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A B S T R A C T   

The present work proposes a novel autonomous Internet of Things (IoT) spectral sensing system for in-situ optical 
monitoring of grape ripening through reflectance signals. To this end, tailor-made hardware for this IoT end node 
was developed, characterized, and operated in both lab and field conditions. It included three complementary 
modules: the optical module, the host module, and the controller module. The optical module included four 
photodetectors and four LEDs with maximum emission wavelength centered at 530, 630, 690, and 730 nm that 
was placed in direct contact with the grape berry. The host module included the LED driver and the analog front- 
end for signal acquisition. Finally, the controller module provided full control of the system and ensured data 
storage, power management, and connectivity. The system was capable of measuring reflectance in the range of 4 
– 100 % with a linear response (r2 > 998) and with a high reproducibility among different optical units. This 
design made it possible to collect reflectance signals from red (cv. Touriga Nacional) and white (cv. Loureiro) 
grape varieties in both lab and field environments. The relationship between this optical fingerprint (comprised 
of the different reflectance intensities recorded) and the evolution of grape berry quality parameters throughout 
the ripening period (for approximately two months), was analyzed and discussed. Lab data was used to establish 
a multivariate model based on Partial Least Squares for the prediction of the Total Soluble Solids (TSS) content in 
both varieties. The model error (Root Mean Square Error in Cross Validation) was 2.31 and 0.73 ◦Brix for Touriga 
Nacional and Loureiro, respectively. This model was applied to data acquired in the field in an illustrative 
example of the potential of the system to predict TSS in real time. The field observations collected during the 
monitoring period also provided relevant information about the potential issues that may occur during the 
unattended operation of the optical sensors. Additionally, the modular architecture of the optical module pro
posed makes it possible to use different LEDs and photodetectors, as well as the assembly of optical filters. This 
creates the possibility of using the same principles for measuring reflectance in different spectral ranges (e.g. IR) 
or even fluorescence. The results herein described paved the work for future developments of this technology 
that will include the development of prediction models for the most relevant grape ripening parameters based on 
reflectance data, as well as its operation as part of a Wireless Sensor Network.   

1. Introduction 

The current combination of the challenges posed by climate change 
and the rapid transformation of the economic value chains is paving the 
ground for developing a new generation of decision-support systems for 

viticulture (Pérez-Expósito et al., 2017; Tardaguila et al., 2021). In fact, 
Precision Viticulture has been growing over the last decades, with ad
vances and applications in multiple areas, from soil quality to selective 
harvesting (Tardaguila et al., 2021). 

One of the most relevant aspects of modern viticulture and 
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winemaking, coined as the synergic “vineyard-winery” alliance, is the 
quality control of the wine’s raw material - the grape (Río Segade et al., 
2019), which is the basis for the production of high quality (and valued) 
wines. The current gold standard of monitoring grape maturation is still 
based on the manual and random sampling of berries within a block 
followed by a series of wet-chemistry assays in the lab that imply the 
destruction of the sample (OIV, 2022). An alternative to the classic lab- 
based approaches is the use of optical techniques in different agricul
tural applications (Weiss et al., 2020), from soil and plant status to agri- 
food products. In the latter case, it is possible to find a strong focus on 
instrumentation based on NIR technologies coupled with chemometrics 
techniques (Francisco et al., 2017; Zhang et al., 2021). 

New strategies based on optical sensing for monitoring grape ripe
ness have been also recently reported in the literature. This includes 
spectral measurements using optical instruments capable of measuring 
reflectance (dos Santos Costa et al., 2019) or fluorescence (Agati et al., 
2007), as well as the proximal imaging of the grapes (Fernández-Novales 
et al., 2021; Gomes et al., 2021). Other strategies, such as the optimi
zation of the sampling protocol for the wet-chemistry analysis of 
maturation using satellite Normalized Difference Vegetation Index 
(NDVI) information (Meyers et al., 2020), have been also reported. 

Although all these advances provided a significant evolution from 
the state of the art, these technologies are still unable to provide real- 
time information in a fully autonomous fashion. To this end, it is 
necessary to operate a Wireless Sensor Network (WSN), where multiple 
end nodes can provide information about the vineyard. This is also a 
growing topic in precision agriculture, where Internet of Things (IoT) 
technologies have been changing agricultural production (Xu et al., 
2022). The typical IoT architecture deals with the physical devices that 
generate data (e.g sensors), the network that ensures the transport of the 
data, followed by the processing of this data to generate meaningful 
information. The combination of these layers has been exploited in a 
plethora of agricultural applications that include, crop monitoring, 
disease prevention, irrigation control, and soil management, among 
others (Navarro et al., 2020). IoT is also one of the main drives of Pre
cision Viticulture (Ferro and Catania, 2023), where the combination of 
multiple data sources can create complex tools for monitoring the 
vineyard (e.g. pest control (Spachos, 2020)). 

A potential approach to implement IoT technology in the real-time 
monitoring of the grape’s ripening is the use of simplified spectral sen
sors as sensing nodes. These sensors include the use of pre-defined 
spectral bands that can be a source of analytical information about the 
ripening status of the grape berries. The use of simplified optical devices 
to measure either reflectance (Giovenzana et al., 2015) or fluorescence 
(Agati et al., 2013) has been reported in the literature. In contrast to the 
majority of commercial instruments that measure the light interaction 
with the sample in a pre-defined continuous spectral range, these 
simplified instruments rely on the measurement of pre-defined optical 
bands. This results from the possibility of extracting the most relevant 
variables from the Vis/NIR reflectance spectra of the grape berries using 
chemometric tools (Giovenzana et al., 2014). An alternative strategy is 
based on the multiple interactions of chlorophyll fluorescence with some 
of the most relevant compounds (e.g. anthocyanins) of the grape 
ripening process (Agati et al., 2007). Some recent works focused on the 
downscale of these concepts. This includes the use of prototypes based 
on commercially available integrated optical components supplied in 
breakout boards that combine auxiliary electronics, a light source 
(normally a white LED), and a spectral sensor composed of a photodiode 
array with integrated optical filters (Pampuri et al., 2021b). This optical 
configuration allowed the acquisition of multiple reflectance signals that 
correspond to the spectral bands defined by the bandpass filters (from 
450 to 860 nm) using two individual spectral sensors. In this case, the 
optical bands (number and central wavelengths selected by the optical 
filters) targeted by these integrated devices were not tailored for these 
measurements, and some of them have a significant spectral range 
overlap. Despite their reduced size and the possibility of being part of 

portable optical devices (Pampuri et al., 2022), the physical configura
tion of these commercial devices makes them unsuitable to be embedded 
in the grape bunch, making it impossible to use them as autonomous 
sensors. Moreover, although these instruments are based on a simplified 
and downscaled concept, they still require an operator when used either 
in lab or field environments. 

