

SERVICING REPORT

Donway Co-operative Development Corporation

Type of Document: Final Report

Project Name: 230 and 240 The Donway West, Toronto

Project Number:

ALL-00256815-B0 **Prepared and Reviewed By:** Steve Park, P.Eng. and Scott Passmore, P.Eng. EXP 220 Commerce Valley Drive West, Suite 110 Markham, ON, L3T 0A8 t: +1.905.695.3217 f: +1.289.695.2411

Approved By: Scott Passmore

Date + Time Submitted: 2021-05-26 2023-10-30 – Revision 1

Table of Contents

1.	Introd	luction 2			
2.	Site Description and Proposed Development 2				
3.	Existing Topography and Proposed Grading				
4.	Water	Servicing			
5.	Sanita	ry Servicing			
	5.1	Proposed Sanitary Sewer Servicing	8		
	5.2	Downstream Sanitary Analysis	9		
6.	Storm	Servicing10			
7.	Grour	ndwater			
8.	Utilities				
9.	Conclu	usions			

List of Figures

- Figure 1 Location Plan
- Figure 2 Preliminary Site Grading Plan
- Figure 3 Preliminary Site Servicing Plan

List of Appendices

- Appendix A Background Information
- Appendix B Water Demand Calculations
- Appendix C Sanitary Demand Calculations
- Appendix D Hydrogeology Investigation and Groundwater Pump Design Correspondence
- Appendix E City's Servicing Report Groundwater Review Form

*exp.

1. Introduction

EXP Services Inc. has been retained by the Donway Co-operative Development Corporation ("the agent" on behalf of the owner, The Donway Covenant United Church) to prepare a Servicing Report ("Report") in support of an application for a Zoning By-Law Amendment and Official Plan Amendment of the proposed residential use with integrated church ("the site") located at 230 and 240 The Donway West, in the City of Toronto.

This report has been updated to address the first ZBA submission comments from the City of Toronto dated June 2, 2022 and to accommodate the site plan changes.

The objective of this report is to provide an overview of the proposed servicing strategy for the site including outlining the required demands on the municipal system while addressing any possible capacity concerns.

2. Site Description and Proposed Development

The subject site is approximately 1.05 hectares in size and bounded by The Donway West to the east, existing residential developments fronting Duncairn Road to the north, and existing public park to the west and south. The legal description of the site is Block B Registered Plan 4332, in the City of Toronto. The subject site is currently occupied by church buildings with associated surface parking and two driveway accesses from The Donway West. Refer to Figure 1 for the Site Location Plan.

This application proposes to redevelop the site into a 6-storey residential development with 308 new condominium units integrated with a church. The south side of the property will have the integrated church with residential units while the remaining portion of the property will have only residential units. The development also includes three levels of underground parking with a single driveway access to The Donway West. A small portion on the south side of the site will be dedicated to be a City's parkland. Refer to the Site Plan (prepared by Architect Unfolded) in Appendix A for additional details.

Be advised that should any party, including the owner or any subsequent owner, apply for more than one condominium corporation encompassing any or all of this development or make an application that results in a land division, Staff may require legal assurances, including but not limited to easements, with respect to the approved services. Such assurances will be determined at the time of application for condominium approval.

3. Existing Topography and Proposed Grading

To assess the existing site topography within and surrounding the site, EXP staff reviewed previously completed topographic surveys provided by the Agent and City record drawings for The Donway West. A site visit was then completed by EXP staff on November 27, 2020 to review current conditions including the above ground utility furniture. A sub-surface utility engineering (SUE) investigation was also completed by Multiview on January 17, 2023 to verify any existing underground utilities within the City's right-of-way abutting the site. Previously completed topographic surveys for the site show an existing drainage divide through the middle of the existing surface parking area east to west, where drainage on the west side of the drainage divide flows towards the northwest corner and the balance sheet flows out towards The Donway West. Along The Donway West adjacent to the site, existing elevations are shown to be falling in the easterly direction without any sags or low points. For additional details regarding the existing topography refer to the topographic survey (prepared by J.D. Barnes Limited dated July 2019), SUE investigation report by Multiview, and record drawings provided by the City of Toronto in Appendix A.

The preliminary grading design for the site generally maintains the existing drainage patterns for the site, while directing drainage away from building entrances and ensuring emergency major overland flows are divided per the existing drainage divide through the site. On the east side of the drainage divide, the drainage is conveyed in the southerly and easterly directions towards The Donway West, while on the west side of the drainage divide the drainage divide the drainage is conveyed in the northerly and westerly directions towards the northwest corner of the site. Due to the proposed low courtyard within the building, the proposed grading and servicing design provides an allowance to convey all flows form the courtyard for all storm events up to and including the 100-year storm event where an emergency overflow pump system is provided within the proposed stormwater management (SWM) strategy for the site.

Due to the new driveway connection and new 2.1 m wide concrete sidewalk, some minor adjustments of the grading are required along the 230 The Donway right-of-way. The proposed grading design within the future parkland which will be dedicated to the City will be coordinated with City's parks, Forestry & Recreation Division.

Overall, the preliminary grading design for the site is to be completed in concert with the proposed stormwater management (SWM) strategy for the site which includes a network of high and low points, and an inlet design to capture and attenuate the 100-year storm event. For additional grading details refer to the Preliminary Site Grading Plan on Figure 2.

4. Water Servicing

Record drawings show an existing 300 mm diameter municipal watermain on the south side of The Donway West which provides water servicing for the site. EXP staff reviewed City record drawings and confirmed through the site visit, that there is one existing municipal fire hydrant adjacent to the site as well. The City record drawings can be found in Appendix A.

After reviewing the Agent's site plan which includes one superstructure confirmed by the Agent to be under one single corporation ownership and one phase construction, it was confirmed that the development would require a single combined domestic and fire connection to the municipal watermain system as per City of Toronto's current standards. Therefore, the preliminary servicing design shows the following configuration:

 One new combined 200 mm diameter fire/domestic water connection to the existing 300 mm diameter watermain on The Donway West, branching into a separate 200 mm diameter fire and 100 mm diameter domestic water servicing at the property line.

The proposed building mechanical design is to be coordinated to ensure the proposed FDC connection is within 45 m of the existing fire hydrant in vicinity of the site as per OBC requirements. The final watermain sizes and configuration are to be finalized through the detailed design process all in accordance to City of Toronto standards and the City of Toronto Fire Department approval. For additional details regarding the preliminary water servicing design refer to the Preliminary Site Servicing Plan on Figure 3.

To determine the post development domestic water demand for the proposed development, the water consumption calculations were prepared in accordance to the City of Toronto criteria. The calculations showed that under maximum day conditions, a proposed peak domestic demand of 2.3 L/s should be considered for the site.

For calculating the estimated fire protection requirements, the Fire Underwriter's Survey was used where the theoretical demand was calculated to be in the range of 200 L/s. Therefore, for the purposes of assessing the proposed post development water demand calculations, a fire plus maximum day demand of 202.3 L/s should be considered for the site. For additional details on the proposed water demands refer to calculations provided in Appendix B.

To verify existing flows and pressures within the municipal watermain against the proposed demands, EXP staff coordinated a hydrant flow test on the two closest hydrants on Donway West. the flow test results showed that adequate flows and pressures can be obtained to meet the FUS requirements while still maintaining the minimum required 20 psi for the surrounding system. Refer to Appendix B for the hydrant flow test results completed on May 8th, 2023.

5. Sanitary Servicing

5.1 Proposed Sanitary Sewer Servicing

Record drawings show an existing 375 mm diameter municipal sanitary sewer on The Donway West flowing in the easterly direction, which provides sanitary servicing for the site. The SUE investigation shows an existing sanitary service connection for the building has been provided to the site with a clean-out along the east property line. The topographic drawing, City's record drawings, and the SUE investigation report prepared by Multiview can be found in Appendix A.

After reviewing the Agent's site plan which includes one superstructure under single corporation ownership and one phase construction, it was confirmed that one sanitary service connection would be required as per City of Toronto's current standards. Therefore, the preliminary servicing design shows the following configuration:

• One new 150 mm diameter sanitary service connection to the existing 375 mm diameter on The Donway West

Due to the age and location of the existing sanitary service to the site, it is not recommended that the existing sanitary service be re-used and the new sanitary service be constructed. Therefore, the existing sanitary service is to be abandoned as part of the proposed servicing design in accordance to Toronto Water specifications. For additional details regarding the preliminary sanitary servicing design refer to the Preliminary Site Servicing Plan on Figure 3.

To determine the peak sanitary demand for the existing site under the current pre-development conditions, the City of Toronto design criteria was used where the calculations showed a peak sanitary demand of 1.3 L/s including infiltration. Refer to Appendix C for sanitary calculations.

In order to verify the existing site storm and domestic sewage drainage for the site, EXP staff coordinated a SUE investigation with Multiview on January 17, 2023 and a utility dye testing investigation with a utility locate contractor (Aquaflow) on September 12th, 2023. The SUE investigation results showed an existing sanitary service connection to the existing municipal sanitary sewer system on The Donway West.. The dye testing results showed that the foundation drainage for an existing building (Building 5) connects to the 375 mm sanitary sewer on The Donway West. After the dye testing, the Owner's mechanical engineer performed the on-site sump pump inspection on October 4th, 2023 where the flow rate of the pump is found to be at approximate 40 GPM (2.5 L/s). For additional details regarding the dye testing investigation and on-site sump pump inspection, please refer to the dye testing report prepared by Aquaflow and the email correspondence with Novatrend Engineering Group Ltd. in Appendix C.

For calculating the peak sanitary demand for the proposed development, the City of Toronto design criteria was used to first determine the estimated equivalent population. Based on the Agent's site plan statistics and using City of Toronto design criteria, the total estimated equivalent population for the site including residential units and church is calculated to be 587 persons. After determining the population, the City of Toronto sanitary demand criteria and corresponding peaking factors were then used to give peak sanitary demands of 6.6 L/s including infiltration. Refer to Appendix C for the sanitary calculations.

The calculated post development sanitary increase of 2.9 L/s was then increased by 1.3 L/s for the future allowance of groundwater pumping (see Section 7) to be discharged to the sanitary sewer. EXP staff then reviewed the

calculated flow increase of 4.2 L/s against the capacity of the adjacent municipal sanitary system where the flow was found to be in the calculated range of 5.0 % of the full flow capacity on The Donway West.

5.2 Downstream Sanitary Analysis

Once the sanitary calculations showed a post development demand increase for the site, EXP staff then completed a preliminary downstream sanitary capacity analysis to review any possible impacts on the municipal sanitary system. The results of the analysis showed that the municipal sanitary sewer system under design flow conditions did not show signs of any surcharging.

In order to address the City's comments and WWFM guidelines, an additional downstream sanitary capacity analysis using InfoWorks model was completed by Stantec who completed basement flooding study entitled "Stormwater Runoff Control and Investigation of Chronic Basement Flooding: Area 21 – Project Site" dated July 2016), which can be found in Appendix C. The City of Toronto guideline "Sanitary Sewer Surcharge Approval Guideline for Development Applications" (dated July 2021) was referenced to review the effects of increased sanitary flow contributions under both the design flow and extreme wet weather conditions.

Overall, we believe that the sewer analysis model completed by Stantec correctly represents the sewer system, including any updates to the sewer analysis to reflect changes (i.e., sewer construction) since the model was initially prepared. The model has been updated to include all sanitary peak flow rates including peak flow rates from groundwater being discharged to the municipal sanitary system from all active and recent development applications located within the affected sanitary sewershed. Best efforts have been made to include all known peak flows from Private Water discharge agreements in the sanitary sewershed.

Under Design Flow Conditions (Dry Weather Flow) Results:

The results of the analysis under design flow conditions showed that the sanitary sewers downstream of the proposed development operate in range of 0% to 65% of full flow capacity under existing conditions.

With the proposed development demands including the groundwater pumping rate added to the model, the sewers indicate an increase of approx. 1% in capacity percentage where all sections of sewer are remaining in range of 0% to 66% of the full flow capacity, and are shown to be free of any theoretical surcharge.

Therefore, under design flow conditions the municipal sanitary sewer system did not show signs of any surcharging.

Extreme Wet Weather Flow Results:

The extreme wet weather flow analysis includes the Inflow/Infiltration allowance generated under the May 12, 2000 storm event for the balance of the catchment as per City standards. The results showed signs of surcharging under existing conditions where the calculated hydraulic grade line (HGL) of the flow was less than the required 1.8 m clearance requirement below ground surface along The Donway West and Langbourne Place due to the abandoned flow split at Dunairn Road.

With the proposed demands including the groundwater pumping rate added to the model, the HGL rises no greater than <u>73 mm</u> from the existing conditions.

Therefore, per the City's Sewer Capacity Assessment Guidelines, wet weather flow mitigation measures are required since the HGL elevation is theoretically raised by the proposed sanitary demand increase.

In summary, the downstream sanitary capacity analysis showed that under design flow conditions, there are no signs of theoretical surcharging, but under extreme wet weather flow conditions mitigation measures are required to avoid raising the resultant HGL in the municipal sanitary sewer. EXP staff have been in discussions with City staff regarding the results of the downstream sewer analysis and additional consultation is recommended with City Staff.

6. Storm Servicing

Record drawings show an existing 1800 mm diameter municipal storm sewer on The Donway West flowing in the easterly direction, which provides storm servicing for the site. The topographic survey and City's record drawings show two existing catchbasins within the site connecting to the existing 1800 mm diameter storm sewer at the southeast corner of the site. The topographic drawing and City's record drawings can be found in Appendix A.

In order to verify the existing site storm and domestic sewage drainage for the site, EXP staff coordinated a SUE investigation with Multiview on January 17, 2023 and a utility dye testing investigation with a utility locate contractor (Aquaflow) on September 12th, 2023. The SUE investigation results showed an existing storm service connection to the existing municipal storm sewer system on The Donway West. The dye testing results showed that all roof drains for existing Buildings (Buildings 1, 2, 3, 4 & 5) including the foundation drainage for an existing building (Building 3) drain to the existing 1800 mm storm sewer on The Donway West. The result also showed that the foundation drainage for building 5 connects to the 375 mm sanitary sewer on The Donway West. For additional details regarding the dye testing investigation, please refer to the dye testing report prepared by Aquaflow in Appendix A.

After reviewing the Agent's development concept which included one superstructure, it was confirmed that one storm service connection would be required as per City of Toronto's current standards, where the preliminary servicing design shows the following configuration:

• One new 300 mm diameter storm service connection to the existing 1800 mm diameter storm sewer on The Donway West

Any existing service connections for the building to the existing 1800 mm diameter storm sewer are to be abandoned as part of the proposed servicing design in accordance to Toronto Water specifications.

For additional details regarding the preliminary storm servicing design refer to the Preliminary Site Servicing Plan on Figure 3. The proposed SWM measures are outlined further in the SWM Report prepared by EXP dated April 2021.

7. Groundwater

The hydrogeological investigation completed by EXP shows a calculated short-term groundwater discharge to be 3.45 L/s (298,000 L/day) during construction and a calculated long-term groundwater discharge to be 0.13 L/s (11,000 L/day). EXP then undertook a detailed review of the available options for the proposed groundwater management strategy for the site. It has been confirmed with the owner and the consultant team that the

proposed groundwater management strategy is to include a permanent drainage system (PDS) where all captured groundwater is to be collected and pumped to the municipal sanitary sewer under single ownership.

A proposed flow meter and sampling port shall be provided in accordance to Toronto Water requirements, before connection to the proposed sanitary service draining to the existing sanitary sewer on The Donway. As mentioned in Section 5, an allowance of 1.3 L/s groundwater pumping has been included conservatively in the sanitary demand calculations where the pump size is confirmed with the mechanical engineer Novatrend Engineering Group Ltd.

Finally, a brief summary of the receiving municipal sewers for the proposed groundwater management strategy can be summarized as follows:

- Temporary discharge during construction = existing 375mm sanitary sewer on The Donway West
- Long term discharge = existing 375mm sanitary sewer on The Donway West

The hydrogeological investigation and correspondence with the mechanical engineer have been provided in Appendix E for reference. The proposed groundwater details are also shown on the Preliminary Site Servicing Plan on Figure 3. The Servicing Report Groundwater Review form can be found in Appendix E.

EXP staff have advised the Owner of the City's new foundation drainage policy that came into effect on January 1st, 2022 which generally prohibit any long-term discharge of foundation drainage to the City's municipal sewer system. The Owner has been confirmed that they will be pursuing approval to discharge the groundwater to the municipal sanitary sewer directly with City of Toronto staff for the corresponding Private Water Discharge Agreement with Toronto Water.

8. Utilities

After reviewing record drawing information along The Donway West and verifying existing above ground utility furniture through a recent site visit, it appears all the required utilities can be provided to the site. EXP staff has also reached out to Utility agency staff regarding the development application where they have not yet identified any capacity issues with providing the necessary utility service for the development.

9. Conclusions

In summary, we believe the proposed development can be adequately serviced where some of the key findings are summarized as follows:

- The proposed grading requirements for the site can be accommodated without any negative impact to neighbouring properties
- Water servicing can be provided with a new combined fire/domestic water service connection to the existing 300 mm diameter watermain along The Donway West
- Adequate fire protection for the site and building can be provided based on the required maximum day
 plus fire flow demand for the site and from the observed hydrant flow testing results completed on
 May 8th, 2023
- Sanitary servicing can be provided with one new sanitary service connection to the existing 375 mm diameter sanitary sewer on The Donway West
- The results of the downstream sanitary capacity analysis completed by Stantec show no signs of surcharging under the design flow conditions but signs of possible mitigation measures are required for the extreme wet weather flow conditions, where additional consultation is recommended with City staff
- Storm servicing can be provided with a new storm service connection to the existing 1800 mm diameter storm sewer on The Donway West, complete with the proposed SWM control measures outlined in the SWM Report prepared by EXP
- Groundwater management can be accommodated by a permanent drainage system (PDS) where the current discharge strategy includes discharging directly to the municipal sanitary sewer on The Donway West, where the Owner will be pursuing approvals from both City of Toronto and Toronto Water directly

Sincerely,

EXP Services Inc.

Steve Park, P.Eng. Project Manager, Land Development

Vice President, Land Development

EXP Services Inc.

Project Number: ALL-00256815-B0 Date: October 2023

Appendix A – Background Information

NOTE: BE ADVISED THAT SHOULD ANY PARTY, INCLUDING THE OWNER OR ANY SUBSEQUENT OWNER,

representati them. all co and at all fir notes:

