building trust (Terrado et al, in this issue). 
Thus, the involvement of decision-makers from a vertically integrated 
large wine company contextualised this study in a real-world decision 
workflow through the sharing of sectoral know-how ranging from 
farming vineyards to buying grapes from other farmers. 

This paper aims to support decision-making in the wine sector by 
providing a methodology to establish the optimal probability thresholds 
that should trigger a decision based on seasonal forecasts in a setting 
where precipitation occurring in spring could heavily affect the outcome 
of plant protection and canopy management. To our best knowledge, 
this is the first time a user-centred methodology tries to optimise climate 
predictions’ use in order to generate value in the wine sector. In 
particular, this paper aims at supporting the user in breaking one of the 
barriers to the uptake: “what is the minimum probability that makes 
the associated forecasted occurrence worth considering in my de
cision?”. This question has been consistently brought up when 
observing seasonal forecasts. It is important to note that this study does 
not intend to evaluate the climate services used nor the seasonal fore
casts provided. Instead, it aims at offering an easy-to-use approach for 
determining the answer to the above question. 

Material and methods 

Demand driven co-production 

The approach taken for this study is user-centred. At the basis of the 
methodology is the demand of the wine producer to understand how to 
use climate services to adapt to the variable climate. To provide a 
meaningful answer to this request we need to understand the wine 
producers’ strategy and needs as well as to tailor the service for the 
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specific decision under analysis. The methodology applied in this study 
builds on the user engagement started within the MED-GOLD project, 
which involved an exchange of knowledge among project scientists and 
stakeholders (Bojovic et al. 2021). This allowed a mutual understanding 
of the wine sector needs and the extent to which these needs could be 
addressed by project results. By engaging with several potential climate 
service users from the wine sector, we identified different solutions to 
better deliver actionable climate information (Marcos-Matamoros et al, 
2020 & Soares et al. 2019). 

Building on this knowledge, we have worked together with the 
leading wine producer in Portugal, SOGRAPE, to perform an in-depth 
analysis to co-explore the optimal application of seasonal forecasts to 
their decision-making. Fig. 1 summarises the co-production process 
which is also at the base of this study (Terrado et al., 2022 in this issue). 
This is a cyclical process that, for the purpose of this analysis, can be 
considered to have a starting point in the knowledge-exchange phase. In 
fact, decision-makers, scientists and social scientists have engaged in a 
close collaboration with the aim of generating mutual understanding of 
user needs, forecasting potential and risk management options. The 
knowledge exchange took place through meetings, interviews, working 
sessions, and e-mail correspondence (see Fig. 1). 

The entire co-production framework is deeply discussed in Terrado 
et al. in this issue. In the scope of this paper, the focus is narrowed to the 
co-production that led to the methodology under discussion. During the 
last two years of the MED-GOLD project, partner companies (including 
SOGRAPE) and other potential users from the agri-food sector have been 
regularly exposed to seasonal forecasts (many have already been 
exposed to seasonal forecasts before). The forecasts of interest for the 
case study analysed in this paper are the Spring Total Precipitation 
which are presented in section 2.2. More specifically, Fig. 2 shows the 
MED-GOLD dashboard which was co-produced during the project. The 
prototype dashboard included different climate products that were 
refined by SOGRAPE and other users, by testing them and raising 
questions, concerns and improvement suggestions on visualisation, 
interpretation, and applications (including the question we are 
addressing in this paper). For example, Spring Total Precipitation is one 
of the indicators available in the dashboard because SOGRAPE was 

interested in applying this indicator to the vineyard management de
cisions described below. In this regard, the prototype dashboard is 
showing whether the Spring Total Precipitation is expected to be 
normal, above or below normal for the selected region and period. To 
each possible scenario there is an associated probability (see section 
2.2). When and how to translate this into input information for decision- 
making? Answering this type of questions entails not only the under
standing of the forecasts but also of the user. 

Exploratory meetings (in person whenever possible), are especially 
important at the beginning of the process, because they build mutual 
understanding of the team members, including experts from the wine 
company as well as climate and social scientists. At this stage, the 
ambition was to have a first overview of the information and data 
available in the case study area (the Douro region). In fact, the vineyard 
manager has knowledge of the average procurement costs and grapes 
sales prices for the Portuguese market as well as of the best adapted 
vineyard management strategies in the area. After that, the user iden
tified one decision of interest for the case study as well as its potential 
impacts. This allowed the identification of the most suitable bioclimatic 
indicator linked to the decision. Thus, the vineyard manager reported 
the detection of a rising uncertainty in spring rain patterns that could 
severely affect crop yields. This is especially important in springs with 
high rainfall, which favour the development of fungal diseases such as 
downy mildew (Plasmopara viticola) and can disrupt vineyard opera
tions. Therefore, for the selected case study, the impacts on crop yield 
according to the users’ adopted strategy for spraying and labour man
agement were related to the Spring Total Precipitation indicator (SprR). 
Subsequently, working sessions served to precisely define the inputs 
available to perform the analysis and the expected outputs. From this 
point onward, different scenarios were set up based on the user’s 
expertise on how SprR impacts the company’s decision workflow. This 
knowledge comprised the estimation of costs and losses associated with 
different decision scenarios through the provision of market data and 
model’s assumptions. The methodology was complemented with a 
recursive approach of feedback gathering. Reiterating questions helps to 
avoid biases (Elder and Miller, 1995). This process was supported by 
regular meetings, interviews and email correspondence, posing questions to 