In this context, the objective of this work is to introduce the first 
version of a prototype of a stand-alone system based on a simplified 
spectral sensing system that is capable of providing reflectance mea
surements directly from the grape bunch in a fully autonomous fashion, 
as originally described in a patent of the authors (Freitas and Piteira, 
2018). This system is an IoT device intended to be the end node of a 
WSN. Taking this context into account, this work has the following 
objectives: (i) describe the design and development of the IoT spectral 
sensing system, (ii), characterize the ability of the system to measure 
reflectance signals, (iii) identify and discuss the main features of the 
optical signals acquired in both lab and field environments, (iv) develop 
an illustrative prediction model for Total Soluble Solids (TSS) based on 
lab data, and (v) show a proof of concept of the application of the pre
diction model to data acquired in the field by the proposed spectral 
sensing system. Hence, these objectives pave the ground for the ultimate 
objective of this work, which is its use for the autonomous in-situ 
monitoring the chemical parameters of grape ripening, from veraison 
to harvest. 

2. Materials and methods 

2.1. Hardware design 

To make possible the in-situ optical measurements, the proposed 
autonomous spectral sensing system acting as an IoT end node (Fig. 1) 
included three complementary modules: (i) the optical module, which 
carried the optical sensing elements of the system, (ii) the host module, 
which carried the LED driver and the analog front-end, and (iii) the 
controller modules, which ensured the control, power management and 
IoT connectivity of the whole system. In its current version, each node 
configuration has a controller and two optical sensor sets, which include 
two optical modules and their respective host modules (Fig. 1). For lab 
measurements, a single optical module configuration was adopted. 

2.1.1. Optical module 
The optical module is composed of four LEDs and four photodetec

tors assembled onto a substrate. The arrangement of those optical parts 
is illustrated in Fig. 2. The optical components (LEDs and photodetec
tors) were supplied by Chips4Light (Sinzing, Germany). LED were pur
chased in bulk die format, all with similar chip size dimensions of ~ 300 
x 300 µm. The LEDs used had a dominant wavelength of 530.3 nm 
(CREE-C527EZ2290), 637.1 nm (C4L C4L-S12T5), 685.7 nm (Light 
Avenue LA-AI13WP3), and 730.7 nm (Light Avenue LA-CI13WP3), 
respectively. Four identical photodetectors (PDs) also in die format, 
with an area of 700 x 700 µm and a sensitivity in the spectral range 
comprised between 390 and 800 nm (Light Avenue LA-PD28AP1), were 
part of the optical layout to collect the reflected light from the sample. 
The operation point of the PDs was in a short circuit mode (0 V bias). To 
minimize the stray light of the system, a 3D-printed plastic barrier with 
3 mm thickness painted with a mate finishing black ink was placed 
between the LEDs and the PD array. 

Fig. 2 illustrates the optical module prototype that was developed 
and assembled in two different substrates – flexible printed circuit board 
(RIGID.flex PCB) and polyimide - that included the same optical com
ponents and features. For the flex-PCB, it was used a commercial 
fabrication process from Würth Elektronik (Waldenburg, Germany), 
whereas for the polyimide-based modules it was used a substrate 
fabricated through an in-house process. 

For the flex-PCB, the commercial RIGID.flex PCB fabrication process 
from Würth Elektronik (Waldenburg, Germany) produced a stripe with 
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one rigid section (a square two-layer PCB with a side size of 11.5 mm) 
and a flexible polyimide section with 100 mm length. LEDs were placed 
outside the barrier while the photodetectors were placed at the center, 
as illustrated in Fig. 1. 

For the flexible polyimide substrate, the in-house fabrication took 
place on a 4-inch silicon handle wafer to allow parallel fabrication of 
several sensor units. The process was based on a flexible polyimide 
substrate obtained by spin coating and the deposition of the conductive 
tracks. The final assembly is represented in Fig. 2b. 

2.1.2. Host module 
The host module included the electronics for driving the LEDs and 

the analog front end to handle the analog signals generated in the optical 
module. Regarding the LED driver, A LED driver from Semtech (Cama
rillo, USA) was used to provide a driving capability of up to 50 mA in 
steps of 31.25 µA. This driver is supplied at 5 V providing enough 
headroom for the LEDs with higher forward voltage. All LEDs were 
operated from a 5 V supply, capable of turn-on all LEDs (above forward 
voltage) with a maximum current of 50 mA. 

To handle the analog signals, the host module carries a low-offset, 
low-drift, and low-noise 4-channel integrated Transimpedance 

Ampiflier (TIA) (AS89000 from AMS Premstätten, Austria), a channel 
for each photodetector in the optical module. In this part, each TIA has 8 
gain (resistance) settings: 25 kΩ, 100 kΩ, 500 kΩ, 1 MΩ, 2 MΩ, 5 MΩ, 10 
MΩ, and 20 MΩ. The TIA output voltage is then fed to an Analog to 
Digital Converter (ADC) (MAX11614, Maxim Integrated Products, 
Sunnyvale, USA) with 12-bit resolution. This ADC version (MAX11614) 
has 8 analog input channels that could be configured for unipolar/bi
polar and single-ended or differential mode operation (providing 4 dif
ferential multiplexed input channels). The used configuration of the host 
module was set for unipolar and differential operation (Fig. 3b Vout – Vref 
at the input of ADC) with a supply voltage of 5 V. Converted digital data 
can be retrieved via the I2C bus ADC interface. 

2.1.3. Controller module 
The controller module runs software (firmware) capable of control

ling the operation of optical and host modules, executing the sequence 
for optical module data readout, managing system power providing low- 
power sleep and standby operation modes, and data transmission sup
ported by an IoT connectivity (Fig. 4). The central piece of this system is 
an ARM Cortex-M0 + microcontroller running at 16 MHz (ATMEL 
ATSAML21G) with 128 KB flash memory and ultra-low-power 

Fig. 1. Internet of Things spectral sensing node with two optical modules (optical sensing heads) (a): detailed representation of two different optical modules (more 
details in section 2.1.1) connected to a host module (b), and detailed view of the installation of the spectral sensor for field measurements (c). 