			_ 0	
12	ISSUED FOR REZONING	2023.10.24	40	
11	ISSUED FOR REZONING	2022.03.09	torot	
10	DRAFT REZONING SUBMISSION	2022.01.18	*00	
9	DRAFT REZONING SUBMISSION	2021.05.21	40 0	
8	SUBMISSION FOR CONSULTANTS COORDINATION	2021.04.20	R of Hori	
7	SUBMISSION FOR CONSULTANTS COORDINATION	2021.01.21	20	
6	SUBMISSION FOR CONSULTANTS COORDINATION	2020.12.23		
5	ISSUED FOR CLIENT REVIEW	2020.11.27		
4	PRE-APPLICATION CONSUTATION WITH COMMUNITY PLANNING	2019.11.08		
3	ISSUED FOR CLIENT	2019.10.20		
2	ISSUED FOR CLIENT REVIEW	2019.09.30		
1	FEASIBILITY SUBMISSION	2018.03.20		
revisions: dd-mm-yy				

architectural team

Eduardo Ortiz

interior design

BOUSFIELDS INC structural

electricol

mechanical

landscape: O2 DESIGN (FORMELY NAK DESIGN GROUP) site serv EXP

OWNER DONWAY CO-OPERATIVE DEVELOPMENT CORPORATION AND THE DONWAY COVENANT UNITED CHURCH

230 THE DONWAY WEST 230 The Dor

SITE PLAN

2023.10.24 1:200 18-16 Author

date scale: project:

drawn by

	LEGEND	crichilectureunfolded 368 outwin steat, toronta on, milk tat, tel	(416) 601-5416 ROJECT #
	BUILDING ENTRANCE Catch basin	STATISTICS ZSU AND Z4U THE DUNWAY WEST I. ZONING	1816
	A FXIT H.P. HYORO POLE	2. SITE AREA 10,268.00 m2 110,523.73 ft2 2.54 PARK DEDICATION 513.42 m2 5,536.18 ft2	ACRES
	ANDICAPPED	0.4M ROAD ALLOWANCE 47.00 m2 555.90 ft2	ACRES
	EXISTING F.H. FIRE HYDRANT	TOTAL SITE AREA 10,268.00 m2 110,523.73 ft2 2.54	ACRES
	PROPOSED B.B. BOLLARD	3. ESTABLISHED GRADE 141.69 m (AVERAGE GRADE AS PER BY-LAW) 4. PROPOSED BUILDING: 141.69 m (AVERAGE GRADE AS PER BY-LAW)	
	TO ELEC DWGS	GFA 22,390.8 m2 241,011.8 ft2 BUILDING AREA 3,850.25 m2 41,443.71 ft2 CONVENTION CONVENTION CONVENTION	
		UNITS 2.18 101 (PA7 / 3N) PROPOSED UNIT TYPE BACH. 18. 18-D 28 28-D 38 Podium towns (included in 38) TOTAL	
		11 57 92 65 51 32 - 308 TOTAL 11 57 92 65 51 32 4 308 DADYING 258 258 258 258 308 308	
	VERTICAL BIGE HORZONTAL BIKE STACKABLE BIKE	AMERITY SPACE (NODOR) 1 5m2/U 477.4 m2 5,139 ft2 AMENITY SPACE (LANDSCAFED) 1.5m2/U SOFT-HIND SCAFED 462.0 m2 4,973 ft2	
	PARKING LEGEND	7. FLOOR AREA : Deductions aper BT-UW No. 546-5013(00M) El jondor a menity source required by this by sime:	
	2.60m 2.60m 3.4m 1.5m	Aljanica Joshig and tech period police calability gans: The Second Secon	
	89 G G G G G G G G G G G G G G G G G G G	LEVEL TOTAL FL. AREA (TFA) DEDUCTIONS (K5 FKR IP - LAW) GROSS FL. AREA (GFA)	
		P3 1,093.0 m2 11,765.9 ft2 1,081.0 m2 11,655.8 ft2 12.0 m1 12.0 m1 PARKING P2 5,162.0 m2 55,563.3 ft2 5,129.0 m2 55,200.0 ft2 33.0 m2 12.0 m1 P1 4,778.0 m2 51,242.9 ft2 4,778.0 m2 51,242.9 ft2 0.00 m2	129.2 ft1 355.2 ft2 0.0 ft2
	STALL <u>AT</u> STALL <u>BELOW</u> PARKING STALL GRADE GRADE	MECH. MPH 434.0 m2 4,671.5 ft2 290.0 m2 3,121.5 ft2 144.0 m2 1,1	550.0 ft2
	SURVEY DATA	JUB FULIAL 11,467.0 m/L 122,423.5 m/L 11,278.0 m/L 122,395.3 m/L 128,395.3 m/L 20/ U/G RES. P1 2,085.0 m/L 22,485.8 m/L 91.0 m/L 979.5 m/L 1,998.0 m/L 21,1998.0 m/L 21,	334.4 tt2 ,506.3 ft2
	PLAN OF SURVEY AND TOPOGRAPHY	PODIUM LEVEL TOTAL FL. AREA (TFA) DEDUCTIONS GROSS FL. AREA (GFA)	
	OF BLOCK B, REGISTERED PLAN 4332, CITY OF TORONTO (FORMERLY	65. 3.107 b m.2 33.443 A 1x2 992.0 m2 10.5778 ft 2 2.1150 m2 22.768 2000 4.0020 m2 43.2709 ft 2 1570 m2 2.0128 ft 2 3.833.0 m2 41.278 50.0 TOTAL 7.127.0 m2 F.574.3 ft 2 1.1780 m2 1.2166 ft 2 5.946.0 m2 64.022	3.0 ft2 3.7 ft2
	CITY OF NORTH YORK), BEING ALL OF PIN 10117-0318	PODIUM LEVEL TOTAL FL. AREA (TFA) PHUUCI/I0NS (65 / RE / L/W) GROSS FL. AREA (GFA) PODIUM 65 / R / L/W) 100 / m2 9.00 / m2 9.08 / m2 7.903	3.4 ft2
	PREPARED BY : J D BARNES LTD.,	Clonet 50/8 107AL 743.3 m2 8,000 ft2 9,00 m2 96.88 ft2 734.3 m2 7,003 IFVFI T/OTAL FL, ARFAITFA) DEDUCTIONS GROKS FL, ABFAITFA) DEDUCTIONS GROKS FL, ABFAITFA)	.4 ft2
	MARKHAM, ON L3R 6B3 (905)	Jako 3,695.0 m2 39,772.6 ft2 80.0 m2 861.1 ft2 3,615.0 m2 38,11 TYP. 4TH 3,698.0 m2 80.0 m2 861.1 ft2 3,615.0 m2 38,11	911.5 ft2
	477-3662 JULT 13, 2019	STM 3,413.9 m2 36,607.2 ft2 80.0 m2 661.1 ft2 3,339.5 m2 35,5 6TH 3,026.0 m2 32,639.9 ft2 80.0 m2 861.1 ft2 2,349.0 m2 31,1 TOTAL 13,841.5 m2 148,888.5 ft2 320.00 m2 3444.4 ft2 13,351.5 m2 345.1	346.0 ft2 742.7 ft2 544.1 ft2
		RES. TOTAL 23,057.5 m2 244,188.6 ft2 1,590.0 m2 17,114.6 ft2 21,655.5 m2 233, GRAND TOTAL 35,267.8 m2 379,618.5 ft2 12,877.0 m2 138,606.7 ft2 22,390.8 m2 241,0	108.4 ft2 011.8 ft2
		8. UNIT SUMMARY Inclusion Ha	
		FLOOR EACH. 18 18/0 28 28/0 38 Podum Towns TOTAL P1 2 2 2 7 4 8 0 25 GF. 0 2 10 7 2 6 4 27	
SC-Line		ZNO 1 9 21 12 5 6 0 54 JRO 0 12 21 6 12 4 0 55 4TM 0 12 21 9 8 5 0 55	
Under Sports Field		STH 4 11 9 11 10 2 0 47 GTH 4 9 8 13 10 1 45	
		TOTAL 11 57 92 65 51 32 . 308 3.6% 18.5% 29.9% 21.1% 16.6% 10.4% . 1 1 1 1 1 1 1 1 1 3	.00.0%
		9. ACCESSIBLE UNITS	
ROOM BELOW		FLOOR BACH. 18 18+D 28 28+O 38 TOTAL P1 0 0 0 0 2 0 2 36 2 GF, 0 1 2 1 1 1 6	
3 J Lingel		AND U 1 4 1 1 1 88 BRD 0 1 3 3 2 1 10 BTH 0 1 2 3 1 1 8	
		Эти О 1 2 1 1 1 6 БТИ 0 1 2 1 1 1 6 БТИ 0 1 2 1 1 1 6	
		TOTAL (15% for the building) 0 6 15 10 9 6 46 10. EFFICENCY (NSA/GFA)	
		11. HEIGHT PERMITTED. TOA PROPOSED. G/STV HEIGH AUTRAGEGADG (141.6%) MECOL, P.H. (EXCL.) MECOL, P.H. (EXCL.) 376 m2 (145.0F ROOF AREA)	5 (21.31m) (5m)
		+ Max.10.00 m FOR 25% OF ROOF AREA ROOF AREA ROOF AREA 2683 m2 12. PARKING REQUIRED : (MAX) <u>BY1.1AW 569-2013 (4)</u> PROPOSED :	
		BACH. 0.8 FRE UNITI 11) = 9 EXem x5dm XEMD 0F dm 18 0.9 FER UNITI 149) = 134 RES. (61 ON P1 + 128 ON P2 + 29 ON P3) = OWN AVXIS 2.8 1 PR UNITI 16) = 116 V/S. (20 ON P1)	218 20
		38+ 1.2 PER UNIT(32) = 38 CHURCH MAX.6 PER 100 m 2 OF WORSHIP AREA (743M2) = 44 CHURCH (16 ON P1 + 4 ON SURFACE) TOTAL 341	20
		VIS. (MIN) 0.05 PER UNIT *(308) +2 = 17 TOTAL (reduction 11 accomplete graviting s	spaces) 258
		ELECTRICAL VENUEL REQUIRED (LEV 2 EVX) JUMS of RIS & 25% of VIS = 228 PROPOSED : (LEV 2 EVX) JUMS of RIS & 25% of VIS = 228 Pro Jum 10 Jum 2014 All remaining to have EV 80UGH INS	vided
	HT 5 70	Note: Vehicular spring calculations resulting in a fraction have been rounded COVM to the exarct whole surface with former City of forth York by-law 7825.	
	ARN W W	13. ACCESSIBLE PARKING REQUIRED : 11 Spaces PROPOSED : ASPLICATIONS OF UNAN RES. RES. HEARING TO RESUMMENT Vine Net	9
		GHURCH TOTAL	1 11
		14. LOCKERS REQUIRED : PROPOSE (15.1) PROPOSE (15.1) PROPOSE (17.7%) A/G	0
2 STOREY		RES. 1 PER UNIT (308) = 308 U/G (UNIN.1.35 m2.4482.4787.LOCKER) 308	222 222
		15. BICYCLE REQUIRED : PROPOSED : RETAIL RETAIL SOUTTRIM (0.25//200m2 +3) 0	0
ZA.1 W PARENT DR.		LONG TRAN (0.13/100m2) 0 LONG TRAN RESIDENTIAL RESIDENTIAL RESIDENTIAL (filmmedia) Nummary Nummary 0.000 TRAN (filmmedia)	Eloor) 22
		Line station is taking and the state of the	0 P1) 210 232
		Benergie provide and a second se	
		Res 2 m2/UNIT (308) = (m2) 616 1.55 m2/U 477.40 m2 5,13 Persuperior 5,13 5,13 5,13 5,13 5,13 5,13	8.69 ft2
$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	⇒	BREAKUUWN P1 76.00 m2 88 GROUND FL 38.340 m2 4.12 210 FL 18.00 m2 19	8.06 ft2 :6.88 ft2 93.75 ft2
		477,40 m2 5,13	s8.69 ft2
		PART OF GFA Autrity Incl. In GrA. 477.40 m2 5,13 17. OUTDOOR AMENITY REQUIRED: PROPOSED: <	.8.69 ft2
		BREAKDOWN OUTDOWN	22.57 ft2
		кюз ямся 99,00 m2 1,06 ОUТБООК МОККОИТ 67,00 m2 72 	5.63 ft2 11.18 ft2 - ft2
		I8. LANDSCAPED S49.00 m2 5,90 18. LANDSCAPED REQUIRED : PROPOSED : 00000 0000 0000	9.38 ft2
HEIGHT 21.80 M	HEIGHT 10.09 M	MIN. 30% OPEN SPACE OF SA) REQUIRED OPEN SPACE ON SITE 300% PROVIDED OPEN SPACE ON SITE 4,67 4,67	.5.6% 380.2 m2
EXISITING 6 STOREY CONDOMINIUM		SOFTSCAPE SOFTSCAPE N/A m2 SOFTSCAPE 2,66 HARDSCAPE HARDSCAPE H/A m2 HARDSCAPE 1,73 TOTAL M/A m2 TOTAL M/A m2	0.69 m2 36.69 m2 3998.0 m2
		19. REFUSE REQUIRED : PROVIDED : GARBAGE ROOM AREA 66 m2 BILLY AREA 10 m2	76 m2
		ل المحمد عن الذخر المحمد ا المحمد المحمد المحمد المحمد المحمد المحم المحمد المحمد المحم المحمد المحم المحمد المحمد المحمد المحمد المحمد المحمد المحمد ال	58 m2
		1-11976 G 113m L X4m W X 61m H) (13m L X4m W X 61m H)	

JEIGH

The drawings are the associated docume drawing and the infe whole or in part with

tural drawings govern over the Mechanical and Be iminal clearly located will be located as directed to

These drawings "Issued for Cons d below as

All work to be carried out in a authorities having jurisdiction onformance with the Code and bylaws of the

The Designer of litese plans or representation to any party at them. all contracters or subco-and at a litmes that they con these plans.

dd-mm-yy

			- 8
12	ISSUED FOR REZONING	2023.10.24	oto
11	ISSUED FOR REZONING	2022.03.09	tores
10	DRAFT REZONING SUBMISSION	2022.01.18	*00
9	DRAFT REZONING SUBMISSION	2021.05.21	ato e
8	SUBMISSION FOR CONSULTANTS COORDINATION	2021.04.20	o di Horis
7	SUBMISSION FOR CONSULTANTS COORDINATION	2021.01.21	20
6	SUBMISSION FOR CONSULTANTS COORDINATION	2020.12.23	
5	ISSUED FOR CLIENT REVIEW	2020.11.27	
4	PRE-APPLICATION CONSUTATION WITH COMMUNITY PLANNING	2019.11.08	
3	ISSUED FOR CLIENT	2019.10.20	
2	ISSUED FOR CLIENT REVIEW	2019.09.30	
1	FEASIBILITY SUBMISSION	2018.03.20	

revisions:

architectural team :

Eduardo Ortiz

interior design:

planning: BOUSFIELDS INC structural:

electrical:

mechanical:

landscape: O2 DESIGN (FORMELY NAK DESIGN GROUP) site services: EXP

CONNER: DONWAY CO-OPERATIVE DEVELOPMENT CORPORATION AND THE DONWAY COVENANT UNITED CHURCH

project:

230 THE DONWAY WEST 230 The Donway W., North York, ON

CONTEXT PLAN & STATISTICS

2023.10.24 1:500 18-16 Author

SUE NOTES:

1. The Project boundaries are not including the full ROW only to the center of the road. For this reason records from the main Utilities owners on The Donway West are not included.

2. All inverts are in meters and are taken from the Top of Grate (T/G) or Rim Elevation reference.

3. All the utility owners could not provide the records for the service lines, they only provided for the main lines.

4. Overhead Utilities are not within the scope of work of the SUE Investigation.

5. No update as built drawings were received, and all depicted STM, SAN, and water mains are based on these old records. For this reason, it is highly recommended to perform sonding for the sewers in order to establish and /or confirm connections for mains and laterals.

6. No records of service utilities lines were available nor collected. All the depicted service lines included in this composite drawing are based on the geophysical survey only.

7. Street Light (SL) and Traffic Lights (TL) utility lines depiction was based on the site investigation only.

8. Any data or information outside of the project boundaries and scope of work is provided for information purposes only and has not been verified.
9. Please see some SUE Investigation challenges and the Technical limitations on sheet # 2

SUE investigation of the private property was performed on 2020under project #46592. Finding of this investigation is added for information only and has not been updated.

FOR: DONWAY CO-OPERATIVE DEVELOPMENT CORPORATION

(C) DI

BLOCK B

BLOCK E

PROJECT NO:52787

PROJECT NAME: 230 THE DONWAY W, NORTH YORK, ON

DATE:2023-01-17

DUNCAIRN R	D
	CB-1000 T/G=139.72m SW INV.=0.84m/150mmø 3W6H CB-1001 T/G=139.95m NE INV.=1.15m/150mmø SE INV.=1.17m/200mmø Lost Signal/ End of QL-B
	End of Records Lost Signal/ End of QL-B SUE Investigation Boundaries STM/MH-2000 T/G=140.70m
Monta and a service and a serv	NE INV.=Recessed B.O.C=4.80m CB-1002/Unable to Open T/G=140.66m
ARD, VIANE C.	SAN/MH-3000 7/G=141.37m NE INV.=4.60m/300mmø SW INV.=4.61m/300mmø

375mm	CONC	Sanitary	Sewer
1800mm	CONC	Storm	Sewer
300mm	PVC V	Vatermai	n

GLOSSARY

CSE	- CONFINED SPACE ENTRY
SAN	- SANITARY
STM	- STORM
INV	- INVERT
OBV	- OBVERT
BOC	 BOTTOM OF CHAMBER
EORI	 END OF RECORD INFORMATION
AATUR	- UTILITY ABANDONED ACCORDING TO UTILITY RECORDS
EOI	 END OF SURFACE GEOPHYSICAL INFORMATION
T/G	 TOP OF GRATE ELEVATION
ROW	- RIGHT OF WAY
NPS	 NOMINAL PIPE SIZE

Tel: 1-800-363-3116 Email: <u>sales@multiview.ca</u> www.multiview.ca

Throughout this schedule, "multiVIEW" is the corporate entity multiVIEW Locates In

2. Pipe, cable, conduit, rebar, post-tension cables, anchors, containers, vaults, tanks and similar objects that are buried under the ground or embedded within a structure are referred to in multiVIEW's terms and conditions as Buried Assets

3. Subsurface conditions such as depth to bedrock, change in soil type, presence of karst, voids, contaminated soil or ground water, residual construction or industrial debris or buried waste are referred to in multiVIEW's terms and conditions as Buried Liabilities.

4. The Client acknowledges that the laws of fundamental physics apply and acknowledge that sensing instruments can not detect all Buried Assets and Buried Liabilities. Buried Assets and Buried Liabilities which are detectable by properly deployed and operated instruments are termed Locatable Buried Assets and Locatable Buried Liabilities. Buried Assets and Buried Liabilities which are not clearly detectable in an unambiguous manner due to the laws of fundamental physics are termed Unlocatable Buried Assets and Unlocatable Buried Liabilities, multiVIEW follows industry best-practice procedures but is not responsible for determining the presence and location of Unlocatable Buried Assets or Unlocatable Buried Liabilities

5. Instruments to locate Buried Assets use a variety of approaches to detect and infer the location of the Buried Assets. Standard pipe and cable locating instruments detect the magnetic fields associated with electrical current flowing in the Buried Asset. GPR (Ground

- Penetrating radar) techniques depend on the transmission of radio waves into the host material and detection of waves reflected back from the Buried Assets. Sonding methods require insertion of a source of magnetic field into the pipe or conduit and detection of the magnetic field created by source at the surface of the Work Area to locate the sonde position. For the purposes of this estimate, Locatable Buried Assets are normally characterized as:
- a. metallic pipes, cables and conduits that are capable of carrving an electrical current and that can be physically accessed to allow an energizing current source to create an electrical current in the Buried Asset of sufficient magnitude as to be detectable by standard locating instruments

b. metallic pipes, cables and conduits that actively carry an identifiable electric current that is sufficiently large and has suitable frequency as to be detectable by standard locating instruments;

- metallic and non-metallic pipes, cables, conduits, rods, bars, wires, voids, and inclusions that represent a substantive electrical contrast to the host material and are embedded in a host material transparent to radio waves such that radio waves reflected from the
- d. non-metallic pipes, cables and conduits (i.e. composed of plastic, concrete, asbestos, clay, etc.) which have continuous associated tracer wire capable of carrying an electric current and that can be physically accessed to allow an energizing current source to create an electrical current in the tracer wire of sufficient magnitude as to be detectable by standard cable locating instruments;
- e. non-metallic pipes, cables and conduits which have continuous associated tracer wire capable of carrying an electric current and that naturally carries an electrical current of sufficient magnitude and suitable frequency as to be detectable by standard cable locating
- f. open pipe and conduits that can be accessed by a sonde and are sufficiently shallow to permit detectable magnetic fields to be sensed at the surface of the Work Area;

Examples of Unlocatable Buried Assets include, but are not limited to, the following:

- g. pipes, cables and conduits whose depth of burial is too great to create and/or overlain by or in proximity to metallic material which results in signal distortion thus preventing physically measurable signals at the surface or where burial material interferes with current generation and signal emissions;
- h. normally Locatable Buried Assets situated in, or emerging from, an area which is an Inaccessible Area;

i. normally Locatable Buried Assets with a break or breaks to the electrical continuity of any metallic pipe, cable or tracer wire (i.e. segmented lengths, corroded connections, sections of plastic repair, etc.);

j. non-metallic pipe, cable and conduits which do not have a continuous and/or accessible associated tracer wire

k. the host material is opaque to radio waves;

1. Buried Assets that are normally characterized as Locatable become Unlocatable when either ambient interfering electromagnetic fields or the material surrounding and/or enclosing and/or above the Buried Asset disrupt the energizing current or the normal operation

Instruments used to locate Buried Liabilities use a variety of approaches to detect and infer the location of the Buried Liability. Magnetometers detect the distortion in the local magnetic field induced by the presence of some types of Buried Liabilities. GPR (Ground

Penetrating radar) techniques depend on the transmission of radio waves into the host material and detection of waves reflected back from the Buried Liability. In some cases the lack of reflected GPR signal can be a Buried Liability indicator. Electromagnetic induction methods use electromagnetic induction to induce current flow in the subsurface and detect the resulting magnetic fields that are associated with these induced currents to identify Buried Liabilities. Electrical resistivity measurements use direct connect to pass current through host material and map out distortions in the current flow to indicate changes in the subsurface that may indicate the presence of Buried Liabilities. For the purposes of this estimate, Locatable Buried Liabilities are normally characterized as those features that will create a discernable change to the response of the measuring instrument and which differ in character from the background surrounding environment (that is, the features create an Anomalous Response) when industry best practices are followed.

- The Client acknowledges that the laws of fundamental physics apply and that equipment is subject to measurement distortions that are site specific resulting in limited precision when determining positional coordinates. multiVIEW will use best-practice procedures but is sible for determining the location of Buried Assets or Buried Liabilities to an accuracy better that what is typical of normal locate inst
- 8. Determination of type composition, depth or size of the Buried Assets or Buried Liabilities is not possible and does not constitute part of this service. Identification of the type (i.e. gas, electric, communications, etc) of a specific Buried Asset is not technically possible except by visual surface appurtenance or excavation and visual exposure of the Buried Asset. Inferences that may be drawn by correlation with records and as-built drawings may be offered but such inferences are provided on a best effort basis with no guarantee of

10.Individual Locatable Buried Assets are deemed Unlocatable Buried Assets where there are numerous Buried Assets clustered together either vertically and/or horizontally ("Clustered Utilities") making identification of individual elements physically impossible. multiVIEW

is not responsible for identifying the individual Buried Assets in such situations

11.Non-metallic pipe and cable (i.e. fibre-optic systems, etc.) are Unlocatable Buried Assets for standard cable locating instruments unless either an unbroken tracer wire or continuous metallic sheathing surrounding such buried plant is easily accessible from the surface. The Client must provide direct and simple access to every traceable wire or continuous metallic sheathing. Otherwise, multiVIEW accepts neither liability nor responsibility for locating such features since they are deemed Unlocatable

12.Non-metallic pipe and conduits (i.e. plastic, concrete, asbestos, clay, etc.) under pressure (i.e. water, gas, forcemain systems, etc.) are Unlocatable Buried Assets for standard cable locating instruments unless an unbroken tracer wire is attached to the pipe and this tracer wire is easily accessible from the surface. The Client must provide direct and simple access to every traceable wire.