Fig. 1. Co-production framework for climate services (Terrado et al, in this issue, elaborated from Bojovic et al. 2021). The methodology of this study builds on 
knowledge exchange using different tools (e.g., introductory meetings, interviews, user-provider working session, regular correspondence) and contributes to the 
service co-development (by engaging in a co-evaluation process, building a case study and co-testing risk management with forecasts). Finally, the replicable nature 
of this analysis, makes it of interest for third parties that are interested in developing or uptake climate service. Therefore, awareness raising tool can be employed in 
the future. 
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the user (pre-prepared) and challenging the methodology to keep it as 
grounded as possible in the local reality of the case study. One of the 
main challenges was represented by the discussions around the proba
bilistic reasoning applied to the agricultural context by introducing 
seasonal forecasts. The user was initially firm about the impossibility of 
using any seasonal forecasts with a hit-rate below 70 %. This belief was 
probably driven by the well established threshold of two-thirds (67 %) 
for triggering decisions (Conradt & Roper, 2003). On the other hand, 
climate scientists would consider a useful information anything above 
33 %, which is the climatological reference, without considering the 
limitations for real business risk management. The first step towards a 
change in approach was possible with a set of meetings (in person and 
virtual) where economists and social scientists also joined the conver
sation. During these meetings, with hours of animated debate, the team 
has developed the common understanding that the forecasts’ acceptable 
hit-rate strictly depends on the decision-making application the user is 
envisaging. Neither 70 % nor 33 % have a concrete meaning. Finding a 
common ground was not trivial, but turned out to be necessary to pro
ceed and converge to a common approach. 

Beyond the specific case study presented here, this analysis aims to 
understand, for a given profile and a specific decision, which would be 
the optimal protocol to apply seasonal forecasting in the planning 
workflow of winemakers in the Douro valley. 

User’s decision-making 

Data to perform this analysis has been gathered through the wine 
company, which provided estimates of costs and associated yields based 
on internal data records from several years. More specifically, the pur
chasing department provided unit cost data on plant protection products 
and labour whereas the vineyard manager combined this information 
with vineyard operations (spraying, canopy management, etc.) needs 

and vineyard yields (according to tercile scenarios). Data are combined 
into a single value per scenario, which results from user-specific confi
dential estimates. 

Spring total precipitation (SprR) 

The Spring Total Precipitation (SprR) is a bioclimatic indicator that 
has been defined according to the vineyard managers’ need to adapt to 
the impacts of spring rain variability (Fontes et al. 2016). More specif
ically, SprR is the total precipitation from 21st April to 21st June (for the 
Northern Hemisphere). The wetness of spring represented by this indi
cator affects the level of sanitary risk associated with fungal disease and 
hence, the amount of costs linked to protective treatments and opera
tions. The SprR indicator is defined as follows, 

TotalPrecipitation = enddate
∑

startdateprlr 

where prlr is the daily total precipitation in mm. The start (end) date 
is the first (last) day of the period considered for the specific indicator, in 
this case 21st April to 21st June, corresponding with the spring period in 
the Northern Hemisphere. 

The indicator is predicted on a tercile probability basis, that is, by 
giving the probability associated with the occurrence of normal, above 
normal and below normal precipitation. The MED-GOLD dashboard 
displays, on a map, the most likely of these terciles (to facilitate the 
information transmission to the user, see Fig. 2). 

Dry springs delay vegetative growth and reduce vigour and leaf area 
total surface. In this scenario fungal disease pressure is often lower and, 
therefore, there is less need for protective and/or curative treatments 
(translating into lower costs). Conversely, wet springs promote greater 
vigour, increase the risk of fungal disease and disrupt vineyard opera
tions, as the emergence of mud sometimes prevents machinery from 
entering the vineyard. 

Fig. 2. MED-GOLD Dashboard displaying the Spring Total Precipitation (SprR) forecasted in March 2003. This dashboard has been developed within the MED-GOLD 
project to provide an easy-to-use visualization tool. It allows to access information on past climate and predictions of future climate at different time scales (seasonal 
forecasts and long-term projections) for the Douro Valley and the Iberian Peninsula. The user can select to display essential climate variables, bioclimatic indicators 
(such as the SprR) or risk indices. The user can also filter the results by displaying those with positive skill only, as shown in the figure. 
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Decisions linked with SprR 

Knowing the expected spring rainfall months ahead (i.e., looking at 
seasonal predictions of SprR) would allow users to optimise their 
decision-making in two areas: plant protection and canopy manage
ment. In the following paragraphs, we illustrate the impact that having 
this information in advance could have in the current user decision 
workflow in both areas. 