Fig. 2. The optical module of the IoT spectral sensing system proposed. View of the arrangement of the optical components of the spectral sensor (LEDs and 
photodetectors), as well as the area where a discrete optical filter can be mounted (a), and flex-PCB (top), and polyimide-based (bottom) optical modules (b). 
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performance (35 µA / MHz in active mode and 200nA in Sleep mode). 
Additional features and peripherals such as serial interfaces Serial Port 
Interface (SPI) and Inter-integrated circuit (I2C), and Real-Time Clock 
(RTC) are embedded within the microcontroller chip. The controller 
module was connected to the host module via a serial I2C bus and can 
support up to four modules with addresses physically set by two bits in 
the host module PCB. 

As for IoT connectivity and data transmission, the Controller module 
uses the RN-2483A from Microchip which supports Lorawan full stack 
protocol. This Lorawan module takes on SEMTECH LoRa Transceivers 
operating in the 868 MHz ISM bands (EU) to provide for low data rate 
transmission over a 10 to 15 Km line-of-sight range (Xu et al., 2022). The 
Lorawan bandwidth and modulation configuration was a trade-off be
tween MAC payload size, lower airtime and maximum range. For a 
maximum allowed payload size (222 bytes) and optimized range, the 
configuration was set to a spreading factor (SF) 08 and a bandwidth of 
125 kHz. The Adaptive Data Rate was disabled and the gain of the used 
antenna was 1.6 dBi. These settings reduced the bit rate but allowed a 
larger number of nodes within the network (lower airtime). The central 
microcontroller firmware prepares data packets from sensor readout 
data and communicates with the Lorawan module through the serial 
Universal Asynchronous Receiver Transmitter (UART) port issuing 
‘Attention’ (AT) commands that activate Lorawan functions for joining 

the network and transmitting data. 
For standalone operation, the controller has a Li-Ion battery (Padre 

Electronics PD655255 with a capacity of 2300 mAh) and a power 
management hardware section that includes a Li-Ion battery charger 
(Microchip MCP73833) that charges the battery from the USB port (5 V), 
two DC-DC converters (TPS63001 and TPS63002) and a RTC battery. 
The DC-DC converters are two buck-boost regulators that provide the 5 
V and 3.3 V supply voltage when operating from the battery. A micro-SD 
card data storage was included for data persistence/redundancy pre
venting data losses from RF Lorawan transmission. 

2.2. Grape samples 

Grapes from cv. Touriga Nacional (TN, red variety) were collected in 
the winegrowing region of Douro Valley at Quinta do Seixo (Sogrape 
Vinhos, Tabuaço, Portugal) from late July to mid-September 2020. 
Within the same period, grapes from cv. Loureiro (LOU, white variety) 
were collected in the winegrowing region of Vinho Verde, at Quinta de 
Azevedo (Sogrape Vinhos, Barcelos, Portugal). Each sample corre
sponded to a random collection of 200 berries from a single vineyard 
row, from a total of 10 rows of the selected vine-plot, to cover the 
variability between berries at each sampling time. Then, the analyses 
were performed in lab scale conditions using the optical sensor to test 

Fig. 3. Host module - LED driver and Photodiode signal acquisition (a), and photodetector signal path - trans-impedance amplifier (TIA) with the gain set by R1 and 
differential input ADC (b). 

Fig. 4. Detailed representation of the main components of the controller module mounted on an IP67 box.  
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(qualitatively and quantitatively) the sensor’s optical behavior of each 
sample in comparison with the reference analysis for the quantification 
of the Total Soluble Solids (TSS, ◦Brix) using a digital refractometer. 

Therefore, from each of the 200 berry samples, a set of 30 berries was 
analyzed optically and the entire amount of 200 berries (with the 30 
included) was then analyzed for the TSS quantification after mixing (30 s 
using a home blender) and filtering of each sample bulk. 

The samples were collected on 6 different days for TN and 4 different 
days for LOU (for a total of 76 and 42 samples, respectively). The 
complete calendar of the sampling campaign is available in Table S1 as 
part of the Electronic Supplementary Information (ESI). 

In addition, one node was placed directly in the field (Quinta do 
Seixo, Sogrape Vinhos, Tabuaço, Portugal) to autonomously monitor the 
ripening evolution of cv. Touriga Nacional daily (Fig. 5). Each optical 
module pointed an individual grape directly at the grape bunch. The 
node measured from the 23rd of July to the 16th of September (from the 
onset of ripening – veraison, to harvest). 

2.3. Optical data collection and processing 

Two complementary modes to measure the reflectance signals from 
the grapes in both lab and field environments were adopted. In the first 
case, after field sampling, the analysis in the lab environment was per
formed by placing each berry on top of the optical sensor (onto the 
optical barrier) and covered by a black plastic case (Fig. 5). In the case of 
field measurements, the sensors were placed into the grape bunch, in 
direct contact with a single grape berry. A plastic cable tie was used to 
minimize the potential movements of the optical modules due to 
external factors. Eleven measurement cycles were recorded each 30 min, 
from 00:00 to 05:00, comprising a total of 11 measurements per day. 
The measurements were taken during the night period to minimize 
potential background issues caused by ambient light and dark current 
(related to the high temperatures). Reference reflectance spectral data 
was collected from individual grape berries using a Jaz Modular Optical 
Sensing Suite (OceanOptics, Dunedin, FL, USA). 

The sensor and grape conditions in terms of grape berry integrity and 
sensor position were evaluated concurrently on the field sample 
collection dates along the monitoring period (t0, t1, t2, t3, t4, and t5) 
according to five qualitative attributes: (i) berry in very good conditions, 
(ii) berry in good conditions, (iii) berry in fairly good conditions, (iv) 
berry in compromised conditions, and (v) berry in extremely compro
mised conditions. Such attributes were used as a qualitative label to 
evaluate the meaning of the data in the unsupervised explorative data 

analysis (description below). 
The optical measurement cycle consisted of the illumination of the 

berry with each individual LED followed by the signal acquisition for 
each photodetector, turning on and off each LED in a sequencing cycle 
with the corresponding readout by the four photodetectors. At the end of 
the four LEDs turn ON cycle, a final acquisition without any illumination 
was performed to screen the influence of potential background light. 
Therefore, each measurement cycle consisted of 20 readouts (each in
dividual readout corresponded to an average of 16 acquisitions). The 
Signal to Noise ratio (SNR) of the photodetector’s signal chain is opti
mized for each measurement by an Automatic Gain Control (AGC) al
gorithm which sets the amplifier (TIA) gain for maximum SNR. The 
resulting readout can be normalized by dividing by the gain setting for 
each measurement. For the field measurements, the nodes were set to 
perform the analysis overnight following the same measurement cycle 
and repeated 11 times per day (every 30 min, from 00:00 to 05:00). The 
same procedure was also used to calculate the normalized sensor 
readout. 

