

UD1 - RAPPORTI E PROPORZIONI

1.1 Rapporti

Si definisce rapporto tra due numeri (dati in un certo ordine, il secondo dei quali diverso da zero), il quoziente della loro divisione.

Il rapporto fra 5 e 6 è 5 : 6 = $\frac{5}{6}$;

il rapporto tra $\frac{4}{5}$ e $\frac{7}{9}$ è $\frac{4}{5}$: $\frac{7}{9} = \frac{4}{5} \cdot \frac{9}{7} = \frac{36}{35}$.

1.2 Proporzioni

Si definisce proporzione l'uguaglianza tra due rapporti, pertanto si scrive

a:b=c:d

18:6 = 48:16

o equivalentemente:

$$\frac{a}{b} = \frac{c}{d}$$

$$\frac{18}{6} = \frac{48}{16}$$

Si dice continua una proporzione che ha i medi uguali.

Il medio che si ripete si chiama medio proporzionale.

63:21=21:7

Il numero 21 è il medio proporzionale fra i numeri 63 e 7.

1.3 Proprietà delle proporzioni

In ogni proporzione il prodotto dei medi è uquale al prodotto degli estremi.

 $a:b=c:d\rightarrow b\cdot c=a\cdot d$

 $42:7=12:2\rightarrow 42\cdot 2=7\cdot 12$

1.4 Calcolo del termine incognito in una proporzione

Calcolo di un estremo incognito

10:5 = 8:
$$x \rightarrow x = \frac{5 \cdot 8}{10} = 4$$

Calcolo di un medio incognito

10:
$$x = 8: 4 \rightarrow x = \frac{10\cdot 4}{8} = 5$$

Calcolo di un medio proporzionale incognito

18:
$$x = x : 8$$
 \rightarrow $x^2 = 18 \cdot 8 = 144$ \rightarrow $x = \sqrt{144} = 12$

1.5 Serie di rapporti uguali

L'uguaglianza di tre o più rapporti si dice catena o serie di rapporti uguali.

$$10:2=30:6=35:7$$

In una serie di rapporti uguali la somma degli antecedenti sta alla somma dei conseguenti come un antecedente qualunque sta al proprio conseguente.

UD2 - PROPORZIONALITÀ E FUNZIONI

2.1 Grandezze costanti e grandezze variabili

Si chiama **grandezza** la proprietà di un fenomeno, di un corpo o sostanza che può essere espressa quantitativamente con un numero e un riferimento.

Una grandezza si dice **costante** quando mantiene un **valore fisso**, cioè conserva sempre lo stesso valore.

Una grandezza di dice **variabile** quando assume **valori diversi**, cioè dipende dal momento in cui viene misurata. In genere, una grandezza variabile dipende da un'altra grandezza.

2.2 Funzione

La **funzione** è una legge che lega gli elementi di due insiemi secondo un'espressione matematica indicata con:

$$y = f(x)$$

dove

x = variabile indipendente

y = variabile dipendente

in modo che a ogni elemento x del primo insieme A corrisponda un unico elemento y del secondo insieme B.

2.3 Funzioni di proporzionalità diretta

Due grandezze variabili, che dipendono l'una dall'altra, sono direttamente proporzionali quando, divenendo l'una doppia, tripla, ..., anche l'altra diviene doppia, tripla, ecc. e se la prima diviene la metà, un terzo, ecc. anche l'altra diviene la metà, un terzo, ecc.

Due grandezze variabili, che dipendono l'una dall'altra, sono quindi direttamente proporzionali quando il loro rapporto è costante.

 $\frac{y}{x} = k$ cioè in forma esplicita $y = k \cdot x$

2.4 Funzioni di proporzionalità inversa

Due grandezze variabili, che dipendono l'una dall'altra, sono inversamente proporzionali se, raddoppiando, triplicando, ecc. l'una, l'altra viene rispettivamente ridotta alla metà, a un terzo, ecc.