(a) Plant protection: Each year, in January, the wine company pro
curement department issues an order for a fixed amount of plant pro
tection products, needed to protect the vineyard from fungal diseases. 
These diseases thrive in humid conditions and, therefore, abundant rain 
requires the spraying of extra product quantities. Whenever this situa
tion arises, the procurement department tries to react to it by buying 
more protection products, but at a risk of paying higher prices than in 
January, because of less economies of scale and higher demand for such 
products as the situation is common for all farmers in the same area. In 
addition, in the case of continued wet conditions affecting the whole 
country, the demand may become so high that, in extreme cases, sup
pliers may run out of stock. Thus, late purchase causes higher costs and 
also exposes the user to the risk of protection unavailability with 
potentially nefarious consequences on the diffusion of fungal diseases 
and inherent disruption of yields. On the other hand, in case of a dry 
season, less protection is needed, allowing for savings and lesser envi
ronmental impact. 

In such circumstances, if the information of the seasonal predictions 
of SprR was available well in advance, the purchasing department could 
optimise the quantity of protection products to order for the upcoming 
spring. However, to do so the user has to be confident that using the 
seasonal predictions will bring a solid benefit because, otherwise, mis
estimating the quantity of products to purchase would cause extra costs. 
Indeed, often spare products cannot be carried over to the following year 
because they lose their protective efficacy, meaning that purchasing 
more than needed is a waste. On the contrary, if too little spray is pur
chased, the risk of running out of stock could materialise, entailing 
significant yield and revenue loss. 

(b) Canopy management: if there is a lot of rain in spring, plants grow 
more and, thus, leaf and shoot removal becomes necessary. In fact, too 
many leaves expose the grapevine to higher sanitary risks and, simul
taneously, the application of the spraying products is less effective 
(difficult penetration). These operations require extra labour that should 
be contracted at the earliest convenience to anticipate widespread de
mand for it. Conversely, if the season is dry, cutting leaves is dangerous 
because there will be little or no regrowth before summer, hence there is 
a real risk of ‘sunburnt’ grape berries during the hottest months which 
also translate as yield and revenue loss. Consequently, miscalculation of 
the rainfall can lead to mistakes in canopy management practises as well 
as to unnecessary labour costs. 

Decision workflow: Business as Usual vs. Climate predictions 

When deciding whether to apply a climate service for decision- 
making, users need to consider that, in the case of climate predictions, 
the vineyard manager’s decisions depend on the probability of different 
situations to occur. However, it is important to consider that changes in 
decision processes as well as deviations from the plan often entail non- 
negligible costs. Therefore, a change in a decision led by an unfulfilled 
prediction (or incorrect interpretation) can potentially cause higher 
damages than passively suffering the seasonal variability. This is why 
identifying the probability thresholds to safely trigger a decision is 
critical for every decision and user. 

To analyse the optimal use of the SprR indicator we rely on decision 
theory (Rubas et al. 2006). The climate service (CS) user has to make a 
decision with the goal of maximising an objective (Payoff =

∏
). Here we 

consider the added value of the CS to be the difference between payoffs 
of the decision taken with and without using the CS, as defined below 

(this value is decision- and user-specific, as discussed later). 

CS’ Added Value =
∏

cs -
∏

BaU 

Being 
∏

BaU, payoffs from decision made without CS that we define 
as “Business as Usual” (as explained later in this section); and 

∏
cs, 

payoffs from decision with CS. If the difference is positive, using the CS 
benefits the decision-maker. Inversely, a negative value indicates that 
the information provided by the CS had a negative economic impact for 
the user. This may be driven by different reasons depending on the 
relationship between users’ decisions and prediction characteristics. 

To define the aforementioned payoffs, there is a need to identify the 
costs and benefits of the vineyard management actions related to spring 
rain. For simplification, costs were represented by purchase of plant 
protection products and labour hiring (for canopy management) and 
varied according to the combination of the strategy adopted and the 
observed rainfall. The benefits were represented by the yields and their 
monetary value is measured taking into account the market price of a 
kilogram of the type of grape of the vineyard under analysis. For this, we 
assumed the average price for a kg of grape yield (Y) to be 0.5 euro (refer 
to the Box “Grape Prices” at the end of this section for further 
information). 

Kg Y = 0.5 € 

Regarding the payoff, it is represented by the value of the benefits 
minus the costs. 

Payoff(
∏

) = €Y - Cpp - Ccm 

where Y corresponds to benefits from yield; Cpp corresponds to the costs 
of plant protection; and Ccm are the costs relative to canopy 
management. 

Although yield value and costs vary substantially across companies 
(e.g., with different sizes and purchasing power) and even across vine
yards of the same company (depending on the location, the dimension 
and the type of wine produced), the process for identifying the optimal 
threshold is always the same. Particularly, for this study we have 
selected a slope vineyard of 70 ha located in the Douro region. 

(a) Business as Usual strategy (BaU) 

The first step involves the description of the current baseline strat
egy. That is, to define the possible payoffs without using the climate 
service. In the case under analysis, the vineyard manager adopts the 
same strategy every year independently of the expected climate condi
tions. We define this strategy, characterised by not using climate in
formation, as Business as Usual (BaU). The BaU strategy is summarised 
in Fig. 3. 