In post-processing, given the need of an analytical approach capable 
to extract chemical information from 20 optical data of each measure
ment cycle, the sensor readouts were analyzed following a chemometric 
approach. For this reason, the two data matrices (composed by 76 and 
42 samples of TN and LOU, respectively) were arithmetically autoscaled 
column-wise (substracting the column mean and dividing by the column 
standard deviation eanch value of each column, equation (1) to give the 
same importance to all the optical outputs. 

x̂i =
xi − x
std(x)

(1)  

where ̂xi is the autoscaled value, xi is the original value of a data point, xi 
is the column mean of the optical variable and std(x) is the column 
standard deviation of the optical variable. 

Then, the Principal Component Analysis (PCA, usupervised method 
based, in this case, on singular value decomposition) was applied to 
explore variability retained in both lab and field optical data to detect 
any possible source of information related to the grape ripening profile. 

Afterward, using the lab data, a linear modelling based on the Partial 
Least Squares regression (PLS) method (which maximizes the covariance 
among the optical readouts and the wet-chem reference analyses (TSS)), 
was carried out to calibrate a predictive model for TSS quantification 
(Tugnolo et al., 2021; Wold et al., 2001). Model accuracy was evaluated 
(in calibration and cross-validation) using the RMSE (Root Mean Square 
Error), as well as bias and R2 (coefficient of determination); the lower 

Fig. 5. Configuration of the optical module for performing optical measurements in both lab and field environments.  
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the error and the bias and the higher the R2 (as maximum equal to 1), the 
better the model performances. Once calibrated, the model was applied 
for field measurements to have a first screening of the sensor applica
bility in field. 

The entire data process was performed in Matlab® environment, 
version 2020b (The MathWorks, Inc., Natick, MA, USA) using both the 
PLS-Toolbox package (Eigenvector Research, Inc. Manson, Washington) 
and in-house functions (both Matlab built-in functions and self-made 
operations for sensor raw data management). 

3. Results and discussion 

The IoT spectral sensing system proposed here considered three 
major aspects: (i) installation and operation compatible with the 
deployment of the sensor inside the grape bunch, (ii) operation in both 
lab and field environments, and (iii) full autonomous operation for the 
complete ripening season after deployment. Thus, it was necessary to 
design a flexible optical substrate with a dimension of ~ 12 x 12 mm 
where the optical components were installed. The system was also 
envisioned to operate not only in the field environment but also in the 
lab due to the need of develop the calibration models. This implied the 
control of a different number of sensors for each particular case (two 
optical modules per controller for field operation and one module in the 
case of the lab operation). In the case of the lab operation, the data 
transmission was switched off. Finally, a strong effort in the power 
management of the system was needed to minimize the power con
sumption per measurement cycle. This strategy ensured the operation of 
the system for the complete ripening season without recharching or 
replacing the battery. Additionnaly, the system was designed consid
ereding its potential scability at an afforable cost, which is a key feature 
for future upscale and deployment of the proposed end-node in a WSN. 

3.1. Design of the optical module 

The use of the optical properties of the grapes to predict their 
ripening quality parameters has been performed by benchtop and/or 
portable instrumentation (mainly by manual operation) to acquire the 
diffuse reflectance signals as a full spectrum in the Vis/NIR range 
(Ferrara et al., 2022; González-Caballero et al., 2012). To simplify this 
scenario, which makes it impossible to upscale these applications due to 
the high cost of the instrumentation and its respective operation, pre
vious research also reported simplified instrumentation based on 
selected optical bands (Giovenzana et al., 2015) (Pampuri et al., 2021b; 
Ribera-Fonseca et al., 2016). 

This simplification was based on the most relevant spectral changes 
that are associated with the quality parameters of the grapes during their 
ripening stage. During the crop season, relevant variations in the green 
region (around 530 nm) are noticeable from veraison to harvest due to 
the grape berry pigmentation (development of anthocyanins, in red 
grape varieties, and disappearance of greenery) (Agati et al., 2008). The 
same variation is noticed also around 680 nm, associated with the 
chlorophyll absorption peak, which also degrades with the development 
of sugars and anthocyanins (Rocchi et al., 2016). In the short wave near- 
infrared region, a maximum reflectance peak is shown around 730–750 
nm related to the third overtone of –OH bond stretching. Changes 
related to the development of sugars and the decrease in water content 
are well correlated to the absorption of this overtone (Giovenzana et al., 
2014). Based on this background, our band selection included four op
tical bands in the Vis/NIR range highlighted in Fig. 6. These bands 
corresponded to the dominant wavelength of the LEDs used to build our 
prototype: 530, 630, 690, and 730 nm. Due to the importance of chlo
rophyll degradation in the grape ripening process, a second optical band 
(centered at 630 nm) around the absorption peak of the chlorophyll was 
added. 

To collect the reflected light from the sample, PDs with a sensitivity 
compatible with the target reflection signals, from 500 to 800 nm, and a 

sensitive area of 0.27 mm2 as part of the optical module were used. An 
array of four PDs was managed to add redundancy to the measurement 
setup. A 3D printed optical barrier (with external dimensions of 9.0 x 
6.0 x 3.0 mm) was placed between the LEDs and PD array to minimize 
the stray light that reached the photodetector (footprint illustrated by a 
red line in Fig. 1). These optical components and the barrier were 
assembled in two different substrates: flex-PCB and polyimide. Although 
measurements were possible using both sensors (that also assured the 
flexibility needed for installing the sensor into the grape bunch), the 
following results were based on the flex-PCB-based sensors. This is due 
to its easier scalability, which was a key aspect of producing several 
units for both lab and field testing. The proposed layout is also 
comprised of a modular architecture that can accommodate different 
LEDs and photodetectors. Hence, it can be used not only to measure the 
direct light interaction with the grapes (Jenne and Zappe, 2023) for 
reflectance measurements but can also be adapted to other applications 
with minor modifications. For example, photodetectors (Fig. 2a) can be 
fabricated on different materials that modify the sensitivity of the 
detection in the Vis range (e.g. a-Si:H and CMOS) or cover the IR (e.g. 
InGaAs). The same rationale applies to the LEDs used for illumination 
(Fig. 2). Additionally, it is also possible to include optical filters on top of 
PDs in either discrete or integrated configurations. In the former case, 
the filter can be installed inside the cavity provided by the optical bar
rier, whereas in the latter case, the filter(s) can be monolithically inte
grated into the PD (Nikolaidou et al., 2022b). This feature makes it 
possible to perform fluorescence measurements based on the same ar
chitecture of the optical module. 