13.Non-pressurized, non-metallic (i.e. plastic, concrete, asbestos, clay, etc.) conduits or pipe (i.e. sewers, drains, empty ducts, etc.) are Unlocatable Buried Assets unless a transmitting sonde can be inserted throughout the full length of the pipe or conduit. It is the

responsibility of the Client to identify and provide direct access (including provision of licensed plumbing, electrical or confined space entry personnel if required) to any and all access points for such lines. multiVIEW accepts no responsibility for locating such lines where the Client does not provide access and/or appropriate workplace safety measures.

14.Any Buried Asset incapable of generating a reflected radar wave detectable by a GPR instrument is an Unlocatable Buried Asset

15 All or part of a Work Area is defined as an Inaccessible Area when inaccessible for surveying Inaccessible Areas include the following: hose covered by a structure or object (i.e. buildings, vehicles, debris, stockpiled snow, building materials, etc.); those covered by open

water; those covered by woods, vegetation, or snow too thick to permit easy walking; those where the surface terrain slopes steeper than 1:2; those covered by snow; and, those where the safety of the operator is jeopardized (i.e. unstable footing, environmental hazards uncontrolled roads, etc.). The final decision for defining an area as an Inaccessible Area rests with the multiVIEW Health & Safety Officer.

16.Utility data depicted on QL-D CAD lines are derived via utility owners record data and shown only for reference

Project No · Date: urveved/Drawn By: Check 52787 2023-01-17 AS/NN DONWAY CO-OPERATIVE DEVELOPMENT CORPORATION 1: 1-800-363-3110 BSURFACE UTILITY EI Fax:1-866-571-5946 230 THE DONWAY W. NORTH YORK, ON HYDRO EXCAVATION & CCTV CONCRETE SCANNING UTILITY LOCATES NEAR-SURFACE GEOPHYSICS www.multiVIEW.ca TERMS & CONDITIONS 325 Matheson Blvd East 00011 Bird Edd

Liability Limitations

1. Location and mapping services, marks, reports and results provided by multiVIEW cannot substitute as a legally defined Buried Asset location in jurisdiction where government regulation dictates that the Buried Asset owner is solely responsible for identifying and locating their own Buried Assets. In cases where multiVIEW is legally authorized to act on behalf of the Buried Asset owner to locate the owner's Buried Assets, any results provided by multiVIEW will clearly identify that the Buried Asset location is legally authorized on all records,

- damages for personal injury including death, or for property damage or liability caused to or from any Buried Asset or Buried Liability, within the Work Area.
- 3. Cables carrying DC voltages and/or small diameter cables (i.e. fire alarm or security systems, remote signal cables, inaccessible tracer wire, perfectly balanced AC cables, etc.) can only be detected by methods which create electrical currents and signals in the cables. Where a sensitive or dangerous connection is involved, the Client must provide qualified personnel to isolate and enable direct access to these systems. The Client is responsible for defining the impact of locating signals on sensitive electronics. multiVIEW accepts no
- responsibility for any damage to plant, or any third party, caused by locating signals. Technical information about locating signals is available from multiVIEW upon request
- 5. multiVIEW will not accept any liability regarding inaccurate estimates of utility depth secured only by electronic means since multiVIEW recommends exposure of any such issues by vacuum excavating if any such depth information is critical to the design, engineering or construction of subsequent infrastructure.

6. multiVIEW accepts no responsibility and is not liable for damages suffered by any third party as a result of decisions or actions based on the performance of the statement of work by multiVIEW.

- 7. multiVIEW accepts no responsibility and is not liable for conduit blockage, or restoration of the site to pre-survey conditions, as a result of survey practices needed to fulfill the objectives of the Service provided.
- 8. The completeness of work carried out by multiVIEW is based on information provided by the Client at or prior to the earlier of the time of issuance of this Estimate. If the scope work or size and/or extent of the Work Area changes, a signed Change Order must be issued so

9. multiVIEW accepts no responsibility for locating Buried Assets or Buried Liabilities outside the limit of the Work Area or in the Inaccessible Areas

10.Except as written in this contract, multiVIEW disclaims any and all promises, representations, warranties and covenants, express, implied, statutory or otherwise.

11.multiVIEW shall not be liable for any amount in excess of the fees paid by the Client to multiVIEW for the work described in this estimate on account of any loss, injury, death, or damage whether resulting directly or indirectly to a person or property irrespective of the cause or origin of such loss, injury, death or damage including, without limitation, loss, injury, death or damage attributable to the negligence of multiVIEW, its employees and agents in the performance or non-performance of the Se

12.In any action, claim, loss or damage arising out of the work for which this estimate is provided, the Client agrees that multiVIEW Locates Inc.'s liability will be 'several' and not 'joint and several' and the Client may only claim payment from multiVIEW Locates Inc of multiVIEW Locates Inc.'s proportionate share of the total liability based on degree of fault. Any action against multiVIEW Locates Inc must be commenced on or before the date which is the earlier of: i) eighteen months from the date on which the work in this estimate is completed and, ii) the date by which an action must be commenced under any applicable legislation other than limitation legislation. In no event shall multiVIEW Locates Inc be liable to the Client whether the claim be in tort, contract or otherwise, for an amount in excess of the fees paid by the Company for the services work provided. In no event shall multiVIEW Locates Inc be liable to the Client, whether a claim be in tort, contract or otherwise for any consequential, indirect, lost profit or similar damages, or failure to realize expected savings. multiVIEW Locates Inc will use all reasonable efforts to complete within any agreed upon timeframe the performance of the services described herein; however, multiVIEW Locates Inc shall not be liable for failures or delays in performance that arise from causes beyond its control, including the untimely performance or non-performance by the Client of its obligations

2. multiVIEWs markings of Buried Asset or Buried Liability locations are provided as information to be input into the Client's decision making process and the provision of this information does not relieve the Client, or any other person, party, or corporation, from liability for

4. multiVIEW is not liable for damages resulting from physical exposure of any Buried Assets or Buried Liability by the Client, its representatives, their sub-contractors or any other person or corporation,

that scope of work can be adjusted to address Client requirement changes. Documents and maps provided by multiVIEW are the definitive means legally defining the extent of the Work Area investigated.

SHEET 2 of 2				
Rev. No.	Drawn By	Checked By	Date	Revision
-	-	-	-	-

^{9.} Client acknowledges the critical nature of having access to energize Buried Assets to enable locating and assumes full responsibility for identifying and providing access (including provision of licensed plumbing, electrical or confined space entry personnel if required and which adhere to multiVIEW health and safety procedures) to any and all points necessary for the energization of the Buried Assets. multiVIEW accepts no responsibility for locating any Buried Asset for which access and/or appropriate workplace safety me

EXP Services Inc.

Project Number: ALL-00256815-B0 Date: October 2023

Appendix B – Water Demand Calculations

 PROJECT:
 230 and 240 The Donway West

 PROJECT NO:
 ALL-00256815-BU

 CREATED BY:
 25-Oct-23

 CHECKED BY
 25-Oct-23

Average Day

City of Toronto Sewer and Watermain manual Jan 2021

Apartment Per Capita Demand =	191 L/caps/d	0.002210648 L/cap/s
Row Housing Per Capita Demand =	320 L/caps/d	0.003703704 L/cap/s

City of Toronto Sewer and Watermain manual Jan 2021

Unit Type	Population Density	
1 bedroom	1.4	
2 bedroom	2.1	
3 bedroom	3.1	
4 bedroom	4.0	
Townhouse	2.7	
Church	86	Cap/ha

City of Toronto Sewer and Watermain manual Jan 2021

Max Day Factor	1.65	(Residential)
Max Day Factor	1.1	(Institutional)

Site Stats taken from Architecture unfoldeded Site Plan dwg

Building	Units	Population	Rounded Pop.	Average Day Flow (L/s)	Max. Day Flow (L/s)
1 bedroom	160	224	224	0.495	0.817
2 bedroom	116	243.6	244	0.539	0.890
3 bedroom	32	99.2	100	0.221	0.365
4 bedroom	0	0	0	0.000	0.000
Townhouse	0	0	0	0.000	0.000
Totals:	308	566.8	568	1.26	2.07

	Area	Population	Rounded Pop.	Average Day Flow (L/s)	Max. Day Flow (L/s)
Church	1.05	90.3	91	0.201	0.221
Total Church and Resi	dential	657.10	659.00	1.46	2.29

* eyn	Fire Flow Calculation			PROJECT: 230 and 240 PROJECT Not ALL-0025681	PROJECT: 230 and 240 The Donway West		
CAP.				CREATED BY:	26-Oct-23		
I				CHECKED BY	26-Oct-23		
	Fire Underwriters Survey 2020 Water	Supply for Public Fire Pro	tection - Page 19				
1	Estimate of the required fire flow for a given area can be determined by the formula:			$F = 220C\sqrt{A}$			
	Where	Where F = required fire flow in litres/minute					
		n					
	For non-combustible construction: C =	=	0.8				
	Total area : A =		5,906 m²				
	Therefore F = 220 x 0.8 x (A)½ =		13,526 L/m				
	Eira Underwriters Survey 1999, Water	Supply for Public Eiro Pro	tection _ Page 24				
2	Fire Underwriters Survey 1999 Water Supply for Public Fire Protection - Page 24						
2	Combustible Contents	0%					
	(1) 0% =	13,526.06	L/m				
2	Deduction for Covindian metastics						
5	Sprinkler	200/					
	Sprinkler	30%	. ,				
		4,058	L/m				
4	Addition for Structures exposed with						
	10.1m to 20m	15%					
		2,029	L/m				
5	Total Estimated Fire flow	11,497	L/m				
	The estimated fire flow is approx.	12,000	L/m				
		200	L/s				

* exp	Fire Flow Calculation	PROJECT: PROJECT No:	PROJECT: 230 and 240 The Donway West PROJECT No: ALL-00256815-B0		
		CREATED BY:	25-Oct-23		
I I		CHECKED BY	25-Oct-23		
	$Q_F = 29.84 \times c \times d^2 \times \sqrt{p}$				
	where,				
	Q _F = total residual flow during the test, gpm				
	c = coefficient of discharge		0.9		
	d = diameter of the outlet, inches		2.5		
	p = pitot pressure (velocity head), psi		60		
		05 -	1200	anm	
		Qr -	1200	ghin	
	$Q_R = Q_F \times (h_r \div h_f)^{0.54}$				
	where,				
	Q_8 = flow predicted at the desired residual pressure, gpm				
	hr = pressure drop to the desired residual pressure, psi	66-20 =	46		
	hf = pressure drop measured during the test, psi	66 - 63 =	3		
		QR =	5679	gpm	
			358.3	L/s	

October 17, 2023

Re: Project: 230 The Donway West Options for Homes.

Our Project No.: 18-16

To: EXP 220 Commerce Valley Drive West Ste 110, Markham, ON, L3T 0A8

Attn: Steve Park

Please accept this letter as confirmation of the following:

The podium is part of the proposed building design.

The construction type is non-combustible with a minimum fire resistance rating of 2 hours in accordance with OBC 3.2.2.83 and 3.2.2.1.4.

The entire building will be sprinklered in accordance to OBC and NFPA 13 and/or any other NFPA requirements; The sprinkler system will be designed by a licensed fire protection engineer.

All vertical openings and exterior vertical communications will be properly protected in accordance with the NBC.

I trust this is satisfactory.

Yours truly,

Bre

Eduardo A Ortiz, Dipl. Arch., OAA, LEED AP

Hydrant Flow Test Report

SITE NAME: The	Donway Covenant Uni	ited Church			TEST DATE:
SITE ADDRESS / MUNICIPALITY:	230 The Don	230 The Donway West North York, ON			May 08,2023
TEST HYDRANT LOCATION :	42m East o Hydra	42m East of 240 The Donway West Hydrant ID# HY4027720			
BASE HYDRANT LOCATION:	225 The Donway V II	225 The Donway West ID# HY4027900			TEST TIME: 8:39AM
TEST BY: Luzia Wood					
	<u>TI</u>	EST DAT	<u>A</u>		
FLOW HYDRANT Pipe Dia (in / m	^{m.} m) 300 P.V.C.		_		
	<u>PITOT 1</u>		<u>PITOT 2</u>		
SIZE OPENING (inches):	2.5		2.5		
COEFFICIENT (note 1):	0.90		0.90		
PITOT READING (psi):	60		42 / 42		
FLOW (usgpm):	1300		2175		
THEORETICAL FLOW	@ 20 PSI	5677]		
BASE HYDRANT Pipe Dia (in / m	^{m.} m) 300 P.V.C.		_		
STATIC READING (psi): 66	RESIDUAL 1 (psi):	63	RESIDUAL 2 (psi):	58	_
REMARKS:					

NOTE 1: Conversion factor of .90 used for flow calculation based on rounded and flush internal nozzle configuration. No appreciable difference in pipe invert between flow and base hydrants.

Flow, gpm

L & D Waterworks Inc.

491 Port Maitland Rd Dunnville, ON N1A 2W6 Ph: 289.684.6747

EXP Services Inc.

Project Number: ALL-00256815-B0 Date: October 2023

Appendix C – Sanitary Demand Calculations

226 WILKINSON ROAD, BRAMPTON, ONTARIO L6T 4N7 (905) 792-8169

COMBINED & STORM SEWER VIDEO INSPECTION REPORT & DYE TEST

150 MM - 375 MM DIAMETER COMBINED SEWER & 100 MM - 1800 MM DIAMETER STORM SEWERS

FOR

230 THE DONWAY WEST (THE DONWAY COVENANT UNITED CHURCH)

CITY OF TORONTO

FILE # 23260

CONSULTANT: EXP CONSULTANT'S REPRESENTATIVE: STEVE PARK. P. ENG.

TUESDAY, SEPTEMBER 12TH, 2023

INDEX:

1. TITLE PAGE AND INDEX

2. SUMMARY REPORT AND CONCLUSIONS

3A. SKETCH OF SEWERS DYE TESTED & CCTV INSPECTED 3B. SKETCH OF ARCHIVED PLUMBING PLAN

4. SEWER INSPECTION REPORTS

SEWER CLEANING, VIDEO INSPECTION, INSITU REPAIRS & MUNICIPAL ENGINEERING SERVICES

2. SUMMARY REPORT AND CONCLUSIONS:

The Dye Test work & video inspection of the combined & storm sewers for 230 The Donway West was carried out by Steven Lostracco, P. Eng., of Aquaflow Technology Inc., and was authorized by Steve Prak of EXP. All combined & storm sewers were power flushed immediately prior to the video inspection. The video inspections were carried out on Tuesday, September 12th, 2023.

COMBINED & STORM SEWERS VIDEO INSPECTED:

FILE # 23260: 150 - 375 mm diameter Combined sewers inspected

100 mm - 1800 mm diameter Storm sewers inspected

The purpose of this report was to determine if the site drains into the municipal storm sewers or combined sewer system. The dye test & video inspections confirmed the following. For detailed comments on each sewer run, please refer to the attached sewer TV Inspection reports.

1. The sump pump for building #5 (Sump Pump-2) connects to the 375 mm combined sewer system on The Donway West. Blue dye was pumped into the sump pump which was observed in the lateral and also in the main 375 mm combined sewer.

2. All roof drains for buildings 1, 2, 3, 4 + 5, including the sump pump for building 3 (Sump Pump-1) connect to the 1800 mm storm sewer on The Donway West. See photos below and attached video inspections.

1. 230 The Donway West

2. 230 The Donway West

4. 230 The Donway West

5. BLDG 5, Sump Pump -2 connects to combined sewer

6. Combined sewer lateral (cleanouts) CO-COMB-1 on grass

7. Two downspouts for BLDG-3

8. Two downspouts for BLDG-3

10. Downspout BLDG-3 drains onto Flat roof of BLDG-4

11. BLDG-3, sump pump-1

12. BLDG-3, sump pump-1 outlet pipe

13. Roof BLDG-3

14. Roof BLDG-5

16. Flusher truck with blue dye

Report Prepared by:

Steven Lostracco, P. Eng.

EXP Sewer TV Inspection Report Summary Page: 1 of 1

No.	Date	Street	Start MH	Finish MH	Surv'd Len	Video
1	2023-09-12	230 DONWAY WEST - STO	ORM STM-1	NORTH	7.2 m	23260
2	2023-09-12	230 DONWAY WEST - STO	ORM STM-1X	NORTH	7.2 m	23260
3	2023-09-12	230 DONWAY WEST - STO	ORM STM-1XX	NORTH	7.2 m	23260
4	2023-09-12	230 DONWAY WEST - STO	ORM STM-1XXX	NORTH	7.2 m	23260
5	2023-09-12	230 DONWAY WEST - CON	MBINED COMB-1	MAIN	10.0 m	23260
		EXP				
-------	----	------------	--------			
Sewer	ΤV	Inspection	Report			

Survey No: PipeLenRef: Contractor: Catchment: Street:	1 STM-1 AQUAFLOW 230 DONW	X W WAY I	Date: Status: Contract No: Division: VEST - STORM	2023-0 Abando 1 -	9-12 ned	Survey	ed Le Jo Dist	Time: ngth: b No: rict: City:	10:12 007.2 m 1 - TORONTC	L)
Start MH: Depth: Finish MH: Depth:	STM-1 00.00 m NORTH 00.00 m		Location: Cover: Location: Cover:	WEST S 000.00 FURTHE 000.00	IDE RC m R NORT m	PAD – DC TH ON DC	NWAY In NWAY In	WEST vert: WEST vert:	000.00	m m
PipeLength: Use: Lining: Weather:	2.40 m Storm Light Ra	ain	Size (Dia): Material: Purpose: Location Code:	1800 m Concre Assess Urban	m te ment Street	Tot	al Le S Cate Direc	ngth: hape: gory: tion:	100.0 m Circula Not Kno Downstr	r wn eam
Year Laid: Video Tape:	23260		Location: Comments:			FIG	-crea	iiiiig•	165	
Structural Operational	Grade: 1 Grade: 1	1 1	Total Score: Total Score:	0 0	Peak Peak	Score: Score:	0 0	Mean Mean	Score: Score:	0 0
Index Pho B 0:00:11 0:00:16	Dist CD 000.0 000.0	Code ST MH	e Description/R Start of Sur Downstream (Manhole	emarks vey with fl	ow)		Dim	Cloo	k Int S	core
0:00:20 0:01:18 0:01:22	000.0 006.7 007.1	WL CN GO	STM-1 Water Level Connection General Obse PUMPING BLUE	rvation	I.DG #1	. #2. #	200m	m 10	05%	
0:01:45 0:01:46	007.2 007.2	GO SA	General Obse HEAVY RAIN - Survey Aband	rvation HVY FL oned	OW -EN	D OF IN	SPECT	ION		

		EXP		
Sewer	TV	Inspection	Report	

Survey No: PipeLenRef: Contractor: Catchment: Street:	2 STM-1X AQUAFLOW - 230 DONWA	X C Y WESI	Date: Status: Contract No: Division: - STORM	2023-0 Abando 1 -	9-12 ned	Survey	ed Le Jo Dist	Time: ngth: b No: rict: City:	11:01 007.2 m 1 TORONTO	
Start MH: Depth: Finish MH: Depth:	STM-1X 00.00 m NORTH 00.00 m		Location: Cover: Location: Cover:	WEST S 000.00 FURTHE 000.00	IDE RO m R NORT m	DAD – DC TH ON DC	NWAY In NWAY In	WEST vert: WEST vert:	000.00 m 000.00 m	
PipeLength: Use: Lining: Weather:	2.40 m Storm Light Rain	n Loc	Size (Dia): Material: Purpose: cation Code:	1800 m Concre Assess Urban	m te ment Street	Tot	al Le S Cate Direc	ngth: hape: gory: tion:	100.0 m Circular Not Knowr Downstrea	1 Am
Year Laid: Video Tape:	23260		Location: Comments:			FIG	-ciea	iiiiig•	165	
Structural Operational	Grade: 1 Grade: 1	T T	Cotal Score: Cotal Score:	0 0	Peak Peak	Score: Score:	0 0	Mean Mean	Score: Score:	0 0
Index Pho I 0:00:12	Dist CD Co 000.0	ode De ST S D	escription/R Start of Sur Downstream (emarks vey with fl	ow)		Dim	Clo	ck Int Sco	re
0:00:18 0:00:23 0:00:29	000.0 I 000.0 I 000.0 (MH M S WL W GO G	Manhole STM-1X Mater Level General Obse PE-CCTV FOR	rvation	NAT. DY	VE TESTI	NC		05%	
0:01:21 0:01:29	007.2 007.2	CN C GO G	Connection Seneral Obse NUMPING DYF	rvation BLDG #	4		200m	m 10		
0:01:37	007.2	SA S E	Survey Aband	oned CTION	-					