In January, the vineyard manager communicates to the purchasing 
department the standard amount of protection products that is needed 
under normal climate conditions to treat the hectares of the field. Given 
the specific characteristics of the field under analysis, the costs per 
hectare to purchase protection products are 315€. Similarly, the vine
yard manager plans canopy management assuming normal climate 
conditions. These costs include the labour force and amount to 495€ per 
hectare. If everything goes as planned, 4000 kg of grapes per hectare 
should be harvested - being this the expected yield -, i.e., the average 
yield per hectare. The expected revenue achieved with these yields, 
based on the sales price of 0,5€/kg, is 2000€. If the spring rain turns out 
to be on normal levels (N), the grape production target will be achieved 
(assuming no other shocks before the harvesting) at the cost envisaged at 
the beginning of the year. 

However, if SprR deviates from the expectations there can be serious 
consequences. One possibility is the spring being rainier than expected 
(Above Normal, AN). In this case, the vineyard manager needs to 
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purchase additional spray for protecting the grapes from the increasing 
sanitary pressure and contract more labour force for canopy manage
ment. If the rain affects a substantial share of the country the price of 
spray and labour is likely to increase until there is no more supply 
available. This can cause huge damages to the vineyard, including the 
total disruption of the yield. In this exercise, based on the consultations 
with the vineyard manager, we assume an intermediate scenario where 
a supply shock occurs. This means the vineyard manager cannot pur
chase extra resources (the costs remain invariant), but there is a loss of 
30 % of the yield (Fig. 3). 

In the eventuality of a dry spring (Below Normal, BN) Fig. 3 may 
suggest that nothing occurs, because costs and yields are equal to the N 
case. However, this is not the optimal solution for the vineyard manager 
because it could have benefited from a reduction of plant protection 
costs (less protection was needed). 

Importantly, the choice of the BaU strategy is context specific. For 
example, a grape grower can act based on the conditions observed in the 
previous few years. Therefore, the BaU would not correspond to the 
same category every year, it would depend on the previous year. 
Another user may be purchasing less spray by default every year (having 

a BaU focused on sustainability and spraying cost reduction). In this case 
“below normal” would correspond to its BaU. The approach of adapting 
the BaU reflects the idea that the value is not placed on the forecast but 
on the expected outcome of changing strategy. 

(b) Climate prediction strategy 

When introducing seasonal predictions based on probabilistic tercile 
categories, the vineyard manager can make three different decisions. 
This implies nine possible scenarios depending on the combinations of 
three possible actions and three possible outcomes of observed spring 
rain. 

If the seasonal predicted SprR indicator suggests normal levels of 
spring rain (N), the actions taken by the vineyard manager, and subse
quent payoffs, correspond to the BaU scenario. But if the predicted SprR 
suggests higher or lower rain than normal, different actions might be 
taken. Fig. 4 summarises the possible scenarios with their relative out
comes and payoffs. 

Based on the most likely predicted SprR signal, the vineyard manager 
can decide to protect the vines from high expected rain by purchasing 

Fig. 3. Business as Usual scenarios for the spring rain-related decisions. In January, the Business as Usual strategy is applied and the outcome obtained in spring 
depends on the rainfall during that period. At the beginning of the year, the expenditures for plan protection and canopy management are sustained in order to obtain 
the maximum yields (achieving the expected revenue) under normal rain conditions. In springtime, the vineyard manager discovers if the strategy was optimal or not. 
In case the above normal scenario materialises, the underspending (“not enough”) translates in a loss of yields. If the below normal scenario occurs, there is a waste of 
plant protection products because there is no need to use the whole amount purchased (“extra costs”). 
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additional protection products and contracting extra labour force (blue 
drop on the first decision branch of Fig. 4. Then, if the observed rain 
matches the expectations (blue drop of the second decision branch of 
Fig. 4 the yields are almost entirely preserved from the downy mildew 
and the maximum payoff for these climate conditions is achieved. 
Nevertheless, if the spring turns out to be normal (blue drop of first 
branch followed by grey drop of the second decision branch of Fig. 4), 
there is no impact of the decision taken on yield value, but the vineyard 
manager would have extra costs when compared to its BaU expenses. 
More specifically, an additional 25 €/ha would be wasted in canopy 

management (see Table 1: AN;AN scenario Ccm 520 €/ha - N;AN (=BaU) 
Ccm 495 €/ha) and 95€/ha in plant protection (Table 1: AN;AN scenario 
Cpp 410 €/ha - N;AN (=BaU) Cpp 315 €/ha). Similarly, if the spring 
turns out to be dry (orange drop on the second decision branch of Fig. 4), 
there are no impact on yield benefits but the plant protection toll 
represent an even higher cost compared to the optimal purchase in case 
of a dry spring prediction (190 €/ha; obtained from Table 1 difference 
between AN;BN scenario Cpp 410€/ha minus Bn;BN scenario Cpp 220€/ 
ha). 