3.2. Design of the host module 

The host module had two fundamental functions: to drive the LEDs 
used as light sources to illuminate the grapes, and to condition the 
analog signals generated by photodetectors (Fig. 3a). 

The hardware design of the LED driver section in the host module has 
to meet the LEDs maximum drive current and their corresponding for
ward voltage. The four LEDs (presented in 2.1.2) due to their physical 
nature (various monochromatic wavelengths) have intrinsically four 
different forward voltages. The forward voltage of a LED is the voltage 
drop at its terminals that allows current to pass through the LED to emit 
light. The detailed characteristics of the different LEDs are available in 
Table S2. 

To get a constant light-intensity from a LED, it should be driven with 

Fig. 6. Vis/NIR reflectance spectra of a grape (cv. Touriga Nacional) collected 
at veraison (t0) and harvest (t5) collected by a commercial spectrometer (Jaz 
Modular Optical Sensing Suite, OceanOptics, Inc., Dunedin, FL, USA). 
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constant-current, which is the role of the Semtech LED driver. Since the 
maximum current driving capability of this driver is 50 mA, we have set 
the forward current at 50 mA in all LEDs for maximum luminous in
tensity, which means that in some cases the forward voltage will be 
slightly higher than the nominal value defined for each LED. The highest 
forward voltage has been set by the 530 nm LED that with a 50 mA 
forward current corresponds to 3.6 V, thus requiring a 5 V power supply 
in the host module to have enough headroom for LED operation. All 
remaining LEDs will operate well below that value, in the range of ~ 2 V 
forward voltage. 

Four identical photodetectors (PDs) were assembled with the four 
LEDs (Fig. 2). The reflectance measurements have to detect low- 
luminance optical signals that generate low-level photocurrents in the 
range of pA to µA at the output of the photodetector. In precision optical 
sensing, a direct conversion between the photocurrent and the output 
voltage is usually made with a trans-impedance amplifier (TIA), having 
the photodetector in photovoltaic mode with zero-volt biasing (or with a 
negative voltage bias). 

Without any illumination, these photodetectors generate a very 
small current, in the range of pA (also known as dark current), but as 
light intensity increases this current can be in the order of μA. A classical 
resistive Trans-Impedance Amplifier (TIA) topology was used in this 
design with Vref setting the photodetector biasing voltage as shown in 
Fig. 3b (Vref can be a zero or negative voltage). A programmable feed
back resistor sets the gain in this TIA topology (AS89000 with 8 gain 
settings), generating a voltage output to be digitized by an Analog to 
Digital Converter (ADC), thus maximizing Signal-to-Noise Ratio (SNR), 
despite the feedback resistance thermal noise. The selection of ADC was 
made on the assumption of a very low sampling rate operation to reduce 
power consumption and also optimize the overall SNR in the readout 
signal chain. Operating at a 5 V power supply, the ADC power con
sumption is extremely low at a low sampling rate: 670 µA@94.4 ksps. 

3.3. Design of the controller module 

The main function of the controller module is to generate the readout 
sequence of the optical sensor from each set of host module/optical 
modules, to process the acquired data, store, and wirelessly transmit this 
data into an IoT database (the detailed operation sequence is described 
in the ESI section “Operation sequence and power consumption of the 
controller module”). In addition to this function, the hardware has been 
optimized to meet low power consumption and data persistence, as well 
as provide long wireless range transmission. The central piece of this 
hardware is the ARM processor ATSAML21G (ARM Cortex-M0 + ), 
which runs at 16 MHz and has 128 KB flash memory being enough to 
accommodate all the firmware code and acquired data. It has low power 
features as low as 35 µA/MHz in active mode and 200 nA in sleep mode. 
This contributed to low power consumption when the complete system 
is in sleep mode, which is the dominant operation mode throughout the 
measurement cycle. Connected to this microcontroller, there is a set of 
peripherals interfacing through serial synchronous interfaces (SPI and 
I2C) and a UART serial port (for the AT commands) that complete the 
necessary functionality for this controller (Fig. 4), such as a LoraWAN 
module, a SD card reader slot, a RTC battery, and a system battery. The 
operation sequence and its respective power consumption are detailed in 
Table S3. The estimated daily average power consumption for the daily 
data acquisition cycle was estimated to be less than 15 mA per operation 
day, which translates to a requirement of at least 1800mAh system 
battery in a 4 month season duration (~120 days, June to September). 
The battery was sized with a capacity of 2300 mAh which is enough to 
cover those power consumption requirements without recharging the 
battery during the season (from deployment/installation to harvest 
time). 

3.4. Hardware operation and digitalization flow 

The workflow of the proposed system is illustrated in Fig. 7. The first 
step to operating the system in a fully autonomous fashion consists in its 
field deployment. Hence, the field installation consisted in inserting 
each individual optical module into the grape bunch, pointing directly to 
one grape. To minimize potential movements of the optical module, 
plastic cable ties were used to hold the flat cables (e.g. picture of the 
graphical abstract). After the physical attachment of the optical modules 
to the grapes, a priming measurement cycle was run to test the mea
surement cycle and the data transmission. After this step, the installation 
was concluded and the system slept until the first alarm was triggered to 
start the measurement cycle (up to 18 alarms could be preset). 

After running a measurement sequence, the raw data was stored in 
the SD card and a compressed payload of this data is transmitted to a IoT 
network server (MQTT – Message Queuing Telemetry Transport broker). 
Then, this payload is uploaded in a database, followed by its analysis by 
the pre-trained models contained in the software app. 

Due to the complexity of the several layers involved in the complete 
application, the present work focused on the hardware side and its ca
pabilities to be an autonomous end node for grapes’ ripening moni
toring. Therefore, all detailed aspects related to the development and the 
use of the prediction models, in addition to the operation of the nodes in 
a WSN are out of the scope of the current work and will be presented 
elsewhere. 

