

Calore latente

Il calore latente è la grandezza che corrisponde alla quantità di calore scambiata da un chilogrammo di una sostanza durante il suo passaggio di stato (per esempio il passaggio dallo stato solido a quello liquido o viceversa). Nel Sistema Internazionale (S.I.), si indica con il simbolo λ e si misura in **joule su chilogrammo** (J/kg).

Il valore del calore specifico dipende dalla sostanza in questione e dal passaggio di stato in cui è coinvolta. Per esempio, nel caso del passaggio dallo stato solido a quello liquido, si parla di calore latente di fusione che si indica con λ_i ; se invece si fa riferimento al passaggio dallo stato liquido a quello aeriforme si parla di calore latente di vaporizzazione che si indica con λ_{v} .

Minore è il calore latente della sostanza, più è facile sottoporla a un passaggio di stato. La quantità di calore necessaria a far avvenire il passaggio di stato di un corpo dipende sia dalla sua massa, sia dalla sua natura chimica, secondo la relazione:

$$Q = \lambda \cdot m$$

Sostanza	Acqua	Alcol etilico	Mercurio
Temperatura di fusione a pressione atmosferica (°C)	0	-114	-39
Calore latente di fusione (J · kg ⁻¹)	334000	110000	12000
Temperatura di ebollizione a pressione atmosferica (°C)	100	78	357
Calore latente di ebollizione (J · kg ⁻¹)	2250000	854000	272000

Il calore latente di fusione dell'acqua λ_{f} è pari a 334000 J/kg. Quanti kJ occorrono per far passare allo stato liquido una massa *m* di ghiaccio pari a 5 kg?

Applicando la relazione $Q = \lambda_f \cdot m$ e sostituendo i dati, si ricava che occorre fornire una quantità di calore pari a:

$$Q = 334000 \text{ J} \cdot \text{kg}^{-1} \cdot 5 \text{ kg} = 1670000 \text{ J} = 1670 \text{ kJ}$$

PILOTA TU

Il calore latente di fusione dell'alcol etilico λ_t è pari a 110000 J/kg. Se vengono forniti 500 kJ a un sistema contenente dell'alcol etilico allo stato solido, quale massa di questa sostanza può subire passaggio di stato?