In fact, according to the assumptions set for BN conditions (Fig. 4), 
the yield is not affected by a drier than normal spring and, additionally, 
less plant protection products are needed due to the climate conditions, 
unfavourable for the development of fungal diseases. As a result, in the 
BN category prediction 220 €/ha (Table 1 BN;BN scenario) of protection 
would be enough to guarantee the safety of the yield. Knowing this in 
January would allow for timely communication to the purchasing 
department and 95€/ha of savings compared to BaU (see Table 1: BN;AN 
scenario Cpp 220 €/ha minus N;BN (=BaU) scenario - Cpp 315 €/ha). On 
top of that, the application of less protection products is beneficial for 
the environment (however, this positive externality is not quantified 
among the impacts for the farmer in this model). On the other hand, 
purchasing savings on plant protection exposes the vineyard to a huge 
risk in case the predicted SprR turns out to be different than expected. If 
a normal rain scenario arises (orange drop of first decision branch and 
grey drop on the second decision branch of Fig. 4), additional plant 
protection has to be purchased at the last minute at a higher price 
(getting to a total expenditure for Cpp of + 535 €/ha, Table 1 BN;N 
scenario) to ensure no crop disruption is faced. Even worse would be if 

Fig. 4. Climate prediction scenarios for the spring rain-related decisions. This figure depicts the two-level decision tree representing all possible scenarios when using 
tercile seasonal predictions of SprR in January planning. The first level, including “Expected Spring Rain”, E(SprR), and “action”. E(SprR) represents the possible 
predicted categories in January namely: above normal (blue), normal (grey) or below normal (orange) drops. The action column indicates the decision taken and the 
related costs: spending more (+), less (-), or same (if nothing indicated) compared to the BaU scenario corresponding to the grey drops. The second level of the tree 
shows the possible outcomes (explained in the text in the last column) depending on the observed rain (observed SpRr) and the strategy adopted which is reflected in 
the final costs and yields. A green tick indicates that the decision was correct. The plus indicates the extra costs incurred. The minus indicates that the savings made 
were not appropriate to achieve the target yields. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
Estimated outcomes of the climate predicted scenarios for spring rain-related 
decisions (€/ha). For each scenario (possible combination of prediction and 
observation) the associated costs (Cpp and Ccm) and revenue (yield value) are 
described along with the payoffs (

∏
cs) calculated as the difference between the 

yields and the aggregated costs. Notice that the BaU scenario is user- and deci
sion-dependent.  

Scenario (Action; 
Observation) 

Cpp 
(€/ha) 

Ccm 
(€/ha) 

Revenue 
(€/ha) 

∏
cs 

(€/ha) 

AN;AN 410 520 2000 1070 
AN;N 410 520 2000 1070 
AN;BN 410 520 2000 1070 
N;AN (=BaU) 315 495 1400 590 
N;N (=BaU) 315 495 2000 1190 
N;BN (=BaU) 315 495 2000 1190 
BN;AN 220 495 1000 285 
BN;N 535 495 2000 970 
BN;BN 220 495 2000 1285  
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the above rain scenario materialises (orange drop of first decision 
branch and blue drop on the second decision branch of Fig. 4) causing 
the loss of 30 % of the yield, being too late to purchase any extra spray 
(see Table 1: BN;AN scenario Revenue). 

The scenarios resulting from this co-production process served as the 
base for the calculations of the potential impact of the climate service 
and the decision triggering thresholds for the modelled user’s decision 
strategy.  

Grape Prices 
In the context of the Douro region, changes in farmers’ revenues are mostly 
associated with variations in grapes’ quantity rather than in prices. Actually, the 
user has not detected significant grape price fluctuations despite changes in 
production in the area. More specifically, in the Douro two appellations coexist: Port 
(for liqueur wines) and Douro (for still wines). Both appellations can be produced 
from the same grapevines in the whole region, the choice lies with the farmer. 
However, the appellation system establishes a maximum amount of Port that can be 
produced by each farmer, that is established around June / July every year as a 
function of existing stocks, forecast sales and expected production. Douro can be 
made from whatever amount is left provided production won’t exceed the 
maximum allowed production per hectare (considering production of grapes for 
both appellations) 
, something that very rarely occurs. 
Considering the price of Port to be 0.9 €/L and Douro 0.37 €/L (equivalent 
respectively to 1.23 and 0.50 €/kg) 
, no significant difference in price has been reported between years characterised by 
huge differences in production. The farmers’ revenue changes have been caused by 
the changing weight of each appellation in the total production and not because of a 
change in offer. The appellation system of rating vineyards for Port was created to 
improve the stability in income for farmers, protecting them from speculation, and 
has been the reason why the average transaction price for both Port and Douro 
grapes in the region has not changed much in the past 20 years. 
In summary, according to this information, using fixed prices for grapes is an 
acceptable approximation, and analysing Douro grape is particularly relevant since 
these are the ones suffering more fluctuations in production  
(because the allowance for Port ensures that in the majority of situations, grapes will 
be used to produce Port first, Douro to be produced with whatever grapes are left).   