		EXP	
Sewer	ΤV	Inspection	Report

Survey No: PipeLenRef: Contractor: Catchment: Street:	3 STM-1XX AQUAFLOW - 230 DONW	X Ay we	Date: Status: Contract No: Division: ST - STORM	2023-0 Abando 1 -	9-12 ned	Surve	eyed I Dis	Time: Length: Job No: strict: City:	11:25 007.2 m 1 - TORONTO	
Start MH: Depth: Finish MH: Depth:	STM-1XX 00.00 m NORTH 00.00 m		Location: Cover: Location: Cover:	WEST S 000.00 FURTHE 000.00	IDE RO M R NOR M	DAD – I TH ON I	OONWA OONWA	Y WEST Invert: Y WEST Invert:	000.00 m 000.00 m	
PipeLength: Use: Lining: Weather:	2.40 m Storm Light Rai	in L	Size (Dia): Material: Purpose: ocation Code:	1800 m Concre Assess Urban	m te ment Stree	To t	Cat Dire	Length: Shape: Legory: ection:	100.0 m Circular Not Know Downstrea	n am
Year Laid: Video Tape:	23260		Location: Comments:			ΡI	.e-ci	saning.	165	
Structural Operational	Grade: 1 Grade: 1		Total Score: Total Score:	0 0	Peak Peak	Score Score	() Mean) Mean	Score: Score:	0 0
Index Pho I 0:00:15 0:00:20	Dist CD (000.0 000.0	Code ST MH	Description/Re Start of Sur Downstream (Manhole	emarks vey with fl	ow)		Dir	n Clo	ck Int Sc	ore
0:00:24 0:00:30	000.0	WL GO	STM-IXX Water Level General Obse: +/-1800 MM S	rvation TORM					05%	
0:00:30	000.0	GO CN	General Obse ADDITIONAL D Connection	rvation YE TEST	ING		20)mm 10		
0:01:24	007.2	GO	General Obse: PUMPING BLUE Survey Aband	rvation DYE- B	LDG 5		_ • •			
0.01.94	007.2	JA	END OF INSPE	CTION						

		EXP	
Sewer	TV	Inspection	Report

Survey No: PipeLenRef: Contractor: Catchment: Street:	4 STM-1XXX AQUAFLOW - 230 DONWA	X Ay we	Date: Status: Contract No: Division: ST - STORM	2023-01 Abandor 1 -	9-12 ned	Survey	yed Le Jo Dist	Time: ngth: b No: rict: City:	12:13 007.2 m 1 TORONTO	
Start MH: Depth: Finish MH: Depth:	STM-1XXX 00.00 m NORTH 00.00 m		Location: Cover: Location: Cover:	WEST S 000.00 FURTHEI 000.00	IDE RC m R NORI m	DAD – DO TH ON DO	ONWAY In ONWAY In	WEST vert: WEST vert:	000.00 m 000.00 m	
PipeLength: Use: Lining: Weather:	2.40 m Storm Light Ra:	in L	Size (Dia): Material: Purpose: ocation Code:	1800 m Concre Assess Urban	n te ment Street	Tot	al Le S Cate Direc	ngth: hape: gory: tion:	100.0 m Circular Not Known Downstrea	.m
Year Laid: Video Tape:	23260		Location: Comments:			FIC	e-ciea	IIIIg•	165	
Structural Operational	Grade: 1 Grade: 1		Total Score: Total Score:	0 0	Peak Peak	Score: Score:	0 0	Mean Mean	Score: Score:	0 0
Index Pho 1 0:00:11 0:00:15	Dist CD (000.0 000.0	Code ST MH	Description/Re Start of Surv Downstream (w Manhole	emarks vey with flo	(wc		Dim	Cloo	ck Int Sco	re
0:00:19 0:00:30	000.0	WL GO	STM-1XXX Water Level General Obser PIPE +/-1800	rvation MM					05%	
0:00:50 0:01:06	007.2 007.2	CN GO	Connection General Obser WEEPING TILE	rvation DYE TE	ST INS	SPECTION	200m J	m 10		
0:01:13 0:01:13	007.2 007.2	GO SA	General Obser SUMP PUMP-1 Survey Abando	rvation (BLDG-3 oned) CONN	IECTS TO) STM			

Survey No: PipeLenRef: Contractor: Catchment: Street:	5 COMB-1 AQUAFLOW 230 DONW	X AY WE	S Contra Div ST - CC	Date: Status: Act No: vision: MBINED	2023-0 Comple 1 -	9-12 ted	Surve	yed Le Jo Dist	Time: ength: ob No: crict: City:	12:25 010.0 1 - TORONT	m O
Start MH: Depth: Finish MH: Depth:	COMB-1 00.00 m MAIN 00.00 m		Loc Loc	ation: Cover: ation: Cover:	PROPER 000.00 DON WA 000.00	TY LIN m Y 375 m	NE CLEA MM COM	NOUT Ir BINED Ir	vert: SEWER vert:	000.00	m m
PipeLength: Use: Lining: Weather:	4.00 m Combined Light Rai	in L	Size Mat Pu ocation	(Dia): cerial: irpose: n Code:	0150 m Polyvi Assess Urban	m nyl Ch ment Street	To nloride t Pr	tal Le Cate Direc e-clea	ength: Shape: egory: ction: aning:	010.0 m Circula Not Kno Downst: Yes	m ar own ream
Year Laid: Video Tape:	23260		Loc Com	ation: ments:							
Structural Operational	Grade: 1 Grade: 1		Total Total	Score: Score:	0 0	Peak Peak	Score: Score:	0 0	Mean Mean	Score: Score:	0 0
Index Pho I 0:00:11	Dist CD (000.0	Code I ST	Descrip Start	otion/Re of Sur	emarks vey	orr)		Dim	Cloo	ck Int a	Score
0:00:15	000.0	MH	Manhol	.e	WILII II	OW)					
0:00:20	000 0	WT.	Water	Level						0.0%	
0:01:29	005.0	GO	Genera	l Obsei	rvation		י סדסד	ז ס ידא		000	
0:01:32	005.0	GO	Genera	l Obsei	rvation	1 ± 1	50 MM D	лі і.і тл	J •		
0:01:36	005.0	GO	Genera	l Obser	rvation		ע ואויי טכ אידעסידיי	IA.			
0:01:38	005.0	GO	Genera	l Obsei	rvation						
0:02:06	005.0	GO	Genera VIEW C	l Obsei	rvation		UARI	7. T NI			
0:02:13	005.0	GO	Genera	l Obsei	rvation		UNED DR.	ATM VITUN DI	7		
0:02:31	008.0	GO	Genera	l Obsei	rvation	K FLOV	V IN SA	NIIARI	L		
0:02:44	010.0	GO	Genera 375 MM	l Obsei	rvation	ייי נ ודס אז	TN				
0:02:44	010.0	MH	Manhol	.e	שםט עשא.	EA MA.	LIN				
0:03:54	010.0	FH	Finish	of Su	rvey						

Woo Hyun Kim

Subject: Attachments: FW: Donway - Review of Updated Civil Plans IMG_0941.jpg; 450-Series.pdf

From: Apollo Lam <<u>alam@novatrend.ca</u>>

Sent: Thursday, October 5, 2023 2:43 PM

To: Steve Park <<u>Steve.Park@exp.com</u>>; Liana Carnevale <<u>LianaC@optionsforhomes.ca</u>> Cc: Scott Passmore <<u>Scott.Passmore@exp.com</u>>; Joe Kwok <<u>jkwok@novatrend.ca</u>>; Eric Pun <<u>epun@novatrend.ca</u>>; Geoffrey McGrath <<u>geoffreym@optionsforhomes.ca</u>>; Emiliano Cervini <<u>ECervini@Tridel.com</u>>; Masood Molanian <<u>molanian@unfolded.ca</u>>; Gerlyanne Gomes <<u>gomes@unfolded.ca</u>>; Joseph Lupo <<u>JLupo@Deltera.com</u>> Subject: RE: Donway - Review of Updated Civil Plans

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Steve and Liana,

On-site sump pump analysis was performed successfully yesterday. Result as follow for your reference,

- 1. The GW sump pit in BLDG 5 was inspected, with 2 set of sump pump lifted up to confirm the pump model (See attached photos and reference pump curve).
- 2. The sump pumps are in duty & backup setting. The backup pump will not kick-in until the water overflow from the sump pit (the float control is near the top of the pit).
- 3. From the site performed drain-down test, the flow rate of the pumps is found to be approx. at **40GPM i.e. 2.5L/s** which is reasonable referring to the pump curve for the corresponding head.

Kindly let us know if you have further question. Thanks!

Apollo Lam P.Eng. Mechanical Engineer

Please consider the environment before printing this email.

				PROJECT: 230 ar	nd 240 The Donway West
exp.	Sanitary Flow Calculations			PROJECT No: ALL-00)256815-B0
				CREATED BY:	12-May-21
	Existing Building			CHECKED BY	12-May-21
	Average Day				
	City of Toronto Sewer and Wa	termain manual 1st Revision March 2014 - Av	verage wastewater demand page	40	
	Average wastewater now-	240 L/Caps/u	0.00278 L/Cdp/S		
	City of Toronto Sewer and Wa	termain manual 1st Revision March 2014 - Po	opulation Equivalents page 34		
	Unit Type	Population Density			
	Schools/churches	86 people/ha			
	Area	1.05 ha			
	Population	90.3			
1	Average Flow	0.25 L/s			
	City of Toronto Sewer and Wa	termain manual 1st Revision March 2014 - Pe	eaking Factors page 37		
	Peak Factor = 1+(14/(4+(P/100	00)^1/2))			
2	Peaking Factor	4.00			
	City of Toronto Sewer and Wa	termain manual 1st Revision March 2014 - in	filtration allowance page 37		
	Infiltration allowance	0.26 L/s/ha			
	Total Area	1.05 ha			
		<u> </u>			
3	Infiltration	0.273 L/s			
	City of Toronto Sewer and Wa	termain manual 1st Revision March 2014 - Pe	eak Desgin Flow page 36		
	Design Flow = average flow x	peaking factor + infiltration allowance			
4	Design Flow =	1.28 L/s			

Sanitary Flow Calculations

PROJECT: 230 and 240 The Donway West PROJECT No: ALL-00256815-B0 CREATED BY: 27-Oct-23 CHECKED BY 27-Oct-23

Average Day

City of Toronto Sewer and Watermain manual Jan 2021 Average Wastewater flow= 240 L/caps/d

0.00278 L/cap/s

City of Toronto Sewer and Wat	ermain manual Jan 2021	1
Unit Type	Population Density	
1 bedroom	1.4	
2 bedroom	2.1	
3 bedroom	3.1	
4 bedroom	4	
Townhouse	2.7	persons/unit
`	86	Cap/ha

Site Stats taken from Architecture unfoldeded Site Plan dwg

Building	Units	Population	Rounded Pop.
1 bedroom	160	224	224
2 bedroom	116	243.6	244
3 bedroom	32	99.2	100
4 bedroom	0	0	0
Townhouse	0	0	0
Totals:	308	566.8	568

Church 19 Cap

1 Average Flow	1.63 L/s

City of Toronto Sewer and Watermain manual Jan 2021

	Peak Factor = 1+(14/(4+(P/100	0)^1/2))
2	Peaking Factor	3.94
	City of Toronto Sewer and Wat	ermain manual Jan 2021
	Infiltration allowance	0.26 L/s/ha
	Total Area	1.05 ha
3	Infiltration	0.273 L/s
	City of Toronto Sewer and Wat	ermain manual Jan 2021

Design Flow = average flow x peaking factor + infiltration allowance

4	Design Flow =	6.6	L/s
---	---------------	-----	-----

PIPE F	ROUGHNESS	5 (n)	PEAKING FACTOR								
< 600	=	0.013									
≥ 600	=	0.013	$IVI = 1 + (14/(4 + P^{**}))$								
DESIC	GN VELOCIT	IES	P = Pop	oulation in The	ousands						
MIN =	0.60	m/s	FLOW F	ACTOR (L/day	y/capita)						
MAX =	3.00	m/s		240							
			INFILTR	ATION RATE (L/sec/ha)						
				0.26							
EXISTIN	G SEWER DE	SIGN	CAPACITY	Full	PERCENT						
DIAMETER (mm)	TYPE	GRADE (%)	(L/s)	VELOCITY (m/s)	FULL (%)						
375	CONC	0.31	101.841	0.89	64.6%						
375	CONC	0.25	90.536	0.79	79.6%						
375	CONC	0.33	105.074	0.92	68.9%						
375	CONC	0.33	105.074	0.92	69.2%						
300	CONC	1.40	119.574	1.64	64.0%						
300	CONC	1.51	124.183	1.70	62.2%						
300	CONC	1.58	127.029	1.74	61.5%						
300	CONC	1.70	131.764	1.80	59.4%						
350	AC	2.28	152.595	2.09	67.0%						
350	AC	3.22	181.343	2.48	56.4%						

ESIGNED BY :	Jake Lee,	12-Nov-19
EVISED BY:	Jake Lee,	19-Apr-21
HECKED BY:	Scott Passmore, P.Eng	19-Apr-21

					City of Toron	to - North Yor	k District						PIPE F	ROUGHNES	S (n)	PE	AKING FACT	OR
*exn					230 Th	e Donway W	est						< 600	=	0.013	NA — 1	т (1 <i>4/(</i> 4 ч	D ^{0.5}
CAP.					Project Num	ber: ALL-0025	6815-A0						≥ 600	=	0.013	$\mathbf{W} = 1$	+ (14/(4 -	FP))
					Sanitary Sew	er Design Ca	lculations						DESIC	GN VELOCIT	IES	P = Pop	ulation in The	ousands
													MIN =	0.60	m/s	FLOW F	ACTOR (L/day	y/capita)
DESIGNED BY :	Jake Lee,	12-Nov-19											MAX =	3.00	m/s		240	
REVISED BY:	Jake Lee,	19-Apr-21														INFILTR	ATION RATE (L/sec/ha)
CHECKED BY:	Scott Passmore, P.Eng	19-Apr-21															0.26	
	MANHO			AF	REA	POPU	LATION		FLOW CI	HARACTERIS	STICS (L/sec)	l.	EXISTIN	G SEWER D	ESIGN	CARACITY	Full	PERCENT
STREET NAME			Length (m)	INCREMENTAL	CUMULATIVE	Population	Cumulative	PEAK	PEAK	INFILT	GW	TOTAL	DIAMETER	TYPE	GRADE	(L/s)	VELOCITY	FULL
	FROM	то		(ha)	(ha)	ropulation	Population	FACTOR	Q _{peak}	Q _{inflt}	Q _{fdn}	Q _{tot}	(mm)		(%)	(=:=)	(m/s)	(%)
The Donway West	EXT 5	1A	N/A	54.790	54.790	5824	5824											
The Donway West	1A	2A	63.5	0.000	54.790	0	5824	3.18	51.49	14.25	0.00	65.7	375	CONC	0.31	101.841	0.89	64.6%
The Donway West (Site)	2A	3A	106.4	1.050	55.840	531	6355	3.15	55.55	14.52	2.00	72.1	375	CONC	0.25	90.536	0.79	79.6%
Duncairn Rd	3A	4A	62.7	0.510	56.350	25	6380	3.15	55.74	14.65	2.00	72.4	375	CONC	0.33	105.074	0.92	68.9%
Duncairn Rd	4A	5A	68.4	0.476	56.825	25	6404	3.14	55.92	14.77	2.00	72.7	375	CONC	0.33	105.074	0.92	69.2%
Duncarin Rd	EXT 4	5A	N/A	3.920	3.920	329	329	4.00	3.66	1.02	0.00	4.7						
Overton Cres	5A	6A	87.7	0.530	61.275	21	6754	3.12	58.57	15.93	2.00	76.5	300	CONC	1.40	119.574	1.64	64.0%
Belton Rd	EXT 1	6A	N/A	0.720	0.720	32	32	4.00	0.35	0.19	0.00	0.5						
Overton Cres	6A	7A	88.2	0.546	62.541	25	6810	3.12	58.99	16.26	2.00	77.2	300	CONC	1.51	124.183	1.70	62.2%
Overton Pl	EXT 2	7A	N/A	0.590	0.590	21	21	4.00	0.23	0.15	0.00	0.4						
Overton Cres	7A	8A	105.0	0.878	64.008	42	6873	3.11	59.46	16.64	2.00	78.1	300	CONC	1.58	127.029	1.74	61.5%
Overton Cres	8A	9A	47.1	0.407	64.416	14	6887	3.11	59.56	16.75	2.00	78.3	300	CONC	1.70	131.764	1.80	59.4%
Overton Cres	EXT 3	9A	N/A	10.930	10.930	2909	2909	3.45	27.91	2.84	0.00	30.7						
Overton Cres - Channel	9A	10A	55.4	0.000	75.346	0	9796	2.96	80.64	19.59	2.00	102.2	350	AC	2.28	152.595	2.09	67.0%
Overton Cres - Channel	10A	11A	18.2	0.000	75.346	0	9796	2.96	80.64	19.59	2.00	102.2	350	AC	3.22	181.343	2.48	56.4%

NOTES: 1) Estimated population of subject site calculated separately based on Owner's development concept.

2) Library population density assumed to be same as school.

3) Groundwater allowance pumping rate is 2.0L/s for proposed site where no other groundwater allowances have been assumed.

4) Existing sewer information taken from City of Toronto record drawings

DESIGNED BY :	Jake Lee,	12-Nov-19
REVISED BY:	Jake Lee,	19-Apr-21
CHECKED BY:	Scott Passmore, P.Eng	19-Apr-21

• <u>*</u>	City of Toronto - North York District PIPE ROUGHNESS (n)												6 (n)	PEAKING FACTOR				
* exn				230 The Donway West < 600 = 0.013 Project Number: ALL-00256815-A0 ≥ 600 = 0.013											M - 1	т (4 А//А з	D ^{0.5}	
CAP.															$\frac{13}{13} \qquad 1 = 1 + (14/(4 + P))$			
				Sanitary Sev	Sanitary Sewer Design Calculations - Extreme Wet Weather DESIGN VELOCITIES DESIGN VELOCITIES											P = Population in Thousands		
													MIN =	0.60	m/s	FLOW I	ACTOR (L/day	//capita)
DESIGNED BY :	Jake Lee,	12-Nov-19											MAX =	3.00	m/s		240	
REVISED BY:	Jake Lee,	19-Apr-21														INFILTR	ATION RATE (L/sec/ha)
CHECKED BY:	Scott Passmore, P.Eng	19-Apr-21															3.00	< 50 ha
																	2.00	> 50ha
	MANHOL	E		AF		POPU			FLOW CI		TICS (L/sec)		EXISTIN	G SEWER D		CAPACITY	Full	PERCENT
			Length (m)			Population	Cumulative	PEAK	PEAK		GW	TOTAL	DIAMETER	TYPE	GRADE	(L/s)	VELOCITY (m/s)	FULL (%)
	FROM	10	N 1/A	(na)	(na)	5004	Population	FACTOR	Geak	Ginfit	⊶fdn	tot	(11111)		(70)		(11//3)	(/0)
The Donway West	EXI 5	1A	N/A	54.790	54.790	5824	5824	0.40	= 1 10	404.07	0.00	0.45.0	075	00110	0.04	101.011		
The Donway West	1A	2A	63.5	0.000	54.790	0	5824	3.18	51.49	164.37	0.00	215.9	375	CONC	0.31	101.841	0.89	212.0%
The Donway West (Site)	2A	3A	106.4	1.050	55.840	531	6355	3.15	55.55	111.68	2.00	169.2	375	CONC	0.25	90.536	0.79	186.9%
Duncairn Rd	3A	4A	62.7	0.510	56.350	25	6380	3.15	55.74	112.70	2.00	170.4	375	CONC	0.33	105.074	0.92	162.2%
Duncairn Rd	4A	5A	68.4	0.476	56.825	25	6404	3.14	55.92	113.65	2.00	171.6	375	CONC	0.33	105.074	0.92	163.3%
Duncarin Rd	EXT 4	5A	N/A	3.920	3.920	329	329	4.00	3.66	7.84	0.00	11.5						
Overton Cres	5A	6A	87.7	0.530	61.275	21	6754	3.12	58.57	122.55	2.00	183.1	300	CONC	1.40	119.574	1.64	153.1%
Belton Rd	EXT 1	6A	N/A	0.720	0.720	32	32	4.00	0.35	1.44	0.00	1.8						
Overton Cres	6A	7A	88.2	0.546	62.541	25	6810	3.12	58.99	125.08	2.00	186.1	300	CONC	1.51	124.183	1.70	149.8%
Overton PI	EXT 2	7A	N/A	0.590	0.590	21	21	4.00	0.23	1.18	0.00	1.4						
Overton Cres	7A	8A	105.0	0.878	64.008	42	6873	3.11	59.46	128.02	2.00	189.5	300	CONC	1.58	127.029	1.74	149.2%
Overton Cres	8A	9A	47.1	0.407	64.416	14	6887	3.11	59.56	128.83	2.00	190.4	300	CONC	1.70	131.764	1.80	144.5%
Overton Cres	EXT 3	9A	N/A	10.930	10.930	2909	2909	3.45	27.91	21.86	0.00	49.8						
Overton Cres - Channel	9A	10A	55.4	0.000	75.346	0	9796	2.96	80.64	150.69	2.00	233.3	350	AC	2.28	152.595	2.09	152.9%
Overton Cres - Channel	10A	11A	18.2	0.000	75.346	0	9796	2.96	80.64	150.69	2.00	233.3	350	AC	3.22	181.343	2.48	128.7%

NOTES: 1) Estimated population of subject site calculated separately based on Owner's development concept.

2) Library population density assumed to be same as school.

3) Groundwater allowance pumping rate is 2.0L/s for proposed site where no other groundwater allowances have been assumed.

4) Existing sewer information taken from City of Toronto record drawings

- Notes
- 1. Coordinate System: MTM 3Degree
- 2. Base features produced under license with the City of Toronto, 2014.
- -River Ponds Parcels (Land Use)

Basement Flooding Records

May 12, 2000

Questionnaire Flood Records

Once

More Than Once

- \bigcirc Within Basement Level
- Below Basement (>1.8m)

Pipe Surcharge State

- → Free Flowing (<80%)
- Nearing Capacity (81-99%)
- Downstream Surcharge
- Bottleneck

Area 21 Figure No.