UD3 - APPLICAZIONI DELLA PROPORZIONALITÀ

3.1 Applicazione della proporzionalità nelle scale di rappresentazione

Si definisce **scala di rappresentazione** il rapporto tra due misure omogenee, cioè tra la misura di un segmento su un disegno e la misura reale del segmento stesso, espresse nella stessa unità di misura.

La scala di riduzione è utile per poter rappresentare oggetti molto grandi (superficie terrestre, città, palazzi, monumenti, ecc.) in formati ridotti, ma rispettando sempre tutte le proporzioni.

$$x = \frac{y}{scala}$$

La scala di ingrandimento è utile per rappresentare oggetti molto piccoli. La si usa per riuscire a catturare i dettagli e i particolari minuscoli, che altrimenti resterebbero impercettibili.

$$y = x \cdot scala$$

3.2 Applicazione della proporzionalità nelle scale termometriche

Per misurare lo stato termico di un corpo o di un oggetto, cioè la **temperatura**, si usa il termometro su cui è riportata una **scala di graduazione**, che, oltre ad avere un punto d'inizio e un punto d'arrivo, è suddivisa in parti a seconda della **scala termometrica** usata.

La temperatura può essere valutata per mezzo di varie scale termometriche: la scala Celsius, la scala Fahrenheit, la scala Kelvin e la scala Réaumur.

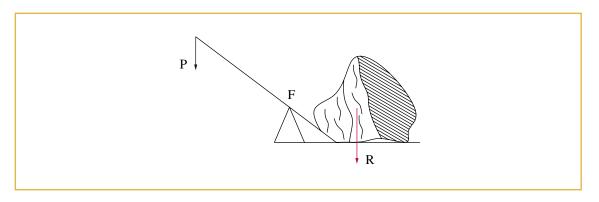
Scala	Temperatura di solidificazione dell'acqua	Temperatura di ebollizione dell'acqua	Divisioni o gradi
Celsius	0 °C	100 °C	100
Fahrenheit	32 °F	212 °F	180
Kelvin	273 K	373 K	100
Réaumur	0 °R	80 °R	80

<u>Da Celsius a Kelvin</u>: K = C° + 273

<u>Da Celsius a Réaumur</u>: °C : °R = 100 : 80 <u>Da Celsius a Fahrenheit</u>: °F = 1,8 °C + 32

3.3 Le leve e l'applicazione della proporzionalità

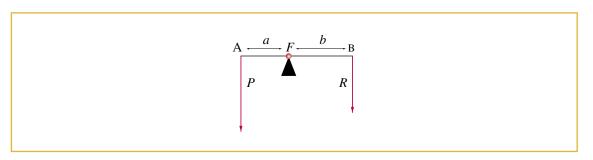
Una leva è costituita da un'asta rigida che ruota intorno a un punto fisso detto fulcro (F) e serve per sollevare un corpo resistente (R), esercitando una forza motrice (P).

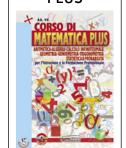


Una leva è in **equilibrio** quando il prodotto della resistenza R per il suo braccio b (momento della resistenza) è uguale al prodotto della potenza P per il suo braccio a (momento della potenza):

$$R \cdot b = P \cdot a$$

Si indica con a la distanza della potenza dal fulcro (forza motrice) e con b la distanza della resistenza dal fulcro (forza resistente).

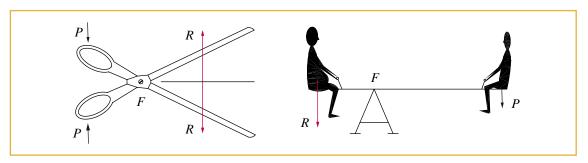




3.4 Tipi di leve

Leva di primo genere

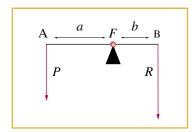
In una leva di primo genere il fulcro (F) si trova in un punto qualsiasi tra la forza motrice (P) e la forza resistente (R). Esempi:

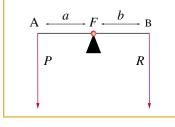


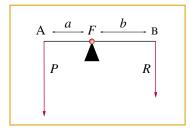
La leva è vantaggiosa se il braccio della potenza (a) è maggiore di quello della resistenza (b).