3.5. Grape berries ripening reference analysis and optical measurements 
in lab environment 

Table 1 summarizes the descriptive statistics related to the grape 
wet-chem reference analyses (TSS) carried out on the two varieties taken 
into consideration (TN and LOU). Overall, a significant variability has 
been observed for both grape varieties, and TN showed quite high TSS 
values at the end of the sampling campaign since is one of the red grape 
varieties used for the production of fortified wines (i.e., Port wine). 

Beyond the hardware perspective detailed in section 3.1, the optical 
prototype was designed to accommodate a good compromise among the 
existing optical indexes for grape ripening monitoring, the application in 
a real scenario, and the technical requirements of an IoT stand-alone 
sensor (e.g. power management and data payload). These sensors 
were characterized in a lab environment using reflectance standards (a 
detailed explanation of the characterization and its respective results is 
available in the ESI section “Characterization of the reflectance mea
surements”, Table S4 and Fig. S1-S4), being able to perform consistent 
reflectance measurements from 4 to 100 % in the optical bands of in
terest. Fig. 8 shows the optical readouts of the two grape varieties (TN 
and LOU) collected in the lab during the season 2020. The optical out
puts were rearranged to show the grape berry optical signature acquired 
from each photodetector (labeled as channel – ch – for the sake of 
simplicity) at each LED, including the signal with all LEDs switched off 
(background signal). At a glance, a different evolution of behavior is 
noticeable from Fig. 8a to Fig. 8b, strictly related to the nature of the red 
grape variety (TN), which acquired a purplish color right after the sec
ond sampling session (t1 (Aug-05), Fig. 8a). Conversely, the white va
riety LOU maintains a higher reflective capacity showing a yellowish 
coloration till the moment of harvest (t3 (Sep-17, Fig. 8b). 

These differences are related to the concentration of anthocyanins, in 
the case of red grape varieties. Indeed, these phenolic components are 
absent in LOU while they increase over time (from veraison, t0, to har
vest, t5) for TN leading to low reflectance values, especially at 530, 630, 
and 690 nm. 

Since the final goal of the stand-alone prototype is to predict different 
maturation parameters using reflectance signals of four discrete optical 
bands, the “maturation indexes” (developed using the ratio between 
reflection signals at different optical bands (wavelengths)) reported in 
the literature (e.g. (Giovenzana et al., 2014; Ribera-Fonseca et al., 
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2016)) have limited predictive performance for the sensors placed inside 
the grape bunch. This is due to the intrinsic characteristics of the field 
conditions that include scattering effects, uncontrollable optical path, 
tissue heterogeneities, instrumental noise, and environmental effects (e. 
g., rain, wind, plant infections), among other sources of variability. 

This was bypassed by adopting a multivariate-based strategy capable 
of extracting useful chemical information related to the ripening profile 
leaving the noise sources outside the data computation. Therefore, PCA 

was applied to explore the data acquired in lab-scale conditions that was 
affected by collinearity. The readouts related to the signals registered 
from each channel with the LEDs off (background) were excluded from 
the dataset used for PCA because they were not considered significant 
and influential during the calculation (recorded values with a value of ~ 
0 counts). 

Fig. 9 shows the PCA outcome (scores and loadings) for TN. In this 
case, to better display the results, PCA scores were represented against 
the sample number associated with the TN dataset (sorted by sampling 
time). PC1 (Fig. 9a) describes 88 % of the total information included in 
the TN dataset. Two main clusters can be highlighted from positive to 
negative values of PC1, which represent the color change of the berries 
associated with the ripening process (from green to purple) that 
occurred from t0 to t1-t2. This behavior was confirmed by the constant 
positive loadings of PC1 (Fig. 9c) related to the constant decreasing 
reflectance trend of the grape samples (due to the anthocyanin accu
mulation) during the ripening process. Additionally, PC2 (Fig. 9b) de
scribes approximately 8 % of the total variability. PC2 shows an 
interesting increasing trend (from negative to positive values) related to 
the ripening process which occurs after veraison (t1-t2). The loadings of 

Fig. 7. Digital workflow of the proposed spectral sensing system.  

Table 1 
Descriptive statistics of the Total Soluble Solids (TSS) analysis obtained from cv. 
Touriga Nacional (TN) and cv. Loureiro (LOU) samples through the laboratory 
reference method.  

TSS (◦Brix) 

variety number of 
samples 

mean std min max skewness kurtosis 

TN 76 3 a  7.05  7.00  33.70  − 0.49  2.21 
LOU 42 1.55b  1.84  13.34  20.30  − 0.70  2.52 

std: standard deviation 

Fig. 8. Reflectance readouts (raw data) of each LED (530 nm, 630 nm, 690 nm, and 730 nm) photodetector (ch1, ch2, ch3, and ch4) combination, as well as the 
background signal (labeled as off). Readouts were obtained from grape berries samples of (a) cv. Touriga Nacional and (b) cv. Loureiro (b) at different times (marked 
as samples’ labels) of the ripening period. 

Fig. 9. PCA scores and loadings of the optical data acquired in lab scale for TN: PC1 scores plot (a), PC2 scores plot (b); PC1 and PC2 loadings plot (c).  
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PC2 show (Fig. 9c) an indirect relation between 530–––630 nm, and 
690–––730 nm, which is ascribable to the increasing concentration of 
anthocyanins components and the degradation of the chlorophylls (Song 
et al., 2021). 

Fig. 10 shows the PCA outcomes of the optical data from LOU sam
ples acquired in lab-scale conditions. Differently from the red variety, 
the ripening process can be described by the variability collected only by 
the first PC (variance explained equals 51.22 %). Indeed, a clear evo
lution trend comes up from positive to negative values of PC1 (Fig. 10a) 
indicating the four sampling sessions from veraison to harvest. The 
variables contribution (loadings) for the description of PC1 (Fig. 10b) 
indicates an opposite relation of the LEDs at 530 nm and 730 nm with 
the LEDs at 630 nm and 690 nm. This behavior is strictly related to the 
degradation of the chlorophylls (properly described by the variables at 
630 and 690 nm) and the water content along the time (detected by the 
channels at 730 nm ascribable to the third overtones of O–H stretching 
in water) (Ercoli et al., 1993; Pampuri et al., 2021b). 