Results 

Climate service potential added value 

In this section, we show the results of the estimated value of the 
climate service for the user to support predicted SprR-related decisions. 
As explained in the methodology, this value can be computed as the 
difference in payoffs between the decision taken using the climate pre
dictions (

∏
cs) and without using any climate information (

∏
BaU). 

Table 2 shows the payoffs and CS value for each scenario previously 
defined in Table 1. 

Changes in decisions based on seasonal predictions of above or below 
normal rain generate benefits whenever prediction and observation 
match (as shown in Table 2 and ‘hits’ in Fig. 5). However, it is also clear 
that a shift from BaU generates losses in those cases when the obser
vation turns out to be different from the expectations. From Fig. 5, we 
can also infer that the benefits of a match are much larger in case of 
correctly predicted high rainfall (when yields can be preserved, 
amounting to 480 €/ha), compared to the benefits given by plant pro
tection savings in case of a well-predicted drought (95 €/ha). Contrarily, 
the costs associated with a decisional mistake are high in case of 
drought, and relatively low in case of rainy spring, especially if 
compared to the potential benefits. 

So far, we have identified the potential value each scenario brings. 
However, when it comes to the real use of the forecasts, vineyard 
managers are interested in knowing what is the minimum probability 
threshold for a scenario to occur in order to shift their strategy from a 
business as usual to one using the climate service. 

Decision-triggering thresholds 

In the climate service field, we consider the predictions to be of 
enough quality when the users can rely on the benefits of including them 
in their decision workflows. Thus, once the CS annual added value per 
hectare has been established (third column of Table 3), we can focus on 
linking CS-based decisions and the probability threshold that could 
safely trigger them. In our case, considering we have three tercile cat
egories in which the user could be interested - above normal (AN), 
normal (NN) and below normal (BN) -, there are 3 groups of 3 possible 
value scenarios each (depending on the possible combinations of 
prediction-observation, Table 3 s column). 

On the basis of this information, we can develop a general approach 
on how to perform the computation of the decision-triggering thresholds 
for each scenario. It is worth noting we consider each potential decision 
to be tercile category independent, that is to say, there are no decisions 
that simultaneously depend on the prediction of two categories, such as, 
AN and BN. This is the reason why our exploration of the probability 
thresholds is independent for every tercile category. Table 3 shows the 
needed information for this calculation. 

For obtaining the thresholds there are two conditions that have to be 
fulfilled:  

(i) the sum of all the fractions is equal to 100 (eq. 1), because D1, D2 
and D3 are, respectively, the fraction of times that AN, NN and BN 
categories have been observed out of the total of times TRC has 
been predicted. 

D1 +D2 +D3 = 100    

(ii) the sum of the products obtained from multiplying each fraction 
by the corresponding CS added value is equal or higher than zero 
(eq. 2) because we would like to avoid that the user has losses 
after using the CS information. 

D1 x + D2 y + D3 z⩾ 0 

These two equations link CS annual added value per hectare and the 
historical counts for each prediction-observation pair, independently of 
the category considered. As we can see, we have three degrees of 
freedom (D1, D2 and D3) for two equations. Hence, not only will we have 
multiple possible solutions, but we would need specific boundary con
ditions to be able to solve them. These constraints could be either 
inferred from the magnitude of each CS added value scenario or directly 
stated by the user. Hereafter we will proceed to compute these thresh
olds with the Climate Service added value data gathered in Table 2 
(third column) for every tercile prediction. 

Table 2 
Estimated annual added value of the climate service in support of SprR-related 
decisions for this user (€/ha). For each scenario (possible combination of pre
diction and observation) the payoffs of using the climate service (

∏
cs) and the 

BaU (
∏

BaU) are indicated along with the added value, obtained as the differ
ence between payoffs. Notice that 

∏
BaU is always the same for a given obser

vation (590€/ha for AN, 1190€/ha for N and for BN) since the action remains 
constant.  

Scenario 
(Action; 
Observation) 

∏cs 
(€/ha) 

∏BaU 
(€/ha)  

Climate Service Added 
Value 
∏ cs -∏ BaU (€/ha) 

AN;AN 1070 590 480 
AN;N 1070 1190 ¡120 
AN;BN 1070 1190 ¡120 
N;AN (=BaU) 590 590 0 
N;N (=BaU) 1190 1190 0 
N;BN (=BaU) 1190 1190 0 
BN;AN 285 590 ¡305 
BN;N 970 1190 ¡220 
BN;BN 1285 1190 95  
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Probability threshold for AN predicted conditions 

Supposing we are mostly interested in D1 (when the prediction- 
observation pairs match, also known as ‘hits’) we could look at the 
minimum percentage of hits needed to achieve a positive outcome: 

D1 x + D2 y + D3 z = 0 

And constrain D2 and D3 to obtain the percentage of hits needed to 
reach the desired positive result. Hence: 

D1 = −
D2 y + D3 z

x 

In this category, 

y = z = − 120 /hax = 480 /ha 

So D1 equation becomes, 

D1 = −
y
x

(D2 + D3)

If we develop it further (taking advantage that y = z), 

D1 = −
− 120
480

(D2 + D3)D2 + D3 = 100 − D1  

D1 =
25

1.25
= 20% 

Now we can work out the minimum value of D1, 

D1 ⩾ 20 % 

Therefore, assuming the model is reliable, the ‘climatic’ observed D1 
fraction also equates to the predicted probability. Thus, whenever the 
probability for AN prediction lies equal or above 20 %, the user will be 
safe triggering the decision corresponding to this category. 