5.1

Title

Sanitary Validation -May 12, 2000

	 Exclusion for PLANC
nd	
	Storm Boundary
	City Park
-	Existing Storm Sewers
	Parcels (Land Use)
	Historic Watercourse
-	River
-	Ponds
or	m System Projects
-	Culvert Upgrade
-	New Storm Pipe
-	Upgrade Existing Storm Pipe
-	Underground Storage Pipe
~	Overland Channel Upgrade
"	Realign Ex. Sanitary Sewer
-	Realign Ex. Storm Sewer
-	Curb cut / Overland Spill
ò	Upsize Existing Storm Sewer Outfall
<	Decrease Inlet Capacity - ICDs / Remove CBs
	Increase Inlet Capacity
	Underground Storage Tank
ھ	Potential Oil Grit Separator
	Bioretention Filtration Opportunity
nr	itary Projects
-	Sanitary In-Line Storage
Ð	Sealed Sanitary Manhole

```
Study Area 21 Class EA
```


Scale: NTS	Figures OTM 04 00F
Date: July 2016	Figure: 51M-21-29E

To:	Donway Co-Operative Development Corporation	From:	Dave Eadie, P.Eng., Stantec Consulting Ltd.
File:	1656-60180	Date:	October 20, 2023

Reference: Sanitary Downstream Capacity Assessment, 230 The Donway West, North York

1.0 INTRODUCTION

In support of the 230-240 The Donway West redevelopment, a Sanitary Downstream Capacity Assessment has been completed following the City's Sewer Capacity Assessment Guidelines (July 2021). This Technical Memorandum (TM) summarizes the existing conditions and proposed redevelopment impact on the downstream sanitary collection system to the connection with the trunk sewer.

2.0 EXISTING AND PROPOSED REDEVELOPMENT

The 1.05 ha proposed redevelopment is located in the former borough of North York and is bounded by The Donway West to the east, existing residential properties fronting Duncairn Road to the north, and existing public park to the west and south. The site is located in the Toronto Basement Flooding Protection Program (BFPP) Study Area 21. **Figure 1** presents the site location context, including the downstream sanitary sewer trace to the trunk sewer, the tributary drainage area to the trunk, and the identification of new growth since the completion of the Area 21 Environmental Assessment.

The existing property is the Donway Covenant United Church and an educational facility, with sanitary servicing to the 375 mm sanitary sewer on The Donway West, that flows northerly to the East Don Sanitary Trunk Sewer (STS). Based on recent dye testing, it is confirmed that approximately 2.5 L/s of existing foundation drainage is being pumped to the sanitary sewer.

The proposed site is to be serviced via a new service connection to the east to the 350 mm sanitary sewer on The Donway West. The equivalent population for the proposed development was calculated using Site Plan statistics (230 and 240 The Donway West, Toronto – Sanitary Flow Calculation, EXP, October 2023) and the City of Toronto's Design Criteria for Sewers and Watermains (January 2021) as shown in **Appendix A** and summarized in **Table 1**.

Land	Use Type	Units	Rate	Unit	Pop-ulation	PF	Sewage Flow (L/s)
	1Bed	162	1.4	c/unit	227		0.63
Apartments	2 Bed	110	2.1	c/unit	231		0.64
	3 Bed	32	3.1	c/unit	100	-	0.28
ICI	Church	_	0.0086	c/m ²	19		0.05
Total @ 2	40 L/c/d for resider	ntial, 250 L/c	c/d for chu	irch	577	3.94	6.32

Table 1 Proposed Site Sewage Design Flow Calculation

October 20, 2023 Donway Co-Operative Development Corporation Page 2 of 11

Reference: Sanitary Downstream Capacity Assessment, 230 The Donway West, North York

Figure 1 Site Location Plan

Design flows for assessing downstream sanitary sewers is based on the following formula:

- Peak Design Flow, Q = Q_{domestic} + Q_{institutional} +Q_{commercial} + Q_{industrial} + Q_{extraneous} + Q_{groundwater}
 - Q_{domestic} (L/s) = Average Daily Flow per Capita x Population x Peaking Factor
 - o Where Average Daily Flow per Capita is as follows:
 - Residential = 240 L/c/d for assessment of existing municipal sewers
 - Industrial/Commercial/Institutional (ICI) = 180,000 L/floor ha/day or 250 L/c/d

October 20, 2023 Donway Co-Operative Development Corporation Page 3 of 11

Reference: Sanitary Downstream Capacity Assessment, 230 The Donway West, North York

- o The Harmon peaking factor is applied to all external site equivalent population:
 - Peaking Factor = 1 + (14/(4 + (P/1000)1/2))
 - Where P = Equivalent Population in thousands
- Q_{extraneous} = 0.26 L/s/gross ha (parcel), not including approved groundwater discharges
- Q_{groundwater} = short-term construction dewatering and long-term foundation drain pumping needs to be included where Private Water Discharge Approval has been granted for discharge to the sanitary sewer

A permanent groundwater strategy is proposed with foundation drain peak discharge of 1.3 L/s assumed.

Therefore, the sewage flow, long-term groundwater discharge, and the City's extraneous flow allowance (at a rate of 0.26 L/s/ha) represents the proposed development's total design flow. **Table 2** summarizes the pre- and post-development design flows for the site.

Flow Turne	Flow (L/s)								
Flow Type	Pre-Development	Post-Development	Delta						
Sewage	1.03	6.32	+5.29						
Extraneous	0.27	0.27	0.00						
Groundwater	2.50	1.30	-1.20						
Total Site Design Flow	3.80	7.89	+4.09						

Table 2 Proposed Development Design Flow Summary

The Post-Development modifies the flow generation over existing conditions and therefore requires confirmation of downstream impact.

3.0 METHODOLOGY

The approach to downstream analysis is defined by the City's Sewer Capacity Assessment guidelines (July 2021), which follows the process stream outlined in **Figure 2** that evaluates the following criterion:

- Criterion I Design Function
 - Under Proposed Peak Design Flow, Q, there shall be no surcharge in the sanitary system
- Criterion II Basement Flooding Protection
 - Under Proposed Extreme Wet Weather Flow conditions, which include I/I generated under the May 12, 2000 storm event, the hydraulic grade line (HGL) in the sewer shall be greater than or equal to 1.8 m below grade, as measured from the maintenance hole lid.

October 20, 2023

Donway Co-Operative Development Corporation Page 4 of 11

Figure 2 Capacity Assessment Process for Sanitary Sewers

Design with community in mind

October 20, 2023 Donway Co-Operative Development Corporation Page 5 of 11

Reference: Sanitary Downstream Capacity Assessment, 230 The Donway West, North York

- Criterion III Wet Weather Flow Mitigation
 - Only applicable if Criterion II is not met
 - Under proposed extreme WWF conditions, WWF mitigation measures will ensure that the proposed HGL will be no higher than the existing HGL. The proposed peak flow rate will be no greater than the existing peak flow rate at the connection to the trunk or pumping station.

Since a Basement Flooding Study InfoWorks sanitary model exists (Area 21), this calibrated tool can be used for the system wide assessment of downstream capacity.

3.1 REVIEW AND MODIFICATION TO THE AREA 21 MODEL

Toronto Water provided the Area 21 model, which is a separate sanitary sewer model originally calibrated to rainfall and flow monitoring data. Since the finalization of the original InfoWorks model, additional developments have either come online or been proposed within the tributary area. Flow rates from these developments (including new builds, sites where zoning has been completed, and where applications are in progress), have been included based on available City Planning Portal data. The existing condition model was modified by adding dedicated subcatchments representing the development, with the calculated future development peak site design flow added to the appropriate subcatchments as Baseflow, as detailed in **Appendix A** and summarized in **Table 3**.

Development Site	Peak Flow Applied (L/s)	Added Subcatchment ID
895 Lawrence Avenue East	8.3	895LawrenceAveE
1450 Don Mills Road	1.4	1450DonMillsRd
1299 Don Mills Road	0.2	1299DonMillsRd
15 Mallow Road	1.8	15MallowRd
939 Lawrence Avenue East	0.0	No information available
40 Moccasin Trail	2.7	400400000177
50 Green Belt Drive	4.2	40Moccasii111
200 David Dunlap Circle	2.2	200DavidDunlapCrcl
801 York Mills Rd & 1855 Leslie St	4.0	801YorkMillsRd_1855LeslieSt
2,4,6 The Donway E & 1053 Don Mills Road	23.1	2_4_6TheDonwayE_1053DonMillsRd
150 The Donway W	4.4	150TheDonwayW
52 Scarsdale Road	1.7	52 Scarsdale Rd

Table 3 New/Planned Developments Added to the Area 21 Model

As noted, **Appendix A** provides a detailed breakdown of existing vs. proposed flows from these sites, including whether the existing development will remain or be replaced under post-development conditions. **Table A2** of **Appendix A** summarizes flows from these sites, while **Tables A3-A14** provide site details. To account for the change in wet weather flow generation resulting from the new / redevelopments being accounted for as the extraneous allowance of 0.26 L/s/ha, the site areas were removed from the overlapping existing Subcatchment Contributing Area field by area weighting.

October 20, 2023 Donway Co-Operative Development Corporation Page 6 of 11

Reference: Sanitary Downstream Capacity Assessment, 230 The Donway West, North York

Additionally, upon review of the downstream collection system, it was discovered that the bifurcation maintenance hole at Duncairn Rd (MH4420617136 and MH 4420917138) is not active as per the Area 21 model. The 375mm sewer is not connected to the Duncairn Rd 375mm pipe, with all flow travelling northerly to the easterly leg of Overton Cres where the flow path connects again at MH4452717202 with the Duncairn Rd system, per **Figure 3**.

Figure 3 Pipe Network Modification from Area 21 Model

Figure 3 Pipe Network Modification from Area 21 Model

The model network was updated to remove sewer asset SL4037647 from MH4420617136 to MH4420917138. This modifies the flow distribution from the original Environmental Assessment locally, but does not affect the overall contributions to the system downstream of Duncairn Park Tail to the trunk.

October 20, 2023 Donway Co-Operative Development Corporation Page 7 of 11

Reference: Sanitary Downstream Capacity Assessment, 230 The Donway West, North York

4.0 DOWNSTREAM CAPACITY ANALYSIS

As shown in **Figure 1**, the extent of this analysis covers the entire Area 21 model with focus on the sewers downstream from the 250 mm sanitary sewer on Langbourne Place to the connection to the 1350 mm trunk. Dry and wet weather flows are generated by the calibrated Study Area 21 model, with the only alterations to the network being the additional site flows for future developments and the removal of the flow split at Duncairn Rd noted in Section 3.1.

The following design scenarios are considered:

- Pre-Development Dry Weather Flow
- Post-Development Dry Weather Flow
- Pre-Development Extreme Wet Weather Flow (May 12, 2000)
- Post-Development Extreme Wet Weather Flow (May 12, 2000)

The proposed redevelopment in the Post-Development scenarios is simulated by applying the delta between the pre-development and post-development design flow rate from Table 2 (4.1 L/s) to a new subcatchment (230_240TheDonwayW) connecting to MH4410817105 on The Donway. As was done for the future/new developments, the site area was removed from the overlapping subcatchments by area weighting since the design flow applied already accounts for the infiltration and inflow allowance.

The following sections summarize the model results, with hydraulic model tables and profiles presented in **Appendix B**. A figure indicating the reference Pipe ID is also included in the Appendix.

4.1 DRY WEATHER FLOW PERFORMANCE (SCENARIOS 1 & 2)

Scenarios 1 and 2 represent design flow for the existing and post-development conditions, respectively. **Table 4** presents the resulting pipe capacities from the modeling.

Def			Pre-De	evelopment	Post-D	evelopment	% Full	% Full
Pipe ID	From MH	To MH	% Full Flow (%)	% Full Max Surcharge Flow (%) State		Max Surcharge State	Flow Delta	Depth Delta
1	4410816726	4410216797	0%	0.10	0%	0.10	0%	0%
2	4410216797	4407116842	0%	0.09	0%	0.09	0%	0%
3	4407116842	4402216907	2%	0.13	2%	0.13	0%	0%
4	4402216907	4396716988	7%	0.19	7%	0.19	0%	0%
5	4396716988	4396717023	7%	0.19	7%	0.19	0%	0%
6	4396717023	4398617095	8%	0.21	8%	0.21	0%	0%
7	4398617095	4404717088	35%	0.41	35%	0.41	0%	0%
8	4404717088	4410817105	32%	0.41	31%	0.41	0%	0%
9 (Site)	4410817105	4420617136	34%	0.41	39%	0.44	5%	3%
10	4420617136	4420117152	20%	0.32	22%	0.34	3%	2%

Table 4 Comparison of Dry Weather Flow Results

Design with community in mind

October 20, 2023

Donway Co-Operative Development Corporation Page 8 of 11

Def			Pre-Development		Post-D	evelopment	% Full	% Full
Ref. Pipe ID	From MH	To MH	% Full Flow (%)	Max Surcharge State	% Full Flow (%)	Max Surcharge State	Flow Delta	Depth Delta
11	4420117152	4429517183	21%	0.32	23%	0.34	2%	2%
12	4429517183	4431017262	20%	0.32	22%	0.34	2%	2%
13	4431017262	4440717239	25%	0.36	28%	0.38	3%	2%
14	4440717239	4450817220	27%	0.36	30%	0.38	3%	2%
15	4450817220	4452717202	26%	0.36	29%	0.38	3%	2%
16	4452717202	4458017221	17%	0.30	18%	0.31	2%	1%
17	4458017221	4459017208	40%	0.31	43%	0.32	3%	1%
18	4459017208	4461017212	16%	0.27	17%	0.28	1%	1%
19	4461017212	4462617220	12%	0.24	13%	0.25	1%	1%
20	4462617220	4469217236	15%	0.26	16%	0.27	1%	1%
21	4469217236	4470217271	22%	0.51	22%	0.51	0%	0%
22	4470217271	4472417347	65%	0.53	66%	0.53	1%	0%
23	4472417347	4473217373	32%	0.39	33%	0.39	1%	0%
24	4473217373	4474617425	32%	0.39	33%	0.40	1%	1%
25	4474617425	4475917482	32%	0.40	32%	0.40	1%	0%
26	4475917482	4476617505	32%	0.41	33%	0.42	1%	1%
27	4476617505	4478217555	34%	0.40	34%	0.40	1%	0%
28	4478217555	4476117596	17%	0.30	17%	0.30	0%	0%
29	4476117596	4470617604	13%	0.26	13%	0.26	0%	0%
30	4470617604	4468017615	12%	0.26	12%	0.26	0%	0%
31	4468017615	4466917636	3%	0.25	3%	0.26	0%	1%
32	4466917636	4472617716	20%	0.31	20%	0.31	1%	0%
33	4472617716	4472917726	6%	0.20	7%	0.20	0%	0%
34	4472917726	4468317784	4%	0.14	4%	0.15	0%	1%

Reference: Sanitary Downstream Capacity Assessment, 230 The Donway West, North York

Surcharge State (SS) is peak pipe flow depth / diameter when not surcharged. SS=2 indicates the pipe is surcharged and has insufficient capacity. SS=1 indicates the pipe is surcharged due to downstream backwater.

Under revised existing conditions, the sanitary sewers downstream of the proposed development operate from 9% to 53% full (as measured by depth over diameter, or Surcharge State). With the proposed development added to the model, the sewers immediately downstream of the proposed development indicate an increase of approximately 3% by depth, with the maximum ratio remaining at 53% at Pipe 22 which is flat. There is no surcharge in the post-development scenario, thus meeting Criterion I "Design Function".

October 20, 2023 Donway Co-Operative Development Corporation Page 9 of 11

Reference: Sanitary Downstream Capacity Assessment, 230 The Donway West, North York

4.2 EXTREME WET WEATHER PERFORMANCE (SCENARIO 3 & 4)

The City's extreme wet weather flow scenarios are intended to evaluate change to potential basement flooding risk post-construction. The existing collection system is categorized as fully separated, with the The City's extreme wet weather flow scenarios are intended to evaluate change to potential basement flooding risk post-construction. The existing collection system is categorized as fully separated, with the sanitary sever system collecting only wastewater flow with an allowance for inflow and infiltration and is thus subject to the May 12, 2000 storm. The calibrated wet weather flow parameters for the existing tributary area were left unchanged in the InfoWorks model. The resulting HGL freeboard is summarized in **Table 5** for pre- and post-development, while the model results are provided in **Appendix B**.

		Pre-Development Post-Development		elopment	Max			
Ref. Pipe ID	From MH	To MH	Max Surcharge State	US HGL Freeboard (m)	Max Surcharge State	US HGL Freeboard (m)	SS Delta (m)	Delta (m)
1	4410816726	4410216797	1.00	2.28	1.00	2.26	0%	-0.018
2	4410216797	4407116842	1.00	1.44	1.00	1.42	0%	-0.018
3	4407116842	4402216907	1.00	0.70	1.00	0.69	0%	-0.018
4	4402216907	4396716988	2.00	0.62	2.00	0.60	0%	-0.018
5	4396716988	4396717023	2.00	1.59	2.00	1.56	0%	-0.029
6	4396717023	4398617095	2.00	1.97	2.00	1.94	0%	-0.032
7	4398617095	4404717088	2.00	2.31	2.00	2.27	0%	-0.041
8	4404717088	4410817105	2.00	3.02	2.00	2.96	0%	-0.056
9 (Site)	4410817105	4420617136	2.00	3.23	2.00	3.15	0%	-0.072
10	4420617136	4420117152	2.00	1.74	2.00	1.69	0%	-0.052
11	4420117152	4429517183	2.00	2.12	2.00	2.07	0%	-0.048
12	4429517183	4431017262	1.00	2.31	1.00	2.29	0%	-0.021
13	4431017262	4440717239	1.00	3.27	1.00	3.21	0%	-0.068
14	4440717239	4450817220	0.24	3.20	0.24	3.16	0%	-0.039
15	4450817220	4452717202	0.10	2.99	0.10	2.98	0%	-0.009
16	4452717202	4458017221	0.13	3.78	0.13	3.78	0%	-0.002
17	4458017221	4459017208	0.62	3.68	0.62	3.68	0%	-0.001
18	4459017208	4461017212	1.00	2.93	1.00	2.93	0%	-0.003
19	4461017212	4462617220	0.18	0.58	0.18	0.57	0%	-0.005
20	4462617220	4469217236	1.00	1.05	1.00	1.04	0%	-0.006
21	4469217236	4470217271	0.38	6.65	0.38	6.64	0%	-0.005
22	4470217271	4472417347	0.46	5.50	0.46	5.50	0%	-0.004

Table 5 Comparison of Wet Weather HGL Freeboard Results

Design with community in mind

October 20, 2023

Donway Co-Operative Development Corporation Page 10 of 11

			Pre-Deve	lopment	Post-Deve	elopment	Max	
Ref. Pipe ID	From MH	То МН	Max Surcharge State	US HGL Freeboard (m)	Max Surcharge State	US HGL Freeboard (m)	SS Delta (m)	Delta (m)
23	4472417347	4473217373	0.20	5.01	0.20	5.00	0%	-0.004
24	4473217373	4474617425	1.00	5.40	1.00	5.40	0%	-0.003
25	4474617425	4475917482	0.38	5.74	0.38	5.74	0%	-0.002
26	4475917482	4476617505	0.48	5.28	0.48	5.28	0%	-0.001
27	4476617505	4478217555	2.00	5.39	2.00	5.39	0%	-0.001
28	4478217555	4476117596	0.14	4.53	0.14	4.53	0%	0.000
29	4476117596	4470617604	0.84	4.19	0.84	4.19	0%	0.000
30	4470617604	4468017615	0.22	2.79	0.22	2.79	0%	0.000
31	4468017615	4466917636	0.30	1.66	0.30	1.66	0%	0.000
32	4466917636	4472617716	0.28	3.11	0.28	3.11	0%	-0.002
33	4472617716	4472917726	0.13	2.72	0.13	2.72	0%	0.000
34	4472917726	4468317784	0.41	3.64	0.41	3.64	0%	0.000

Reference: Sanitary Downstream Capacity Assessment, 230 The Donway West, North York

Surcharge State (SS) is peak pipe flow depth / diameter when not surcharged. SS=2 indicates the pipe is surcharged and has insufficient capacity. SS=1 indicates the pipe is surcharged due to downstream backwater.

The HGL freeboard is the City's basement flooding indicator, where values less than 1.8 m indicate risk to basements, and values less than 0.0 m indicate surcharge to the surface. As per the Environmental Assessment (EA) for Area 21, under revised existing conditions there is surcharge and risk of basement flooding indicated along Langbourne Place, where the HGL freeboard is less than 1.8 m from the surface. The addition of the new/planned developments and removal of the flow split at Duncairn Rd (MH4420617136) results in an elevated HGL along The Donway which triggers another HGL exceedance at Duncairn Rd. The Area 21 EA proposed a basement flooding solution on Langbourne PI as inline storage to control the HGL, which has not yet been constructed. The addition of the 4.1 L/s flow differential from existing condition for the proposed site has minimal impact on the overall system performance, with the same number of sewers experiencing surcharge and the same number of MHs with HGL freeboard less than 1.8 m (note, there are shallow sewers downstream in the valley that are exempt from HGL criteria since there are no private property connections). The maximum rise in HGL is 72 mm where the proposed development connects to the system. While the impact is minimal, until the proposed EA solution is constructed. Criterion II for Basement Flooding Protection is not satisfied and wet weather flow mitigation measures are required to meet Criterion III of the Capacity Guidelines. Wet weather flow mitigation is being evaluated with the City to remove wet weather contributions from the system such that there is a net zero impact to the existing system performance (refer to functional servicing report).