La leva è indifferente se il braccio della potenza (a) è uguale a quello della resistenza (b).

La leva è svantaggiosa se il braccio della potenza (a) è inferiore a quello della resistenza (b).







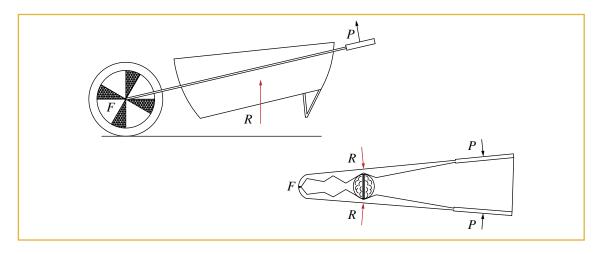
leva vantaggiosa

leva indifferente

leva svantaggiosa

Leva di secondo genere

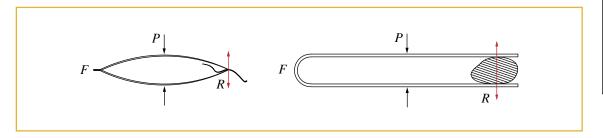
In una leva di secondo genere il fulcro (F) si trova a un'estremità e all'altra si trova la forza motrice (P), mentre la forza resistente (R) si trova in un punto qualsiasi tra il fulcro (F) e la forza motrice (P). Esempi:



La leva di secondo genere è sempre vantaggiosa.

Leva di terzo genere

In una leva di terzo genere la forza motrice (P) si trova tra il fulcro (F) e la forza resistente (R). Esempi:



La leva di terzo genere è sempre svantaggiosa.

UD4 - CENNI DI CALCOLI FINANZIARI

4.1 Calcolo della percentuale

La percentuale, utilizzata nelle operazioni commerciali e finanziarie, permette di esprimere il rapporto fra due grandezze (di solito una parte rispetto a un tutto) mediante una frazione con denominatore 100.

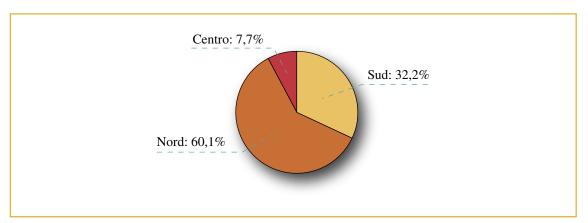
$$\frac{25}{100} = 25\%$$

$$\frac{8}{100} = 8\%$$

Il numeratore di tali frazioni è detto tasso percentuale o ragione.

4.2 Rappresentazione grafica di percentuali

Spesso si usano i grafici per rappresentare le percentuali in modo che la lettura dei dati risulti più immediata. Gli **areogrammi** sono molto adatti.



AA. VV.

Corso di Matematica PLUS

4.3 Uso della percentuale per esprimere

l'interesse

L'interesse (I) è il compenso che percepisce chi ha ceduto in prestito per un certo tempo ad altri una certa somma di denaro, detta capitale (C).

$$I = \frac{C \cdot r \cdot t}{100}$$

Con C = capitale prestato

r = tasso percentuale di interesse

t = unità di tempo (in anni)

4.4 Il montante

In matematica finanziaria si definisce montante(M) la somma del capitale impiegato e degli interessi maturati dopo un determinato tempo.

$$M = C + I$$

Sconto commerciale

Scontare significa detrarre una determinata somma S (sconto) da un conto.

$$S = \frac{C \cdot r \cdot t}{100}$$

Con C = capitale prestato

r = tasso percentuale di sconto

t = unità di tempo (in anni)