Probability threshold for N predicted conditions 

In this case, since the N conditions are assumed to be what drive the 
BaU, there is no benefit nor loss in using them (see Table 2). 

x = y = z = 0  

Probability threshold for BN predicted conditions 

Finally, in the BN category, if we need to work with hits, we would 
need to isolate D3 (see Table 2 and 3). 

D3 = −
D1 x + D2 y

z 

Where, in this case, 

x = − 305 €/ha ; y = − 220 €/ha ; x = 95 €/ha 

Then, 

D3 = −
( − 305 D1 − 220 D2)

95
= 3.21 D1 + 2.32 D2 

However, even though we use the equation, 

D1 + D2 + D3 = 100 

In this scenario we still have two equations for three variables, so we 
will need to introduce another constraint. To do so we can explore the 
‘best’ and ‘worst’ settings. The ‘best’ would be when D1 = 0, so we would 
only have D2 and D1 events (every time the model ‘fails’ causes the lower 
prejudice). In that situation, 

D2 =
1

2.32
D3 

So, 

D3 =
100
1.43

70% 

Fig. 5. Summary of the seasonal climate service added value per year and scenario (€/ha). Each scenario possibility is represented by pairs of drops (first drop 
corresponds to the prediction and second drop to the observation). The bars show the benefits (on the right, positive values) / losses (on the left, negative values) 
generated per hectare. The added value for the entire vineyard (70 ha) is reported on the left of the figure. The green circle (hit) identifies scenarios when prediction 
and observation match. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
Fraction (%) refers to the percentage of times each scenario has been observed 
(D1, D2 and D3) from the total number of times TRC it has been predicted. 
Scenario shows the prediction (TRC) followed by the actual observation (AN, NN 
or BN). CS Added Value, (

∏
cs -

∏
BaU) is the economic impact of using the CS in 

each of these scenarios compared to BaU (x, y and z).  

Scenario distribution for each specific tercile prediction (TRC) 
Fraction (%) Scenario CS Added Value ∏ cs -∏ BaU 

D1 TRC;AN x 
D2 TRC;N y 
D3 TRC;BN z  
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D3 ⩾ 70% 

It is important to note there would be a ‘theoretical’ better scenario if 
the model was perfect (so D1 and D2 were 0). In that case, whenever the 
model predicted any category it would signal it with 100 % probability 
and always would be correct. However, this would convert our predic
tion into deterministic and, consequently, there would be no probabi
listic threshold to be determined. 

Conversely, the worst case scenario would be when D2 = 0 (every 
time the model ‘fails’ causes the maximum prejudice). In that case, 

D1 =
1

3.21
D3 

And, 

D3 =
100
1.31

76.3%  

D3 ⩾ 76.3% 

n a real working scenario, neither D1 or D2 will be 0. One option to 
achieve a more proper threshold would be to apply the mean on both. 
However, although D1 and D2 are climatologically equivalent, their 
relative impact is not, 

x
y

1.38 

Thus, to achieve the probability threshold in this case we need to use 
a weighted mean. 

D3 ⩾
1.38 ⋅ 76.3 + 70

2.38
= 73.7% 

Here again, assuming the model is reliable, the ‘climatic’ observed D3 
fraction also equates to the predicted probability. Thus, whenever the 
probability for BN prediction lies equal or above 73.7 %, the user will be 
safe triggering the decision corresponding to this category. 

Discussion 

In the three examples considered above, we have seen that the 
probability thresholds that can reassure the user on its actions are deeply 
dependent on the predicted categories and their link with the cost / loss 
/ benefits compared to BaU strategy. More specifically, we have ob
tained the following thresholds:  

• AN: 20 %  
• NN: it is the assumed BaU (no gain possible by using the climate 

service)  
• BN: 73.7 % 

In the BN prediction, for example, we need a very confident model to 
be able to see any benefit from anticipated actions (probabilities above 
73.7 %). This is logical, because of the negative consequences on the 
yield when purchasing less plant protection than needed. 

The AN case, on the other hand, is interesting because the percentage 
is quite low (20 %). This means that even the straightforward SprR 
climatology (~33 % probability for each category, AN, N and BN) would 
offer value to the user even if always applying the AN actions. Actually, 
if we look at the expected CS value in the event, we always assumed the 
AN scenario (having 33 % of ‘climate’ hits), we would see that we would 
have 79.47 €/ha of benefits (see Table 4). It seems that always pur
chasing extra plant protection and contracting extra labour force implies 
less costs than allowing any damages caused by potential yield losses. 