4.3 CONSTRUCTION DEWATERING

Temporary construction groundwater control will be managed such that the dewatering contractor will store, treat (if required) and release to the municipal sanitary sewer with a maximum discharge rate of the site sanitary design flow (7.9 L/s), during dry weather conditions only. Therefore, as per Scenario 2, there is no impact to the sanitary system.

October 20, 2023 Donway Co-Operative Development Corporation Page 11 of 11

Reference: Sanitary Downstream Capacity Assessment, 230 The Donway West, North York

5.0 CONCLUSIONS

The preceding TM outlined the downstream sanitary sewer analysis for the 230-240 The Donway redevelopment. The main findings are summarized as follows:

- The Basement Flooding Protection Program Area 21 hydraulic model was updated to account for new and planned developments since the completion of the Environmental Assessment, and the discovery of the abandoned flow split at Duncairn Rd tht
- The proposed development results in a 4.1 L/s increase in flow contribution over existing condition, based on a wastewater generation rate of 240 L/c/d, a 0.26 L/s/ha extraneous flow allowance, and a long-term groundwater dewatering rate of 1.3 L/s.
- Under dry weather conditions, the existing downstream collection system operates without surcharge. The addition of the proposed development has no appreciable impact on the downstream collection system. Since there is no surcharge in design flow conditions, Criterion I of the Sewer Capacity Assessment Guideline is satisfied.
- Under the revised pre-development extreme wet weather scenario, the HGL freeboard exceedances of the Area 21 EA remain, and are slightly elevated along The Donway and Langbourne PI due to the abandoned flow split at Dunairn Rd.
- Under post-development extreme wet weather conditions, the HGL rises no greater than 73 mm from revised existing conditions and thus Sewer Capacity Assessment Criterion II is not satisfied without implementation of the City's Area 21 proposed basement flooding solution.
- Therefore, per the City's Sewer Capacity Assessment Guidelines, wet weather flow mitigation measures are required to meet Criterion III, which is being evaluated with the City by way of wet weather flow contribution removal to offet the small 4.1 L/s flow increase from this development.
- For temporary construction dewatering, the contractor will be required to store, treat (if required) and release to the sanitary sewer at no greater that the site design flowd (7.9 L/s), during dry weather conditions only. Therefore, as per Scenario 2, there is no impact to the sanitary system.

Respectfully submitted,

Stantec Consulting Ltd.

Kevin Visschedyk, EIT Urban Water Resources Intern

Phone: (437) 229-7984 Kevin.Visschedyk@stantec.com

Attachment: Appendix A – Site Flow Calculations Appendix B – Model Results Summary

0.

Dave Eadie, P.Eng. Principal, Urban Water Discipline Lead

(647) 986-0254 Dave.Eadie@stantec.com

Design with community in mind

APPENDICES

Appendix A Site Flow Calculations

230-240 Th	ie Donway, Toronto - Sanita	rv Downstream Analysis						
	· · · · · · · · · · · · · · · · · · ·	,,	Table A1a			\bigcirc	Stant	cec
			230-240 The Donway					
16566018	30		Site Flow				ANALYZED BY	: KV
DATE:	October 2023						CHECKED BY:	DE
	Flow Component	Flow (L/s)			Pre-Develop	oment Land Use:		
		Pre-Development			Schools/chu	ırches		
	Sewage ¹	1.03						
	Extraneous ²	0.27			Note:			
	Groundwater ³	2.50			S/C's ID: 44	10817105		
	Total WW Design	3.80						
	Land Use Type	Units	Residential Per Capita ICI Per Capita GFA (sq.m)	240 250 Rate	L/c/d, tor us L/c/d, for us Unit	se in Downstream A se in Downstream A Population	nalysis Calcula nalysis Calcula PF	tions tions Sewage Flow (L/s)
ICI	Church	0	10,500	0.0086	c/sq m	90		0.26
		Total @ 240 L/c/d for Resider	ntial, 250 L/c/d for ICI		· · · · · ·	90	4.00	1.03
	2 - Extraneous Flow Desi _l	gn Allowance Predevelopment Rate = Site Area = Total Extraneous Flow =	0.26 1.05 0.27	L/s/ha ha L/s				
	3 - Groundwater Foundation Drain Allowa	nce						
	G	Groundwater Discharge Rate	2.5	L/s found 2023)	ation draina	ge confirmed by dy	e testing (Sourc	e: EXP, October 18,

230-240 The Donway, Toronto - Sanitary Downstream Analysis

ANALYZED BY: KV CHECKED BY: DE

DATE: October 2023

165660180

Elow Component	Flow (L/s)								
Flow component	Post-Development	Pre-Development	Delta						
Sewage ¹	6.32	1.03	5.29						
Extraneous ²	0.27	0.27	0.00						
Groundwater ³	1.30	2.50	-1.20						
Total WW Design	7.89	3.80	4.09						

Post-Development Land Use:

Residential Apartments in addition to existing church

			Residential Per Cap	ita 240	L/c/d, for us	se in Downstream A	nalysis Calculat	tions
	Land Use Type	Units	GFA (m²)	Rate	Unit	Population	PF	Sewage Flow (L/s)
	1-Bed	162		1.4	c/unit	227		0.63
Residential	2-Bed	110	-	2.1	c/unit	231	T	0.64
	3-Bed	32		3.1	c/unit	100	T	0.28
ICI	Church	0	-	0.0086	c/sq m	19		0.05
		Total @ L/c/d for Residential, 250 L	/c/d for Commercial			577	3.94	6.32
	2 - Extraneous Flow	Design Allowance Post-Development Rate =	0.	26 L/s/ha				
		Site Area =	1.	05 ha				
		Total Extraneous Flow =	0	27 L/s				
	3 - Groundwater							
	3 - Groundwater Exemption Request	to City Foundation Drainage policy, to	o allow long-term g	roundwater f	low to the m	iunicipal sewer		
	3 - Groundwater Exemption Request	to City Foundation Drainage policy, to Groundwater Discharge Rate	o allow long-term g 1	roundwater f .3 L/s	low to the m	iunicipal sewer		

Table A1b 230-240 The Donway

Site Flow

230-240 The Donway, Toronto - Sanitary Downstream Analysis

Review of Proposed/Constructed Developments Upstream of Site Since Completion of Area 21 Model (2008) Recalculated Equivalent Population Based on Available Building Stats/Functional Servicing Study

				<u>Table /</u>	<u>A2 - Summa</u>	ary of Upstr	eam Develo	opments					-					DATE:	October 2023
					Townh ouse	1-Bed	2-Bed	3-Bed	Commercial / Retail Area (m ²)	Office Area (m ²)	Institutional Area (m ²)	Institutional (#beds)				1			
				Unit Rates ²	2.7	1.4	2.1	3.1	1.1 /100m2	3.3 /100m2	0.0258 person/GFA	1 /bed/30m2	-	Extraneous	0.26				
Street Address	Application Date	# Storeys	Status	Development Type	Town- house Units	1-Bed	2-Bed	3-Bed	Commercial / Retail Area (m ²)	Office Area (m ²)	Institutional Area (m ²)	Institutional (#beds)	Calc'd Equiv. Population	Site Area (ha)	Qextran (L/s)	GW (L/s)	Site Flow (L/s)	Ex. Area 21 Subcatchment ID	New Future Development S/C
895 Lawrence Avenue East	2022	two towers of 17 and 22-storeys and a 6-storey podium	Under Review	Residential / Commercial	0	327	67	44	1,513	0	0	0	752	0.76	0.20	0.00	8.30	4371917072	895LawrenceAveE
1450 Don Mills Road	2022	five one-storey + existing three storey	NOAC Issued	Commercial	0	0	0	0	8,700	0	0	0	96	0.92	0.24	0.00	1.42	4567617004	1450DonMillsRd
1299 Don Mills Road	2020	Four (4) residential development lots	Await Expiry Date	Residential	4	0	0	0	0	0	0	0	11	0.24	0.06	0.00	0.20	4490617196	1299DonMillsRd
15 Mallow Road	2020	five blocks of three- storey townhouses	Approved	Residential	33	0	0	0	0	0	0	0	89	2.84	0.74	0.00	1.79	4439117550	15MallowRd
939 Lawrence Avenue East	2015		Hearing Scheduled	Residential	0	0	0	0	0	0	0	0	0	0.00	0.00	0.00	0.00	DonMillsN	N/A
40 Moccasin Trail	2013	a 10 storey condo building, 4 storey condo building and		Residential	4	16	71	9	0	0	0	0	210	0.47	0.12	0.12	2.66	4322517968	40MoccasinTrl
50 Green Belt Drive	2013	4 storey rental replacement building		Residential	0	80	114	0	0	0	0	0	351	0.74	0.19	0.02	4.16	4322517968	0
200 David Dunlap Circle	2013	3-storey townhouse	OMB Approved	Residential	63	0	0	0	0	0	0	0	170	0.84	0.22	0.00	2.19	4319017995	200DavidDunlapCrcl
801 York Mills Rd & 1855 Leslie St	2019	two 16 storey towers, and a 5 storey	OMB Appeal	Residential	0	247	158	57	0	0	0	0	854	1.12	0.29	0.00	3.98	4563916227	801YorkMillsRd_1855L eslieSt
2,4,6 The Donway E & 1053 Don Mills Road	2021	16 to 32 storeys	Under Review	Residential / Commercial	0	651	416	118	78	0	0	0	2,152	2.00	0.52	1.32	23.12	4355417687	2_4_6TheDonwayE_105 3DonMillsRd
150 The Donway W	2022	two buildings of 10- storeys (33.31 m) and 15-storeys (49.94 m) in height	Under Review	Residential	0	100	73	24	0	0	0	0	368	1.02	0.27	0.00	4.39	4354217071	150TheDonwayW
52 Scarsdale Road	2022	new two-storey industrial-office building with a gross floor area of 3,903.54 sq.m	Closed	Industrial / Office	0	0	0	0	0	3,904	0	0	129	0.52	0.14	0.00	1.71	4524116499	52 Scarsdale Rd
Notes:		(CW) Extracted from	Sonvicing Poporte /	wailable on the City		L			Bortal (http://app	toropto co/AIC	l	1							

 1. Population and Long-Term Groundwater (GW) Extracted from Servicing Reports available on the City of Toronto Development Application Portal (http://app.toronto.ca/AIC/index.do)

 2. Population calculated from unit rates based on City of Toronto Design Criteria for Sewers and Watermains (January 2021)

FILE NUMBER:

230-240 The	e Donway, Toronto - Sanitar	y Downstream Analysis					Ctore	
			Table A3			\bigcirc	Stan	tec
		8	95 Lawrence Avenue Eas	st				
165660180	0		Site Flow				ANALYZED BY	: KV
DATE:	October 2023						CHECKED BY:	DE
		5 1	4.)	1				
	Flow Component	FIOW (I	_/S)		ŀ	Post-Development	Land Use:	
	C1	Post-Development	Pre-Development		ľ	viixed use towers		
	Sewage ⁻	8.10	0.28					
	Extraneous ²	0.20	0.00					
	Groundwater Total W/W/ Design	0.00	0.20					
	Total WW Design	8.50	0.46]				
	1 - Sewage Flows:							
	Parcel Area	0.760	ha					
		0.700	Residential Per Canita	240) I /c/d for us	e in Downstream A	nalysis Calcula	tions
			ICI Per Capita	250) L/c/d for us	e in Downstream A	nalysis Calcula	tions
				230			Indiysis calcula	
	Land Use Type	Units	GFA (m²)	Rate	Unit	Population	PF	Sewage Flow (L/s)
	1-Bed	327		1.4	c/unit	458		1.27
Residential	2-Bed	67	-	2.1	c/unit	141		0.39
	3-Bed	44		3.1	c/unit	136		0.38
ICI	Commercial / Retail Area (m2	-	1513	1.1	c/100 sq m	17		0.05
	Tot	al @ 240 L/c/d for Residential,	250 L/c/d for Commercial			752	3.88	8.10
	2 - Extraneous Flow Desig	n Allowance						
		Post-Development Rate =	0.26	L/s/ha				
		Site Area =	0.76					
		Total Extraneous Flow =	0.20	L/s				
	3 - Groundwater							
	Long term	n groundwater discharge =	0.00	L/s				
	0							

230-240 The Donway, Toronto - Sanitary Downstream Analysis

ANALYZED BY: KV CHECKED BY: DE

DATE: October 2023

165660180

Elow Component	Flow (L/s)
Flow Component	Post-Development	Pre-Development
Sewage ¹	1.18	-
Extraneous ²	0.24	-
Groundwater ³	0.00	-
Total WW Design	1.42	-

Post-Development Land Use: Mixed use townhouses/commercial. The civil works pertaining to the Phase 1 development (1.05 ha) is detailed in the report titled "Functional Servicing and Stormwater Management Brief, Renovations and Repurposing of Existing Building at 1450 Don Mills Road, Toronto, ON" (Phase 1 FSR) prepared by Stantec Consulting Ltd, dated Dec. 20, 2018.

1 - Sewage Flows:

Parcel Area

0.920 ha Residential Per Capita

<u>Table A4</u> 1450 Don Mills Road Site Flow

240 L/c/d, for use in Downstream Analysis Calculations

250 L/c/d, for use in Downstream Analysis Calculations

	Land Use Type	Units	GFA (m²)	Rate	Unit	Population	PF	Sewage Flow (L/s)
ICI	Commercial / Retail Area (m2)	-	8,700	1.1	c/100 sq m	96		0.28
	Total @ 240 L/c/d for Residential, 250 L/c/d for Commercial				96	4.25	1.18	
	2 - Extraneous Flow Des	i gn Allowance Post-Development Rate = Site Area = Total Extraneous Flow =	0.26 0.92 0.24	L/s/ha ha L/s				
	3 - Groundwater Long ter	m groundwater discharge =	0.00	L/s				
	Source:	Stormwater Management (S	SWM) Report, Stantec (20	20)				

ICI Per Capita

230-240 The	30-240 The Donway, Toronto - Sanitary Downstream Analysis					Stantor				
			Table A5			\bigcirc	Stan	tec		
			1299 Don Mills Road							
165660180)		Site Flow				ANALYZED BY	′: KV		
DATE:	October 2023						CHECKED BY	: DE		
	Flow Component	FIOW (I	L/S)			Post-Development	Land Use:	1-+-		
	1	Post-Development	Pre-Development			Four (4) residential	development	IOTS		
	Sewage ⁻	0.13	-							
	Extraneous	0.06	-							
	Total WW Design	0.00	-							
	Land Use Type	Units	Residential Per Capita ICI Per Capita GFA (m²)	240 250 Rate	L/c/d, for u L/c/d, for u Unit	se in Downstream A se in Downstream A Population	Analysis Calcula Analysis Calcula PF	ations ations Sewage Flow (L/s)		
Residential	Townhouse	4	-	2.7	c/unit	11		0.03		
	To	otal @ 240 L/c/d for Residential,	250 L/c/d for Commercial			11	4.41	0.13		
	2 - Extraneous Flow Desi	gn Allowance Post-Development Rate = Site Area = Total Extraneous Flow =	0.26 0.24 0.06	L/s/ha ha L/s						
	3 - Groundwater Long ter	m groundwater discharge =	0.00	L/s						
	Source:	Iransportation Report (Toro	nto Services, 2020) & Dra	itt R-Plan (WSP, 2019)					

230-240 The	Donway, Toronto - Sanit	ary Downstream Analysis						
			Table A6				Stan	tec
			15 Mallow Road					
165660180			Site Flow				ANALYZED BY	/: KV
DATE:	October 2023						CHECKED BY	: DE
	Flow Component	Flow (L	./s)			Post-Development I	Land Use:	
	now component	Post-Development	Pre-Development			Residential develop	ment	
	Sewage ¹	1.05	-			Condo : 33 Units		
	Extraneous ²	0.74	-					
	Groundwater ³	0.00	-			Pre-Development w	/as a vacant pa	arcel.
	Total WW Design	1.79	-					
	Land Use Type	Units	Residential Per Capita ICI Per Capita GFA (m ²)	240 250 Rate	L/c/d, for u L/c/d, for u Unit	se in Downstream A se in Downstream A Population	nalysis Calcula nalysis Calcula PF	itions Sewage Flow (L/s)
Residential	Townhouse	33	1,377	2.7	c/unit	89		0.25
		Total @ L/c/d for Residential, 25	i0 L/c/d for Commercial			89	4.26	1.05
	2 - Extraneous Flow Des 3 - Groundwater Long ter	ign Allowance Post-Development Rate = Site Area = Total Extraneous Flow = rm groundwater discharge =	0.26 2.84 0.74 0.00	L/s/ha ha L/s L/s				
	Source:	Project Data Sheet (2020)						

1230-240 The Donway.	Toronto - Sanifary Downstream Analysis
200 210 110 201100,	
200 2 10 1110 201110,,	

230-240 Th	ne Donway, Toronto - Sanita	ary Downstream Analysis							
			Table A7			\bigcirc	Stan	tec	
		9	39 Lawrence Avenue Eas	t					
16566018	30		Site Flow	ANALYZED BY: KV					
DATE:	October 2023						CHECKED BY:	DE	
		Elow (I	/c)			Post Dovelonment	Land Lico:		
	Flow Component	Post-Development	Pre-Development		<u>.</u>	Post-Development	Lanu Use.		
	Sewage ¹	0.00	-			No information Ava	ilable		
	Extraneous ²	0.00	-						
	Groundwater ³	0.00	-						
	Total WW Design	0.00	-						
	Parcel Area	0	ha Residential Per Capita ICI Per Capita	240 250) L/c/d, for us) L/c/d, for us	e in Downstream A e in Downstream A	nalysis Calcula nalysis Calcula	tions tions	
	Land Use Type	Units	GFA (m²)	Rate	Unit	Population	PF	Sewage Flow (L/s)	
Residential	Townhouse	0	-	2.7	c/unit	0		0.00	
ICI	Commercial / Retail Area (m2)	-	0	1.1	c/100 sq m	0		0.00	
		Total @ L/c/d for Residential, 25	50 L/c/d for Commercial			0	4.50	0.00	
	2 - Extraneous Flow Desi	gn Allowance Post-Development Rate = Site Area = Total Extraneous Flow =	0.26 0.00 0.00	L/s/ha ha L/s					
	3 - Groundwater Long ter	m groundwater discharge =	0.00	L/s					

ry Downstream Analysis						
	Table A8			\bigcirc	y Stant	tec
	40 Moccasin Trail					
	Site Flow				ANALYZED BY	: KV
					CHECKED BY:	DE
Flow (I	_/s)			Post-Development	Land Use:	
Post-Development	Pre-Development			Residential		
2.42	-			Sanitary Capacity A	nalysis the per	capita used is 450
0.12	-			L/cap/d		
0.12	-			Note:		
2.66	-			Population of the e	xisting site dev	elopment consists of 3
				townhouse building	gs with 224 peo	ople.
0.470	ha					
	Residential Per Capita	240	L/c/d, for us	e in Downstream A	nalysis Calcula	tions
	ICI Per Capita	250	L/c/d, for us	e in Downstream A	nalysis Calcula	tions
Units	GFA (m²)	Rate	Unit	Population	PF	Sewage Flow (L/s)
16		1.4	c/unit	22		0.06
71		2.1	c/unit	149	1	0.41
9	-	3.1	c/unit	28	Ī	0.08
4		2.7	c/unit	11	1	0.03
otal @ 240 L/c/d for Residential,	250 L/c/d for Commercial			210	4.14	2.42
gn Allowance						
Post-Development Rate =	0.26	L/s/ha				
Site Area =	0.47	ha				
Total Extraneous Flow =	0.12	L/s				
m groundwater discharge =	0.12	L/s				
Functional Servicing Report	(Schaeffers Consulting En	gineers ?	018)			
	Functional Servicing Report	Functional Servicing Report (Schaeffers Consulting En	Functional Servicing Report (Schaeffers Consulting Engineers, 2	Functional Servicing Report (Schaeffers Consulting Engineers, 2018)	Functional Servicing Report (Schaeffers Consulting Engineers, 2018)	Functional Servicing Report (Schaeffers Consulting Engineers, 2018)

