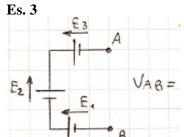
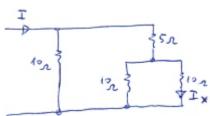

Ulteriori Esercizi da svolgere per studenti – UD1 Circuiti Elettrici


Es. 1

123. 1	
$0.22 \text{ M}\Omega + 220 \text{ k}\Omega = \dots \text{ k}\Omega$	[Ris.: 440 k Ω]
$25 \text{ mV} / 100 \text{ k}\Omega = \dots \text{mA}$	[Ris.: 0,00025 mA]
$27 \text{ nF} + 1.000 \text{ pF} = \dots \dots \mu F$	[Ris.: 0,028 µF]
$120 \mu\text{A} \cdot 2 \text{k}\Omega = \dots V$	[Ris.: 0,24 V]
$120 \mu A + 22 mA = \dots A$	[Ris.: 0,02212 A]
$0.01 \text{ V} + 200 \mu\text{V} = \dots \text{mV}$	[Ris.: 10,2 mV]
$140 \text{ mV} / 2 \text{ k}\Omega = \dots \text{mA}$	[Ris.: 0,07 mA]
$2 \text{ nF} = \dots \mu F$	[Ris.: 0,002 µF]
$20 \mu A = \dots mA$	[Ris.: 0,02 mA]
$4,7 \text{ M}\Omega = \dots \text{k}\Omega$	[Ris.: $4.700 \text{ k}\Omega$]
330 pF = μ F	[Ris.: 0,00033 µF]
$6.8 \mu A = \dots mA$	[Ris.: 0,0068 mA]
$22 M\Omega = \dots k\Omega$	[Ris.: 22.000 k Ω]

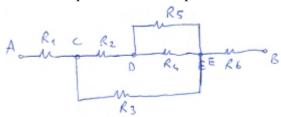
Es. 2



[Ris.:
$$V_{AB} = -E_1 + E_2 + E_3$$
]

[Ris.:
$$V_{AB} = E_1 + E_2 - E_3$$
]

Es. 4

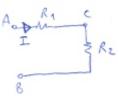

Se $I = 12$ A, individua il valore di I_X tra quelli in tabella	12 A	9 A	6 A	3 A
[Ris · 3 A]				

Se I=20~A, individua il valore di I_X tra quelli in tabella

20 A	10 A	5 A	2,5 A

Es. 5

Individua l'espressione corretta per R_{AB}

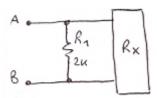


- $\begin{array}{l} 1. \quad \left(R_2 + R_4 \right) /\!/ \, R_3 /\!/ \, R_5 + R_1 + R_6 \\ 2. \quad \left(R_2 + R_4 /\!/ \, R_5 \right) /\!/ \, R_3 + R_1 + R_6 \end{array}$

3.
$$R_2 // R_3 + R_4 // R_5 + R_6 + R_1$$

[Ris.: 2]

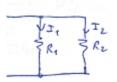
Es. 6



Sapendo che $R_1 > R_2$ individua l'espressione corretta

- 1. $V_{AB} < V_{CB}$ 2. $V_{AC} > V_{CB}$ 3. $V_{CA} > V_{CB}$

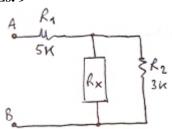
[Ris.: 2]


Es. 7

Individua i possibili valori di R_{AB} tra quelli indicati e determina il corrispondente valore di R_{X}

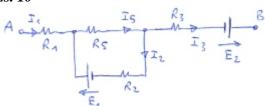
[Ris.: $R_{AB} = 1.5 \text{ k}\Omega$, $R_X = 6 \text{ k}\Omega$]

Es. 8



Se $R_1 < R_2$ individua le coppie di valori coerenti tra quelle indicate in tabella

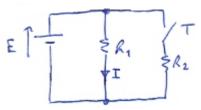
$I_1[A]$	10	12	12	12
I ₂ [A]	20	6	12	18


[Ris.:
$$I_1 = 12 A$$
, $I_2 = 6 A$]

Es. 9

Individua i possibili valori di R_{AB} tra quelli indicati e determina il corrispondente valore di R_{X}

[Ris.:
$$R_{AB} = 5 \text{ k}\Omega$$
, $R_X = 0$; $R_{AB} = 8 \text{ k}\Omega$, $R_X = \infty$]



Individua l'espressione corretta tra le seguenti

- 1. $V_{AB} = R_1 \cdot I_1 + R_5 \cdot I_5 + R_3 \cdot I_3 E_2$
- 2. $V_{AB} = R_1 \cdot I_1 + E_1 R_2 \cdot I_2 + R_3 \cdot I_3 E_2$
- 3. $V_{AB} = -E_2 + R_3 \cdot I_3 + R_2 \cdot I_2 + E_1 + R_1 \cdot I_1$

[Ris.: 1 e 2]

Es. 11

Chiudendo il tasto T la corrente I

- 1. aumenta
- 2. diminuisce
- 3. non cambia

[Ris.: 3]

Es. 12

Se una resistenza $R = 100 \Omega$ dissipa una potenza P = 1 W, quanto vale la tensione applicata? [Ris.: V = 10 V] Se una resistenza $R = 1 k\Omega$ è percorsa da una corrente di 100 mA, quanto dissipa? [Ris.: P = 10 W]

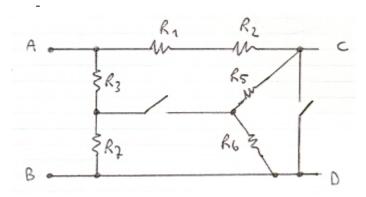
Es. 13

Del circuito in figura, considerando tutte le resistenze con valore 1 k Ω , determina:

- il valore di R_{AB} con tutti gli interruttori aperti [Ris.: 1,33 k Ω]

il valore di R_{AB} con tutti gli interruttori chiusi [Ris.: 0,8 k Ω]

- il valore di R_{AC} con tutti gli interruttori aperti [Ris.: 1,33 k Ω]


- il valore di R_{AC} con tutti gli interruttori chiusi [Ris.: 0,8 k Ω]

- il valore di R_{AD} con tutti gli interruttori aperti [Ris.: 1,33 k Ω]

- il valore di R_{AD} con tutti gli interruttori chiusi [Ris.: 0,8 k Ω]

il valore di R_{BC} con tutti gli interruttori aperti [Ris.: 1,33 k Ω]

- il valore di R_{BC} con tutti gli interruttori chiusi [Ris.: 0 Ω]

Es. 14

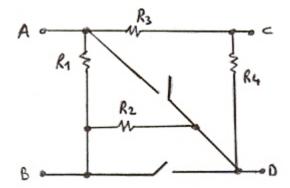
Del circuito in figura, considerando tutte le resistenze con valore 1 k Ω , determina:

- il valore di R_{AC} con tutti gli interruttori aperti [Ris.: 750 Ω]

- il valore di R_{AC} con tutti gli interruttori chiusi [Ris.: 500 Ω]

- il valore di R_{AB} con tutti gli interruttori aperti [Ris.: 750 Ω]

- il valore di R_{AB} con tutti gli interruttori chiusi [Ris.: 0 Ω]


- il valore di R_{AD} con tutti gli interruttori aperti [Ris.: 1 k Ω]

- il valore di R_{AD} con tutti gli interruttori chiusi [Ris.: 0 Ω]

- il valore di R_{BC} con tutti gli interruttori aperti [Ris.: 1 k Ω]

- il valore di R_{BC} con tutti gli interruttori chiusi [Ris.: 500 Ω]

_