Fig. 11 shows the figure of merit measured against predicted samples 
using PLS models for the TSS parameter, for both TN (Fig. 11a) and LOU 
(Fig. 11b). Regarding R2 and RMSE, it is interesting to underline the 
minimal differences between the performance of the models in cali
bration and cross-validation (CV) suggesting a good robustness of the 
models using internal validation. Concerning the model goodness, a 
good performance in terms of model error (RMSECV) was obtained for 
the TSS estimation. Indeed, an average of 2.31◦Brix and 0.73◦Brix were 
obtained as model errors for TN and LOU, respectively. Such perfor
mance, if maintained also in field scale, could be improved due to the 
deployment of several nodes, which can simultaneously provide an 
average estimation of the vineyard condition with a reduced experi
mental error. 

3.6. Grape berries optical measurements in a field environment 

All technical developments have been made considering the appli
cation of the sensor under real conditions. Therefore, Fig. 12 shows the 
field optical data collected from TN by one optical module placed in the 
field, in a commercial vineyard. 

The field optical data (recorded with LEDs off) were affected by 
environmental light pollution (background different from 0). Therefore, 
the raw optical data matrix has been mathematically pre-processed to 
reduce at best the background effects. In detail, from each readout with 
LED switched on (the reflectance reading of each LED at each channel) 
the corresponding background value was subtracted. The 11 acquisi
tions performed every single night were averaged to obtain a single 
optical output which is representative of a single day of measurements of 

a pre-defined grape bunch. Then, the new data matrix was explored with 
PCA and used as input data for the PLS model developed in the lab. 

Fig. 13 shows the PCA outcomes performed on the pre-treated field 
data. Also, in this case, PCA scores were (Fig. 13a and b) represented by 
the sample number associated with the TN dataset which is represen
tative of the day of monitoring. During the field sample collection dates 
along the monitoring period (grape berry ripening period), the physical 
conditions of the monitored berries were visually evaluated (as grape 
qualitative label) at different times (t0, t1, t2, t3, t4, and t5). Such 
empiric assessment of the berry status by visual inspection (without any 
relationship with the chemical parameters) was used to detect signifi
cant modifications in the optical signals. This approach was followed 
during each sampling day in the lab and allowed to verify the reliability 
of the field data collected during the field experimental season. Indeed, 
if the conditions of the berries were non-compliant (e.g., dehydrated, 
damaged, etc.) or the optical module was not in the correct position 
(optical module too far from the target or out from the bunch), the latter 
was being rearranged into the same grape bunch in the correct location. 

The PC1 and PC2 scores and loadings followed the same behavior as 
the TN data collected in lab conditions. Indeed, PC1 (Fig. 13a) shows the 
grape optical trend from greenish to purplish, while PC2 (Fig. 13b) 
shows an increasing behavior from August 1st until the harvest, which is 
consistent with the data collected in the lab. However, at t2, t3, and t4, 
the sensor was rearranged in the grape bunch due to the conditions of 
the berries that have started to dehydrate causing an incorrect posi
tioning of the optical module into the bunch. We also observed a 
significantly different score on the 21st of August when compared with 
the neighboring days. Such an event was related to rainfall which caused 
an accumulation of moisture around the berry obtaining reflection ef
fects that were abnormal and unrelated to the actual internal chemical 
characteristics of the berry. 

Finally, to have a first screening of the sensor applicability in field, 
the PLS model calibrated in the lab was applied for field measurements. 
Fig. 14 shows the daily TSS prediction for the whole monitored ripening 
period (from late July to mid-September). Overall, although some 
technical and modelling aspects still need to be studied and refined for a 
real field application, the trend follows the common ripening curve for 
TSS accumulation. The evolution process appeared coherent till the 18th 
of August then some events, described (qualitatively) during the analysis 
of the principal components, influenced the prediction of the results. 
Indeed, on the 21st of August, the rain caused a clear TSS over
estimation. Then, the trend restarted to grow steadily but with TSS 
predictions slightly below the estimation reached on the 17th of August. 
Moreover, two trend modifications appeared during the day after the 
field sampling suggesting a possible change in the estimation caused by 

Fig. 10. PCA scores and loadings of optical data acquired in lab scale for LOU: (a) PC1 scores plot, and (b) PC1 loadings plot.  
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the operator’s intervention to check the sensor conditions. 

3.7. Comparison with the current state of the art 

The current state of the art for monitoring grape berry ripeness has 
been driven by the need to develop robust systems capable of monitoring 
the grape ripening process, and ultimately supplying information able to 
support the harvest decision. Although the literature reports some ex
amples based on technologies that require sample destruction (Garcia- 
Hernandez et al., 2018), the recent methodological advances include 
analytical strategies based on the use of different optical technologies 
that correlate the optical properties of the grapes with the chemical 
parameters of oenological interest (Ferrara et al., 2022; Vrochidou et al., 
2021). These advances have been essentially supported by spectroscopic 
and imaging instrumentation developments, with a particular emphasis 
on miniaturization. 

Portable spectrophotometers are widespread on the market, 
becoming attractive tools for capturing optical data from grapes (Ferrara 
et al., 2022). These instruments provided detailed optical information in 

Vis/NIR ranges (namely full reflectance spectra) that can be then used to 
build predictive models using chemometrics. More recently, simplified 
instruments based on the measurement of optical bands have also been 
proposed. One example is the use of a miniaturized commercial spectral 
sensor to acquire pre-defined reflectance bands from grapes (Pampuri 
et al., 2022). Another example is the commercial analyzer Multiplex, 
which is based on multiple fluorescence bands that are part of a series of 
indexes that allow the quantification of different parameters of the 
ripening process (Agati et al., 2007). A significant drawback of this 
fluorescence instrument is its high cost. For example, in a recent eco
nomic assessment made for the Multiplex instrument (Savi et al., 2019), 
the economic viability for a two-hectare vineyard cultivating three red 
grape varieties (90 samples per year) implied a lifetime of the instru
ment of at least 7 years, without any additional sampling points. Addi
tionally, these analytical strategies on portable instrumentation also 
require human intervention in the field to acquire optical data, 
contributing to increased labor costs, and is especially troublesome 
considering the lack of manpower that the agricultural sector is already 
facing. 

Another emerging research line is the use of Machine Vision tech
niques (Vrochidou et al., 2021), which include the use of color, hyper
spectral, and NIR imaging. One example was recently proposed by 
Fernández-Novales et al. (Fernández-Novales et al., 2021), which 
included the use of a Vis/NIR hyperspectral camera mounted in the front 
part of an all-terrain vehicle. The images acquired at 5 km/h provided 
more than one million spectra per sample. After identification of the 
region of interest (the part of the image corresponding to the cluster), 
the averaged reflectance spectrum was used to build the prediction 
models for several parameters (Titrable acidity, pH, Tartaric acid, An
thocyanins, and Total Polyphenols). 