However, as explained in the methodology, this approach accounts 
solely for climate related information of the decision process. Actually, 
wine companies have to deal with broader risks beyond the sanitary 
ones: heat-related (dehydrated, sunburnt grapes, water stress), all sorts 
of pests - insects, birds, even wild boars, hail and others (Wallace & 

Moss, 2005). These risks may impact their own grape production, but 
they also impact the grape production of their grape supply base, i.e. 
farmers growing grapes and selling them to winemaking companies. As a 
result, the strategy and budgeting are set at company level and, hence, 
vineyard managers optimise the grape growing strategy within certain 
boundaries according to these guidelines. This means that although 
converting the AN strategy into the BaU seems to produce better results 
on average the risk associated with the occurrence of a different scenario 
may still be too high in the overall strategic framework of the company. 
Nevertheless, the methodology proposed remains a valid tool to high
light when a climate service based on seasonal forecasts could be used to 
inform decisions for optimising plant protection management in viti
culture, factoring in the costs of both plant protection and canopy 
management together with the value of grapes, which are different from 
region to region and, for the latter, within the same region, often also 
from grape variety to grape variety. 

Behavioural components also importantly affect decision-making. 
For example, an analysis of users’ risk aversion is likely to shift up
wards the acceptable probability thresholds (the first MED-GOLD 
workshop collected evidence in this respect). As previously 
mentioned, the methodology does not attempt to perform an evaluation 
of the Climate Service. Instead, it should serve as a methodological tool 
for users to quickly find the probability threshold that indicates when 
the forecast is appropriate for application in a given context. However, it 
is worth highlighting that once the user uptakes a forecast, this will not 
directly translate into a real-life decision. It will contribute to shaping it 
together with non-climate variables and with the influence of behav
ioural components. In any case, further co/production is needed to 
extend the methodology into more complex considerations for multiple 
outcomes of both concurrent and synergic decisions so as to increasingly 
facilitate the forecasts’ uptake. 

Conclusions 

In this study we have illustrated a methodological approach to 
characterise the probability thresholds that a vineyard manager could 
apply to trigger a likely profitable decision based on tercile categories. 
The vineyard manager needs to answer the following question: “what is 
the minimum probability that makes the associated forecasted occur
rence worth considering in my decision?”. The short answer is: “It de
pends on users’ characteristics and on the decision to be addressed”. This 
paper proposes a simple methodology that can be applied to identify the 
potential decision-triggering probability thresholds, and shows an 
application with a case study. The case study proposed has been based 
on spring rainfall, a critical component in the wine producing workflow. 

In a co-production approach with a large wine company, we have 
firstly identified the bioclimatic indicator that could account for the 
aforementioned spring variable, Douro SprR. Afterwards, we have 
economically characterised different decisions that could be adopted in 
each tercile scenario, as well as the BaU to compare with. Finally, we 
have put forward a methodology to consider the minimum probability 
for having positive results when including costs, losses and benefits in 
each decision scenario. The advantages of this co-production 

Table 4 
Aggregated climate service value using climatological probabilities (in the AN 
prediction scenario).  

Scenario Climate 
Service 
Added 
Value 
∏cs-∏BaU 
(€/ha) 

Climate 
probability 
(observed) 

Weighted 
Climate service 
Value (€/ha) 

Aggregated 
Climate Service 
Value (€/ha) 

AN;AN 480 0,33  158.4  
78,8 AN;N ¡120 0,33  − 39.6 

AN;BN ¡120 0,33  − 39.6  
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methodology consist in the trust created by the engagement with the 
user and the high level of tailoring of the analysis performed, posing the 
basis for user risk profile analysis. The drawbacks lay in the use of a 
simplified theoretical framework and the need of engaging new users for 
replication. 

The results obtained under the specific technical, climatic and eco
nomic situation of a significantly large vineyard in the Douro Valley of 
Portugal, point towards the adoption of AN as a better BaU. Actually, the 
expected payoffs suggest that acting to prevent above normal rainfall is 
the best default strategy because a forecasted probability of 20 % of 
above normal rain is already sufficient to take action against the risk and 
see benefits. On the other hand, a high probability, 73.7 %, of dry 
conditions should be signalled by the forecasts for the user to act 
accordingly. However, in the real world the user is not subject to a single 
decision and climate is not the only variable affecting them. Moreover, 
risk preferences play an important role. Future co-production can 
address the integration of non-climate variables and risk preferences in 
the analysis. 

A potential caveat of this approach, and a topic for future research, is 
that we have assumed perfect reliability of the climate models. That is to 
say, the forecasted probabilities are the ones that would be observed 
climatologically if we had enough predictions with the same forecast 
probability to do the computation. This seldom happens with climate 
models and so one further step needed to be able to bridge the gap be
tween seasonal forecast climate services and users’ adoption, is to 
include this uncertainty in the computation of any probability thresh
olds aimed to work as ‘decision-triggers’. 

Finally, the method followed in this case-study can be easily applied 
to different cases as long as it is tailored to the user’s costs and benefits. 
It’s worth noting that the thresholds elicited in this case study are only 
for methodological purposes, because different users and decisions may 
require other threshold values. Another topic for future research could 
be to generalise the computation of the probability triggers, e.g., 
through an indicator, to offer a flexible framework where the user could 
obtain the thresholds based on information that they could provide by 
themselves. 
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