230-240 The	Donway, Toronto - Sanita	ry Downstream Analysis						
			Table A9			\bigcirc	Stan	lec
			50 Green Belt Drive					
165660180	1		Site Flow				ANALYZED BY	: KV
DATE:	October 2023						CHECKED BY:	DE
	r7							
	Flow Component	Flow (I	_/s)			Post-Development I	and Use:	
		Post-Development	Pre-Development			Residential		
	Sewage ¹	3.95	-			In the FSR the per c	apita used is 4	50 L/cap/d
	Extraneous ²	0.19	-					
	Groundwater ³	0.02	-					
	Total WW Design	4.16	-					
I	Land Use Type	Units	ICI Per Capita GFA (m²)	250 Rate	L/c/d, for us Unit	se in Downstream A Population	nalysis Calcula PF	tions Sewage Flow (L/s)
	1-Bed	80	-	1.4	c/unit	112		0.31
Residential	2-Bed	114		2.1	c/unit	239		0.67
	To	tal @ 240 L/c/d for Residential,	250 L/c/d for Commercial			351	4.05	3.95
	2 - Extraneous Flow Desig	gn Allowance Post-Development Rate = Site Area = Total Extraneous Flow =	0.26 0.74 0.19	L/s/ha ha L/s				
	3 - Groundwater Long terr	n groundwater discharge =	0.02	L/s				
	Source:	Functional Servicing Report	(Schaeffers Consulting En	gineers, 2	018)			
230-240 Th	e Donway, Toronto - Sanita	ry Downstream Analysis					Ctor	
-------------	---	--	---	----------------------------	---	---	---	-------------------------------------
			Table A10			\bigcirc	y Stan	tec
			200 David Dunlap Circle					
16566018	0		Site Flow				ANALYZED BY	: KV
DATE:	October 2023						CHECKED BY	DE
	·							
	Flow Component	Flow (L	./s)			Post-Development	Land Use:	
	- 1	Post-Development	Pre-Development			Residential		
	Sewage ⁺	1.97	-					
	Extraneous ²	0.22	-					
	Groundwater	0.00	-					
	l otal ww Design	2.19	-					
	Parcel Area	0.840 Units	ha Residential Per Capita ICI Per Capita GFA (m²)	240 250 Rate	L/c/d, for us L/c/d, for us Unit	se in Downstream A se in Downstream A Population	malysis Calcula malysis Calcula PF	tions tions Sewage Flow (L/s)
Residential	Townhouse	63	-	27	c/unit	170		0.47
	1	Total @ 1/c/d for Residential, 25	50 L/c/d for Commercial	2.7	o, anne	170	4.17	1.97
	2 - Extraneous Flow Desig 3 - Groundwater Long terr	gn Allowance Post-Development Rate = Site Area = Total Extraneous Flow = m groundwater discharge =	0.26 0.84 0.22 0.00	L/s/ha ha L/s L/s				
	cong terr		0.00	-, -				

230-240 The Donway, Toronto - Sanitary Downstream Analysis

DATE:

30-240 The	e Donway, Toronto - Sanita	ry Downstream Analysis						
			Table A11				Stan	tec
		801	York Mills Rd & 1855 Les	lie St				
165660180	D		Site Flow				ANALYZED BY	: KV
DATE:	October 2023						CHECKED BY:	DE
		Elow (I	/s)]		Post Development I	and Use:	
	Flow Component	Post-Development	Pre-Development			Residential	Lanu Use.	
	Sewage ¹	3.69	1.63			In the FSR the per c	apita used is 4	50 L/cap/d
	Extraneous ²	0.29	0.00					
	Groundwater ³	0.00	0.00					
	Total WW Design	3.98	1.63					
		11-14-	ICI Per Capita	240 250	L/c/d, for us L/c/d, for us	se in Downstream A se in Downstream A	nalysis Calcula nalysis Calcula	tions
		Units	GFA (m ⁻)	Rate	Unit	Population	PF	Sewage Flow (L/S)
	1-Bed	247		1.4	c/unit	346		0.96
Residential	2-Bed	158	-	2.1	c/unit	332		0.92
	3-Bed	57		3.1	c/unit	177		0.49
	To	otal @ 250 L/c/d for Residential,	250 L/c/d for Commercial			854	3.84	3.69
	2 - Extraneous Flow Desi	gn Allowance						
		Post-Development Rate =	0.26	L/s/ha				
		Site Area =	1.12	ha				
		Total Extraneous Flow =	0.29	L/s				
	3 - Groundwater							
	Long ter	m groundwater discharge =	0.00	L/s				

Source:

Functional Servicing and Stormwater Management Report (R.J. Burnside & Associates Limited, 2022)

230-240 The Donway, Toronto - Sanitary Downstream Analysis

ANALYZED BY: KV

CHECKED BY: DE

<u>Table A12</u> 2,4,6 The Donway E & 1053 Don Mills Road

Site Flow

DATE: October 2023

165660180

Elow Component	Flow (L/s)						
Flow component	Post-Development	Pre-Development					
Sewage ¹	21.28	3.69					
Extraneous ²	0.52	0.00					
Groundwater ³	1.32	0.00					
Total WW Design	23.12	3.69					

Post-Development Land Use: Mixed use tower Notes: A total residential population was calculated to be 2,155 persons, and with an additional 3 persons (from office use), the total equivalent population for the stie is 2,173 persons.

1 - Sewage Flows:

 Parcel Area
 2.00 ha
 Residential Per Capita
 240 L/c/

 Icl Per Capita
 250 L/c/

 Land Use Type
 Units
 GFA (m²)
 Rate
 L

 1-Bed
 651
 1.4
 c,

 2-Bed
 416
 2.1
 c,

240 L/c/d, for use in Downstream Analysis Calculations250 L/c/d, for use in Downstream Analysis Calculations

Land Use Type		Units	GFA (m²)	Rate	Unit	Population	PF	Sewage Flow (L/s)
	1-Bed	651		1.4	c/unit	911		2.53
Residential	2-Bed	416	-	2.1	c/unit	874]	2.43
	3-Bed	118		3.1	c/unit	366	I	1.02
ICI	Commercial / Retail Area (m2)	-	78	1.1	-	1		0.002
	Total @ 2.1 L/c/d for Residential, 250 L/c/d for Commercial					2,152	3.56	21.28
2 - Extraneous Flow Design Allowance Post-Development Rate = 0.26 L/s/ha Site Area = 2.00 ha Total Extraneous Flow = 0.52 L/s								
3 - Groundwater Long term groundwater discharge = 1.32 L/s Source: Eunctional Servicing and Stormwater Management Report (Counterpoint Engineering, 2021)								

Donway, Toronto - Sanita	ry Downstream Analysis						
		Table A13) Stant	tec
		150 The Donway W			•		
		Site Flow				ANALYZED BY	: KV
October 2023						CHECKED BY:	DE
			1				
Flow Component	Flow (L	/s)		<u> </u>	Post-Development	Land Use:	
C	4 12	Pre-Development			residential		
Sewage	4.15	-					
Extraneous Creundwater ³	0.00	-					
Total WW Design	1 30	-					
Total www.Design	4.59	-	1				
I - Jewage Flows.	1.02						
Parcel Area	1.02 1						
		Residential Per Capita	240	L/c/d, for us	e in Downstream A	nalysis Calcula	tions
		ICI Per Capita	250	L/c/d, for us	e in Downstream A	nalysis Calcula	tions
Land Use Type	Units	GFA (m²)	Rate	Unit	Population	PF	Sewage Flow (L/s)
1-Bed	100		1.4	c/unit	140		0.39
2-Bed	73	-	2.1	c/unit	153		0.43
3-Bed	24		3.1	c/unit	74		0.21
	Total @ 240 L/c/d for Resider	ntial, 250 L/c/d for ICI			368	4.04	4.13
2 - Extraneous riow Desi	Post-Development Rate =	0.26	L/s/ha				
Post-Development Rate = Site Area =		0.26 L/S/IIa					
		1.02	l /c				
	Total Extraneous Flow -	0.27	L/ S				
3 - Groundwater							
3 - Groundwater	m groundwater discharge =	0.00	1 /c				
3 - Groundwater Long ter	m groundwater discharge =	0.00	L/s				
	Donway, Toronto - Sanita October 2023 Flow Component Sewage ¹ Extraneous ² Groundwater ³ Total WW Design 1 - Sewage Flows: Parcel Area .and Use Type 1-Bed 2-Bed 3-Bed 2-Bed 3-Bed	Donway, Toronto - Sanitary Downstream Analysis October 2023 Flow (L Post-Development Post-Development Sewage ¹ 4.13 Extraneous ² 0.27 Groundwater ³ 0.00 Total WW Design 4.39 1 - Sewage Flows: 1.02 Parcel Area 1.02 1-Bed 100 2-Bed 73 3-Bed 24 Total @ 240 L/c/d for Resider 2 - Extraneous Flow Design Allowance Post-Development Rate = Site Area = Site Area = Site Area = Total Extraneous Flow =	Table A13 150 The Donway W Site Flow October 2023 Flow Component Flow (L/s) Post-Development Pre-Development Sewage ¹ 4.13 - Extraneous ² 0.27 - Groundwater ³ 0.00 - Total WW Design 4.39 - 1 - Sewage Flows: Parcel Area 1.02 ha Residential Per Capita ICI Per Capita ICI Per Capita Iand Use Type Units GFA (m ²) 1 - Bed 100 - 2 - Bed 73 - 3 - Bed 24 - Cotal @ 240 L/c/d for Residential, 250 L/c/d for ICI 2- Extraneous Flow Design Allowance Post-Development Rate = 0.26 Site Area = 1.02 Total Extraneous Flow = 0.27	Table A13 150 The Donway W Site Flow October 2023 Flow (L/s) Post-Development Pre-Development Pre-Development Sewage ¹ 4.13 - Extraneous ² 0.27 - Groundwater ³ 0.00 - Total WW Design 4.39 - Parcel Area 1.02 ha Residential Per Capita 240 ICI Per Capita 250 250 and Use Type Units GFA (m ²) Rate 1-Bed 100 1.4 2.1 3.1 2-Bed 73 - 2.1 3.1 3-Bed 24 3.1 3.1 3.1 Total @ 240 L/c/d for Residential, 250 L/c/d for ICI 2 - Extraneous Flow Design Allowance Post-Development Rate = 0.26 L/s/ha Site Area = 1.02 ha Octal Extraneous Flow = 0.27 L/s	Table A13 150 The Donway W Site Flow Site Flow October 2023 Flow Component Flow (L/s) Post-Development Pre-Development Pre-Development Sewage ¹ 4.13 - Extraneous ² 0.27 - Groundwater ³ 0.00 - Total WW Design 4.39 - I - Sewage Flows: Parcel Area 1.02 ha Residential Per Capita 240 L/c/d, for us: ICI Per Capita 250 L/c/d, for us: ICI Per Capita 2.1 c/unit 1-Bed 100 1.4 c/unit 2.40 L/c/d for Residential, 250 L/c/d for ICI 2.1 c/unit	Table A13 150 The Donway W Site Flow October 2023 Post-Development Post-Development Post-Development Residential Post-Development Post-Development Post-Development Residential Image Prove Set Set Set Set Set Set Set Set Set Se	Table A13 150 The Donway W Site Flow Second State Stat

230-240 The	e Donway, Toronto - Sani	tary Downstream Analysis					Ctore	
			Table A14			\bigcirc	Stan	tec
			52 Scarsdale Road					
16566018	0		Site Flow				ANALYZED BY	': KV
DATE:	October 2023						CHECKED BY	: DE
		Flow (I	/s)			Post-Development	land lise.	
	Flow Component	Post-Development	Pre-Development			Industrial-Office	Lana Osc.	
	Sewage ¹	1.57	-			Parcel area from su	rvey plan	
	Extraneous ²	0.14	-					
	Groundwater ³	0.00	-					
	Total WW Design	1.71	-					
	Land Use Type	Units	GFA (m ²)	Rate	L/c/d, for us	Population	nalysis Calcula PF	Sewage Flow (L/s)
ICI	Office Area (m2)	-	3903.54	3.3	-	129		0.373
		Total @ 240 L/c/d for Reside	ntial, 250 L/c/d for ICI			129	4.21	1.57
	2 - Extraneous Flow De	sign Allowance Post-Development Rate = Site Area =	0.26	L/s/ha ha				
		Total Extraneous Flow =	0.14	L/S				
	3 - Groundwater Long t	Total Extraneous Flow = erm groundwater discharge =	0.14	_/s				

230-240 The Donway, Toronto - Sanitary Downstream Analysis

Table A15

ANALYZED BY: KV

CHECKED BY: DE

Groundwater Discharge Summary

165660180

DATE: October 2023

Short-term co	onstruction dewatering	
	Max release rate	7.90 L/s
For the temport runoff and re sanitary dema	prary dewatering for the development, the dewaterin lease to the municipal sanitary sewer with a max relea and (7.9 L/s).	g contractor will store the ase rate of the allocated
Source: Email	from EXP, October 20, 2023	
Long-term gr	oundwater discharge	
Long-term gro	oundwater discharge Average Long-Term Rate	39,744 L/d
Long-term gro	oundwater discharge Average Long-Term Rate Average Long-Term Rate	39,744 L/d 0.46 L/s
Long-term gro	oundwater discharge Average Long-Term Rate Average Long-Term Rate Instantaneous Sump Pump Discharge	39,744 L/d 0.46 L/s 1.30 L/s

Appendix B Model Results Summary

230-240 The Donway W Proposed Development Sanitary Sewer Downstream Analysis

Model Results Summary October 2023

	-	
Location	Pg	Description
INFOWORKS MODEL PLAN VIEW	2	General Study Area from Area 21 Model Indicating Downstream Tro
MODEL PROFILE RESULTS	-	
SCENARIO 1: PRE-DEVELOPMENT DRY WEATHER FLOW CONDITIONS	3	Revised Baseline, Dry Weather
SCENARIO 2: POST-DEVELOPMENT DRY WEATHER FLOW CONDITIONS	4	Proposed Development Added, Dry Weather
SCENARIO 3: PRE-DEVELOPMENT EXTREME WET WEATHER FLOW CONDITIONS	5	Revised Baseline, May 12, 2000 Design Event
SCENARIO 4: POST-DEVELOPMENT EXTREME WET WEATHER FLOW CONDITIONS	6	Proposed Development Added, May 12, 2000 Design Event
MODEL TABULATED RESULTS		1
SCENARIO 1: PRE-DEVELOPMENT DRY WEATHER FLOW CONDITIONS	7	Revised Baseline, Dry Weather
SCENARIO 2: POST-DEVELOPMENT DRY WEATHER FLOW CONDITIONS	8	Proposed Development Added, Dry Weather
SCENARIO 3: PRE-DEVELOPMENT EXTREME WET WEATHER FLOW CONDITIONS	9	Revised Baseline, May 12, 2000 Design Event
SCENARIO 4: POST-DEVELOPMENT EXTREME WET WEATHER FLOW CONDITIONS	10	Proposed Development Added, May 12, 2000 Design Event

	_
ace Profile	

Assignment:	Figure: INDEX
Date: October 2023	Page: 1

Figure:
Page: 2

Scenario:	1) Pre-Development Dry Weather Flo	w
-----------	------------------------------------	---

	Pipe	Mar	hole				МО	DEL HYDRA	ULIC RESULT	S								1
Street/ Location	Ref. #	From	То	Pipe	Diameter, Height	Width	Slope	Pipe Length	Capacity	Peak US Flow	Percent Flow/	Peak US Depth	Max Surcharge	Residual	Peak Velocity	US HGL Freeboard	DS HGL Freeboard	
				Shape	(mm)	(mm)	(%)	(m)	(L/s)	(L/s)	Capacity (%)	(m)	State	Capacity (L/s)	(m/s)	(m)	(m)	Notes
Langbourne Pl	1	4410816726	4410216797	CIRC	250	250	1.31	71.5	68.0	0.1	0%	0.03	0.10	67.9	0.04	3.0	3.2	
Langbourne Pl	2	4410216797	4407116842	CIRC	250	250	0.92	54.2	57.0	0.2	0%	0.02	0.09	56.8	0.09	3.2	3.0	
Langbourne Pl	3	4407116842	4402216907	CIRC	250	250	0.47	81.6	41.0	0.8	2%	0.03	0.13	40.2	0.25	3.0	3.4	
Langbourne Pl	4	4402216907	4396716988	CIRC	250	250	0.44	97.9	39.0	2.7	7%	0.05	0.19	36.3	0.46	3.4	4.2	
Langbourne Pl	5	4396716988	4396717023	CIRC	250	250	0.52	35.1	43.0	2.9	7%	0.05	0.19	40.2	0.47	4.2	4.5	
Langbourne Pl	6	4396717023	4398617095	CIRC	250	250	0.35	75.2	35.0	2.9	8%	0.05	0.21	32.1	0.48	4.5	4.9	
The Donway W	7	4398617095	4404717088	CIRC	350	350	0.30	61.4	80.0	28.1	35%	0.15	0.41	51.9	0.93	4.9	4.9	
The Donway W	8	4404717088	4410817105	CIRC	375	375	0.30	63.7	91.0	28.7	32%	0.16	0.41	62.3	0.89	4.9	4.7	
The Donway W	9	4410817105	4420617136	CIRC	375	375	0.25	102.8	87.0	29.9	34%	0.15	0.41	57.1	0.93	4.7	2.4	
The Donway W	10	4420617136	4420117152	CIRC	350	350	1.09	16.6	152.0	30.0	20%	0.11	0.32	122.0	1.14	2.4	2.9	
The Donway W	11	4420117152	4429517183	CIRC	350	350	1.25	99	163.0	33.8	21%	0.11	0.32	129.2	1.25	2.9	2.8	
The Donway W	12	4429517183	4431017262	CIRC	350	350	1.33	80.2	169.0	33.8	20%	0.11	0.32	135.2	1.28	2.8	4.9	
Overton Cres	13	4431017262	4440717239	CIRC	350	350	1.01	99.8	147.0	36.7	25%	0.13	0.36	110.3	1.20	4.9	4.2	
Overton Cres	14	4440717239	4450817220	CIRC	350	350	0.90	103.5	138.0	37.1	27%	0.13	0.36	100.9	1.20	4.2	3.4	
Overton Cres	15	4450817220	4452717202	CIRC	350	350	0.94	25.6	141.0	37.3	26%	0.12	0.36	103.7	1.22	3.4	3.9	
Parcel off Overton Cres	16	4452717202	4458017221	CIRC	375	375	2.32	56.6	267.0	45.1	17%	0.11	0.30	221.9	1.66	3.9	3.8	
Valley b/w Overton and Don Mills	17	4458017221	4459017208	CIRC	375	375	0.04	16	34.0	13.5	40%	0.12	0.31	20.5	0.75	3.8	3.1	
Valley b/w Overton and Don Mills	18	4459017208	4461017212	CIRC	375	375	0.35	20.5	103.0	16.2	16%	0.10	0.27	86.9	0.77	3.1	0.7	Shallow
Valley b/w Overton and Don Mills	19	4461017212	4462617220	CIRC	375	375	0.56	17.8	131.0	16.2	12%	0.09	0.24	114.8	0.78	0.7	1.3	Shallow
Valley b/w Overton and Don Mills	20	4462617220	4469217236	CIRC	375	375	0.40	68	110.0	16.2	15%	0.10	0.26	93.8	0.77	1.3	7.1	Shallow
Valley b/w Don Mills and Park Glen	21	4469217236	4470217271	CIRC	450	450	0.64	36	228.0	50.0	22%	0.15	0.51	178.0	0.62	7.1	5.9	
Valley b/w Don Mills and Park Glen	22	4470217271	4472417347	CIRC	450	450	0.08	79.4	78.0	50.4	65%	0.24	0.53	27.7	1.04	5.9	5.3	
Valley b/w Don Mills and Park Glen	23	4472417347	4473217373	CIRC	450	450	0.30	27.3	156.0	50.5	32%	0.17	0.39	105.5	1.04	5.3	5.7	
Park Glen Rg	24	4473217373	4474617425	CIRC	450	450	0.30	54.2	156.0	50.7	32%	0.18	0.39	105.4	0.88	5.7	6.0	
Park Glen Rg	25	4474617425	4475917482	CIRC	450	450	0.31	58.2	160.0	50.8	32%	0.18	0.40	109.2	0.86	6.0	5.5	
Park Glen Rg	26	4475917482	4476617505	CIRC	450	450	0.30	23.4	157.0	50.9	32%	0.18	0.41	106.1	0.82	5.5	5.6	
Park Glen Rg	27	4476617505	4478217555	CIRC	450	450	0.30	52.9	156.0	52.3	34%	0.18	0.40	103.7	1.05	5.6	4.6	
Chipping Greenbelt Trl	28	4478217555	4476117596	CIRC	450	450	1.20	45.8	313.0	53.2	17%	0.13	0.30	259.8	1.35	4.6	4.3	
Chipping Greenbelt Trl	29	4476117596	4470617604	CIRC	450	450	2.23	55.1	426.0	53.3	13%	0.12	0.26	372.8	1.64	4.3	2.9	Shallow
Chipping Greenbelt Trl	30	4470617604	4468017615	CIRC	450	450	2.32	28.4	435.0	53.3	12%	0.12	0.26	381.7	1.66	2.9	1.7	Shallow
Chipping Greenbelt Trl	31	4468017615	4466917636	CIRC	450	450	39.55	23.6	1,793.0	53.3	3%	0.07	0.25	1,739.7	1.83	1.7	4.6	Shallow
Chipping Greenbelt Trl	32	4466917636	4472617716	CIRC	750	750	0.40	97.8	703.0	139.2	20%	0.23	0.31	563.8	1.24	4.6	4.5	
Chipping Greenbelt Trl	33	4472617716	4472917726	CIRC	750	750	3.90	9.7	2,199.0	139.2	6%	0.15	0.20	2,059.8	2.28	4.5	5.9	
Chipping Greenbelt Trl	34	4472917726	4468317784	CIRC	1350	1350	0.67	74.4	4,370.0	173.2	4%	0.19	0.14	4,196.8	1.37	5.9	0.0	Outlet

Pipes indicated as Shallow cannot meet 1.8m HGL Criteria. These are located within the riverines/valleys and therefore are exempt from HGL criteria.