In contrast to the above-mentioned analytical strategies, the inte
grated system proposed here is a stand-alone optical sensing unit that 
can act as an individual node in a WSN. This makes it possible to have a 
fully autonomous system capable to monitor the grape in real-time with 
an almost absent human intervention (an operator is only required for 
installation and uninstallation of the sensors in the field) in a non- 
destructive fashion. The development strategy adopted here addresses 
the upscaling of the solution using micro and nanofabrication technol
ogies that make possible the production of the optical instrumentation at 
a reduced cost in volume production. Nevertheless, some potential 
challenges in the field operation of the system can be anticipated. The 
first is related to the positioning of the sensor, which may vary during 
the season due to modifications in the grape berry (e.g. dehydration, 

Fig. 11. Values of Total Soluble Solids predicted by the PLS model based on optical lab data vs. values measured through the reference method for the varieties (a) 
Touriga Nacional (TN) and (b) Loureiro (LOU). 

Fig. 12. Reflectance readouts (raw data) of each LED (530 nm, 630 nm, 690 
nm, and 730 nm) - photodetector (ch1, ch2, ch3, and ch4) combination, as well 
as the background signal (labeled as off) obtained from one optical module 
deployed in the field for monitoring Touriga Nacional grapes during the 
ripening period. 
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weather conditions). A second challenge is related to the number of 
sensors required to monitor a pre-defined area, which is still an open 
question. Finally, the use of the prediction models built in one crop 
season in the predictions of the following year may also be challenging 
in the case of significant differences in the grape’s ripening evolution 
among the different years. 

4. Conclusions 

The present work describes a novel IoT spectral sensing system 
capable of autonomously collecting reflectance signals directly from the 
grape berry. It includes three major blocks: an optical module that 
interacted directly with the grape berry, a host module that drove the 
LEDs’ illumination and digitalized the signals, and a controller module 
that not only controlled the other modules but also ensured data storage, 
power management, and connectivity of the system. The system took 
advantage of the optical band selection that made it possible to develop 
an integrated system based on four discrete optical bands. The 

reflectance data collected in both lab and field environments revealed a 
variation of the optical signals along the ripening season, which was 
observed in the raw signal and also in PCA scores after analyzing the 
data through this multivariate technique. This variability was present in 
both red (cv. Touriga Nacional) and white (cv. Loureiro) grapes. We also 
identified some of the events that may affect optical monitoring in field 
conditions. Hence, this work focused on the design, characterization, 
and operation of the spectral sensing system, paving the ground for the 
autonomous monitoring of grape berry ripening. 

Considering the interest in expanding the optical measurements 
herein described to other applications such as the monitoring of 
phenolic maturation parameters of grapes (e.g., anthocyanins) or the 
vine water status, additional customized versions of the proposed optical 
module are also under development. Monitoring the phenolic matura
tion parameters can be achieved through the interaction of chlorophyll 
fluorescence with the phenolic components of the grape’s skin (Agati 
et al., 2005). Therefore, the implementation of fluorescence measure
ments in our current optical layout implies the use of optical filters to 
block the excitation light and assure that the emission signal of the 
chlorophyll (with typical emission bands around 690 and 740 nm) is the 
only source of photons that reaches the photodetector(s). In this regard, 
two recent reports from our project’s team focused on different aspects 
of the monolithic integration of interference and absorption filters on 
thin-films amorphous silicon photodiodes for this particular application 
(Nikolaidou et al., 2022a; Nikolaidou et al., 2022b). 

Regarding the monitoring of vine water status, it is based on the 
collection of reflectance signals from grapevine plant leaves. In contrast 
to the reflectance signals for grape ripening, measuring the reflectance 
of the leaf requires optical bands not only in the Vis/NIR but also in the 
IR range (Pampuri et al., 2021a). Hence, a version of the optical module 
that includes LEDs and photodetectors capable of operating at both Vis 
and IR spectral ranges was also prepared and it is currently under 
evaluation. 

Future developments of the IoT spectral sensing system introduced 
here will include the development of prediction models for the quanti
tative analysis of the technology grape ripening parameters (Total Sol
uble Solids, pH, Total acidity) as well as the integration of the end-node 
in a WSN. 
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M., Kovačič, M., Krč, J., Topič, M., Cardoso, S., Freitas, P.P., Chu, V., Conde, J.P., 
2022a. Monolithically integrated optical interference and absorption filters on thin 
film amorphous silicon photosensors for biological detection. Sensors and Actuators 
b: Chemical 356, 131330. https://doi.org/10.1016/j.snb.2021.131330. 

Nikolaidou, K., Oliveira, H.M., Cardoso, S., Freitas, P.P., Chu, V., Conde, J.P., 2022b. 
Monolithic Integration of Multi-Spectral Optical Interference Filter Array on Thin 
Film Amorphous Silicon Photodiodes. IEEE Sens. J. 22, 5636–5643. https://doi.org/ 
10.1109/JSEN.2022.3150228. 

OIV, 2022. Compendium of International Methods of Wine and Must Analysis, Paris. 
Pampuri, A., Tugnolo, A., Bianchi, D., Giovenzana, V., Beghi, R., Fontes, N., Oliveira, H. 

M., Casson, A., Brancadoro, L., Guidetti, R., 2021a. Optical specifications for a 
proximal sensing approach to monitor the vine water status in a distributed and 
autonomous fashion. Biosystems Engineering 212, 388–398. https://doi.org/ 
10.1016/j.biosystemseng.2021.11.007. 

Pampuri, A., Tugnolo, A., Giovenzana, V., Casson, A., Guidetti, R., Beghi, R., 2021b. 
Design of cost-effective LED based prototypes for the evaluation of grape (Vitis 
vinifera L.) ripeness. Comput. Electron. Agric. 189, 106381 https://doi.org/ 
10.1016/j.compag.2021.106381. 

Pampuri, A., Tugnolo, A., Giovenzana, V., Casson, A., Pozzoli, C., Brancadoro, L., 
Guidetti, R., Beghi, R., 2022. Application of a Cost-Effective Visible/Near Infrared 
Optical Prototype for the Measurement of Qualitative Parameters of Chardonnay 
Grapes. Appl. Sci. 12, 4853. https://doi.org/10.3390/app12104853. 
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