Surcharge State is from InfoWorks ICM Output; SS<1 means the pipe is not surcharged. SS=1 means the surcharge is caused by downstream water levels. SS=2 means the flow through the pipe is greater than pipe full capacity

FILE NUMBER:	165660180	
DATE:	October 2023	
ANALYZED BY:	KV	
CHECKED BY:	DFE	

	Pipe	Mar	nhole				МО	DEL HYDRA	ULIC RESULT	S								
Street/ Location	Ref. #	From	То	Pipe	Diameter, Height	Width	Slope	Pipe Length	Capacity	Peak US Flow	Percent Flow/	Peak US Depth	Max Surcharge	Residual	Peak Velocity	US HGL Freeboard	DS HGL Freeboard	
				Shape	(mm)	(mm)	(%)	(m)	(L/s)	(L/s)	Capacity (%)	(m)	State	Capacity (L/s)	(m/s)	(m)	(m)	Notes
Langbourne Pl	1	4410816726	4410216797	CIRC	250	250	1.31	71.5	68.0	0.1	0%	0.03	0.10	67.9	0.04	3.0	3.2	
Langbourne Pl	2	4410216797	4407116842	CIRC	250	250	0.92	54.2	57.0	0.2	0%	0.02	0.09	56.8	0.09	3.2	3.0	
Langbourne Pl	3	4407116842	4402216907	CIRC	250	250	0.47	81.6	41.0	0.8	2%	0.03	0.13	40.2	0.25	3.0	3.4	
Langbourne Pl	4	4402216907	4396716988	CIRC	250	250	0.44	97.9	39.0	2.7	7%	0.05	0.19	36.3	0.46	3.4	4.2	
Langbourne Pl	5	4396716988	4396717023	CIRC	250	250	0.52	35.1	43.0	2.9	7%	0.05	0.19	40.2	0.47	4.2	4.5	
Langbourne Pl	6	4396717023	4398617095	CIRC	250	250	0.35	75.2	35.0	2.9	8%	0.05	0.21	32.1	0.48	4.5	4.9	
The Donway W	7	4398617095	4404717088	CIRC	350	350	0.30	61.4	80.0	28.1	35%	0.15	0.41	51.9	0.93	4.9	4.9	
The Donway W	8	4404717088	4410817105	CIRC	375	375	0.30	63.7	91.0	28.7	31%	0.16	0.41	62.3	0.89	4.9	4.7	
The Donway W (Site Added)	9	4410817105	4420617136	CIRC	375	375	0.25	102.8	87.0	34.0	39%	0.16	0.44	53.0	0.97	4.7	2.4	
The Donway W	10	4420617136	4420117152	CIRC	350	350	1.09	16.6	152.0	34.1	22%	0.12	0.34	118.0	1.19	2.4	2.9	
The Donway W	11	4420117152	4429517183	CIRC	350	350	1.25	99	163.0	37.9	23%	0.12	0.34	125.1	1.30	2.9	2.8	
The Donway W	12	4429517183	4431017262	CIRC	350	350	1.33	80.2	169.0	37.9	22%	0.12	0.34	131.1	1.33	2.8	4.9	
Overton Cres	13	4431017262	4440717239	CIRC	350	350	1.01	99.8	147.0	40.8	28%	0.13	0.38	106.2	1.24	4.9	4.2	
Overton Cres	14	4440717239	4450817220	CIRC	350	350	0.90	103.5	138.0	41.2	30%	0.13	0.38	96.8	1.23	4.2	3.4	
Overton Cres	15	4450817220	4452717202	CIRC	350	350	0.94	25.6	141.0	41.4	29%	0.13	0.38	99.6	1.26	3.4	3.9	
Parcel off Overton Cres	16	4452717202	4458017221	CIRC	375	375	2.32	56.6	267.0	49.2	18%	0.12	0.31	217.8	1.71	3.9	3.8	
Valley b/w Overton and Don Mills	17	4458017221	4459017208	CIRC	375	375	0.04	16	34.0	14.5	43%	0.12	0.32	19.5	0.76	3.8	3.1	
Valley b/w Overton and Don Mills	18	4459017208	4461017212	CIRC	375	375	0.35	20.5	103.0	17.2	17%	0.10	0.28	85.8	0.79	3.1	0.7	Shallow
Valley b/w Overton and Don Mills	19	4461017212	4462617220	CIRC	375	375	0.56	17.8	131.0	17.2	13%	0.09	0.25	113.8	0.80	0.7	1.3	Shallow
Valley b/w Overton and Don Mills	20	4462617220	4469217236	CIRC	375	375	0.40	68	110.0	17.2	16%	0.10	0.27	92.8	0.78	1.3	7.1	Shallow
Valley b/w Don Mills and Park Glen	21	4469217236	4470217271	CIRC	450	450	0.64	36	228.0	51.0	22%	0.15	0.51	177.0	0.62	7.1	5.9	
Valley b/w Don Mills and Park Glen	22	4470217271	4472417347	CIRC	450	450	0.08	79.4	78.0	51.4	66%	0.24	0.53	26.6	1.05	5.9	5.3	
Valley b/w Don Mills and Park Glen	23	4472417347	4473217373	CIRC	450	450	0.30	27.3	156.0	51.5	33%	0.18	0.39	104.5	1.05	5.3	5.7	
Park Glen Rg	24	4473217373	4474617425	CIRC	450	450	0.30	54.2	156.0	51.7	33%	0.18	0.40	104.3	0.89	5.7	6.0	
Park Glen Rg	25	4474617425	4475917482	CIRC	450	450	0.31	58.2	160.0	51.8	32%	0.18	0.40	108.2	0.86	6.0	5.5	
Park Glen Rg	26	4475917482	4476617505	CIRC	450	450	0.30	23.4	157.0	52.0	33%	0.18	0.42	105.1	0.82	5.5	5.6	
Park Glen Rg	27	4476617505	4478217555	CIRC	450	450	0.30	52.9	156.0	53.3	34%	0.18	0.40	102.7	1.06	5.6	4.6	
Chipping Greenbelt Trl	28	4478217555	4476117596	CIRC	450	450	1.20	45.8	313.0	54.3	17%	0.14	0.30	258.7	1.36	4.6	4.3	
Chipping Greenbelt Trl	29	4476117596	4470617604	CIRC	450	450	2.23	55.1	426.0	54.3	13%	0.12	0.26	371.7	1.65	4.3	2.9	Shallow
Chipping Greenbelt Trl	30	4470617604	4468017615	CIRC	450	450	2.32	28.4	435.0	54.3	12%	0.12	0.26	380.7	1.67	2.9	1.7	Shallow
Chipping Greenbelt Trl	31	4468017615	4466917636	CIRC	450	450	39.55	23.6	1,793.0	54.3	3%	0.07	0.26	1,738.7	1.75	1.7	4.6	Shallow
Chipping Greenbelt Trl	32	4466917636	4472617716	CIRC	750	750	0.40	97.8	703.0	143.3	20%	0.23	0.31	559.7	1.25	4.6	4.5	
Chipping Greenbelt Trl	33	4472617716	4472917726	CIRC	750	750	3.90	9.7	2.199.0	143.3	7%	0.15	0.20	2.055.7	2.31	4.5	5.9	
Chipping Greenbelt Trl	34	4472917726	4468317784	CIRC	1350	1350	0.67	74.4	4.370.0	177.2	4%	0.20	0.15	4.192.8	1.38	5.9	0.0	Outlet
				00			0.07		.,		.,.	0.20	0.20	.,		0.0	0.0	00000
							1											/

Pipes indicated as Shallow cannot meet 1.8m HGL Criteria. These are located within the riverines/valleys and therefore are exempt from HGL criteria.

Surcharge State is from InfoWorks ICM Output; SS<1 means the pipe is not surcharged. SS=1 means the surcharge is caused by downstream water levels. SS=2 means the flow through the pipe is greater than pipe full capacity

FILE NUMBER:	165660180	
DATE:	October 2023	
ANALYZED BY:	KV	
CHECKED BY:	DFE	

Scenario:	3) Pre-Development Extreme Wet Weather Flow (May 12, 2000)

	Pipe	Mar	nhole				MO	DEL HYDRA	ULIC RESULT	S								
a /																		
Street/		_	_	Pipe	Diameter,	Width	Slope	Pipe	Capacity	Peak US Flow	Percent Flow/	Peak US	Max	Residual	Peak		DS HGL	
Location	Ref. #	From	То	Shape	Height	(mm)	(%)	Length	(L/s)	(L/s)	Capacity (%)	Depth	Surcharge	Capacity (L/s)	Velocity	Freeboard	Freeboard	Notes
				-	(mm)			(m)				(m)	State		(m/s)	(m)	(m)	
Langbourne Pl	1	4410816726	4410216797	CIRC	250	250	1.31	71.5	68.0	3.7	5%	0.79	1.00	64.3	0.59	2.28	1.44	BFPP
Langbourne Pl	2	4410216797	4407116842	CIRC	250	250	0.92	54.2	57.0	9.3	16%	1.82	1.00	47.7	0.61	1.44	0.70	BFPP
Langbourne Pl	3	4407116842	4402216907	CIRC	250	250	0.47	81.6	41.0	19.2	47%	2.37	1.00	21.8	0.73	0.70	0.62	BFPP
Langbourne Pl	4	4402216907	4396716988	CIRC	250	250	0.44	97.9	39.0	47.2	121%	2.81	2.00	-8.2	1.12	0.62	1.59	BFPP
Langbourne Pl	5	4396716988	4396717023	CIRC	250	250	0.52	35.1	43.0	49.7	115%	2.67	2.00	-6.7	0.84	1.59	1.97	BFPP
Langbourne Pl	6	4396717023	4398617095	CIRC	250	250	0.35	75.2	35.0	51.3	146%	2.62	2.00	-16.3	1.11	1.97	2.31	
The Donway W	7	4398617095	4404717088	CIRC	350	350	0.30	61.4	80.0	173.1	216%	2.74	2.00	-93.1	1.56	2.31	3.02	
The Donway W	8	4404717088	4410817105	CIRC	375	375	0.30	63.7	91.0	175.2	193%	2.07	2.00	-84.2	1.48	3.02	3.23	
The Donway W	9	4410817105	4420617136	CIRC	375	375	0.25	102.8	87.0	177.2	204%	1.58	2.00	-90.2	1.70	3.23	1.74	BFPP
The Donway W	10	4420617136	4420117152	CIRC	350	350	1.09	16.6	152.0	177.4	117%	0.79	2.00	-25.4	1.88	1.74	2.12	BFPP
The Donway W	11	4420117152	4429517183	CIRC	350	350	1.25	99	163.0	180.7	111%	0.87	2.00	-17.7	1.89	2.1	2.3	
The Donway W	12	4429517183	4431017262	CIRC	350	350	1.33	80.2	169.0	181.4	107%	1.34	1.00	-12.4	2.00	2.3	3.3	
Overton Cres	13	4431017262	4440717239	CIRC	350	350	1.01	99.8	147.0	183.1	125%	1.64	1.00	-36.1	1.75	3.3	3.2	
Overton Cres	14	4440717239	4450817220	CIRC	350	350	0.90	103.5	138.0	184.4	134%	0.07	0.24	-46.4	1.91	3.2	3.0	
Overton Cres	15	4450817220	4452717202	CIRC	350	350	0.94	25.6	141.0	185.4	131%	0.03	0.10	-44.4	2.04	3.0	3.8	
Parcel off Overton Cres	16	4452717202	4458017221	CIRC	375	375	2.32	56.6	267.0	197.3	74%	0.03	0.13	69.7	2.59	3.8	3.7	
Valley b/w Overton and Don Mills	17	4458017221	4459017208	CIRC	375	375	0.04	16	34.0	55.7	164%	0.28	0.62	-21.7	1.13	3.7	2.9	
Valley b/w Overton and Don Mills	18	4459017208	4461017212	CIRC	375	375	0.35	20.5	103.0	66.1	64%	0.77	1.00	36.9	1.16	2.9	0.6	Shallow
Valley b/w Overton and Don Mills	19	4461017212	4462617220	CIRC	375	375	0.56	17.8	131.0	65.9	50%	0.05	0.18	65.1	1.15	0.6	1.0	Shallow
Valley b/w Overton and Don Mills	20	4462617220	4469217236	CIRC	375	375	0.40	68	110.0	65.7	60%	0.03	1.00	44.3	0.93	1.0	6.6	Shallow
Valley b/w Don Mills and Park Glen	21	4469217236	4470217271	CIRC	450	450	0.64	36	228.0	166.2	73%	0.11	0.38	61.8	1.00	6.6	5.5	
Valley b/w Don Mills and Park Glen	22	4470217271	4472417347	CIRC	450	450	0.08	79.4	78.0	167.2	214%	0.21	0.46	-89.2	1.29	5.5	5.0	
Valley b/w Don Mills and Park Glen	23	4472417347	4473217373	CIRC	450	450	0.30	27.3	156.0	167.5	107%	0.05	0.20	-11.5	1.24	5.0	5.4	
Park Glen Rg	24	4473217373	4474617425	CIRC	450	450	0.30	54.2	156.0	168.1	108%	1.78	1.00	-12.1	1.13	5.4	5.7	
Park Glen Rg	25	4474617425	4475917482	CIRC	450	450	0.31	58.2	160.0	168.6	105%	0.10	0.38	-8.6	1.11	5.7	5.3	
Park Glen Rg	26	4475917482	4476617505	CIRC	450	450	0.30	23.4	157.0	169.1	108%	0.12	0.48	-12.1	1.15	5.3	5.4	
Park Glen Rg	27	4476617505	4478217555	CIRC	450	450	0.30	52.9	156.0	173.0	111%	0.68	2.00	-17.0	1.58	5.4	4.5	
Chipping Greenbelt Trl	28	4478217555	4476117596	CIRC	450	450	1.20	45.8	313.0	177.9	57%	0.03	0.14	135.1	1.97	4.5	4.2	
Chipping Greenbelt Trl	29	4476117596	4470617604	CIRC	450	450	2.23	55.1	426.0	178.5	42%	0.38	0.84	247.5	2.47	4.2	2.8	Shallow
Chipping Greenbelt Trl	30	4470617604	4468017615	CIRC	450	450	2.32	28.4	435.0	178.9	41%	0.05	0.22	256.1	2.51	2.8	1.7	Shallow
Chipping Greenbelt Trl	31	4468017615	4466917636	CIRC	450	450	39.55	23.6	1,793.0	179.1	10%	0.08	0.30	1,613.9	1.02	1.7	3.1	Shallow
Chipping Greenbelt Trl	32	4466917636	4472617716	CIRC	750	750	0.40	97.8	703.0	517.5	74%	0.08	0.28	185.6	1.09	3.1	2.7	
Chipping Greenbelt Trl	33	4472617716	4472917726	CIRC	750	750	3.90	9.7	2,199.0	518.6	24%	0.03	0.13	1,680.4	1.08	2.7	3.6	
Chipping Greenbelt Trl	34	4472917726	4468317784	CIRC	1350	1350	0.67	74.4	4,370.0	798.1	18%	0.10	0.41	3,571.9	0.52	3.6	3.3	Outlet

Pipes indicated as Shallow cannot meet 1.8m HGL Criteria. These are located within the riverines/valleys and therefore are exempt from HGL criteria.

Surcharge State is from InfoWorks ICM Output; SS<1 means the pipe is not surcharged. SS=1 means the surcharge is caused by downstream water levels. SS=2 means the flow through the pipe is greater than pipe full capacity BFPP indicates Toronto's Basement Flooding Protection Program, which identified a recommended solution to mitigate the elevated HGL on Langbourne / The Donway W

FILE NUMBER:	165660180	
DATE:	October 2023	
ANALYZED BY:	KV	
CHECKED BY:	DFE	

Scenario:	4) Post-Development Extreme Wet Weather Flow (May 12, 2000)
-----------	---

	Pipe	Mar	nhole				МО	DEL HYDRA	ULIC RESULT	S								
Street/	Rof #	From	То	Pipe	Diameter, Height	Width	Slope	Pipe	Capacity	Peak US Flow	Percent Flow/	Peak US	Max	Residual	Peak Velocity	US HGL Ereeboard	DS HGL Freeboard	
Location	NC1. #	110111	10	Shape	(mm)	(mm)	(%)	(m)	(L/s)	(L/s)	Capacity (%)	(m)	State	Capacity (L/s)	(m/s)	(m)	(m)	Notes
								. ,				. ,					. ,	
Langbourne Pl	1	4410816726	4410216797	CIRC	250	250	1.31	71.5	68.0	3.7	5%	0.81	1.00	64.3	0.59	2.26	1.42	BFPP
Langbourne Pl	2	4410216797	4407116842	CIRC	250	250	0.92	54.2	57.0	9.3	16%	1.84	1.00	47.7	0.61	1.42	0.69	BFPP
Langbourne Pl	3	4407116842	4402216907	CIRC	250	250	0.47	81.6	41.0	19.2	47%	2.39	1.00	21.8	0.73	0.69	0.60	BFPP
Langbourne Pl	4	4402216907	4396716988	CIRC	250	250	0.44	97.9	39.0	46.9	120%	2.83	2.00	-7.9	1.12	0.60	1.56	BFPP
Langbourne Pl	5	4396716988	4396717023	CIRC	250	250	0.52	35.1	43.0	49.2	114%	2.70	2.00	-6.2	0.84	1.56	1.94	BFPP
Langbourne Pl	6	4396717023	4398617095	CIRC	250	250	0.35	75.2	35.0	50.8	145%	2.65	2.00	-15.8	1.11	1.94	2.27	
The Donway W	7	4398617095	4404717088	CIRC	350	350	0.30	61.4	80.0	171.9	215%	2.78	2.00	-91.9	1.54	2.27	2.96	
The Donway W	8	4404717088	4410817105	CIRC	375	375	0.30	63.7	91.0	173.4	191%	2.12	2.00	-82.4	1.46	2.96	3.15	
The Donway W (Site Added)	9	4410817105	4420617136	CIRC	375	375	0.25	102.8	87.0	178.8	205%	1.65	2.00	-91.8	1.70	3.15	1.69	BFPP
The Donway W	10	4420617136	4420117152	CIRC	350	350	1.09	16.6	152.0	179.0	118%	0.84	2.00	-27.0	1.89	1.69	2.07	BFPP
The Donway W	11	4420117152	4429517183	CIRC	350	350	1.25	99	163.0	182.2	112%	0.92	2.00	-19.2	1.89	2.1	2.3	
The Donway W	12	4429517183	4431017262	CIRC	350	350	1.33	80.2	169.0	183.0	108%	1.41	1.00	-14.0	2.01	2.3	3.2	
Overton Cres	13	4431017262	4440717239	CIRC	350	350	1.01	99.8	147.0	184.7	126%	1.70	1.00	-37.7	1.76	3.2	3.2	
Overton Cres	14	4440717239	4450817220	CIRC	350	350	0.90	103.5	138.0	186.1	135%	0.07	0.24	-48.1	1.91	3.2	3.0	
Overton Cres	15	4450817220	4452717202	CIRC	350	350	0.94	25.6	141.0	187.0	133%	0.03	0.10	-46.0	2.05	3.0	3.8	
Parcel off Overton Cres	16	4452717202	4458017221	CIRC	375	375	2.32	56.6	267.0	199.0	75%	0.03	0.13	68.1	2.59	3.8	3.7	
Valley b/w Overton and Don Mills	17	4458017221	4459017208	CIRC	375	375	0.04	16	34.0	56.3	165%	0.28	0.62	-22.3	1.14	3.7	2.9	
Valley b/w Overton and Don Mills	18	4459017208	4461017212	CIRC	375	375	0.35	20.5	103.0	66.7	65%	0.78	1.00	36.3	1.17	2.9	0.6	Shallow
Valley b/w Overton and Don Mills	19	4461017212	4462617220	CIRC	375	375	0.56	17.8	131.0	66.4	51%	0.05	0.18	64.6	1.15	0.6	1.0	Shallow
Valley b/w Overton and Don Mills	20	4462617220	4469217236	CIRC	375	375	0.40	68	110.0	66.2	60%	0.03	1.00	43.9	0.94	1.0	6.6	Shallow
Valley b/w Don Mills and Park Glen	21	4469217236	4470217271	CIRC	450	450	0.64	36	228.0	166.7	73%	0.11	0.38	61.4	1.00	6.6	5.5	
Valley b/w Don Mills and Park Glen	22	4470217271	4472417347	CIRC	450	450	0.08	79.4	78.0	167.6	215%	0.21	0.46	-89.6	1.29	5.5	5.0	
Valley b/w Don Mills and Park Glen	23	4472417347	4473217373	CIRC	450	450	0.30	27.3	156.0	167.9	108%	0.05	0.20	-11.9	1.24	5.0	5.4	
Park Glen Rg	24	4473217373	4474617425	CIRC	450	450	0.30	54.2	156.0	168.5	108%	1.78	1.00	-12.5	1.13	5.4	5.7	
Park Glen Rg	25	4474617425	4475917482	CIRC	450	450	0.31	58.2	160.0	169.0	106%	0.10	0.38	-9.0	1.11	5.7	5.3	
Park Glen Rg	26	4475917482	4476617505	CIRC	450	450	0.30	23.4	157.0	169.4	108%	0.12	0.48	-12.4	1.15	5.3	5.4	
Park Glen Rg	27	4476617505	4478217555	CIRC	450	450	0.30	52.9	156.0	173.4	111%	0.69	2.00	-17.4	1.58	5.4	4.5	
Chipping Greenbelt Trl	28	4478217555	4476117596	CIRC	450	450	1.20	45.8	313.0	178.3	57%	0.03	0.14	134.7	1.97	4.5	4.2	
Chipping Greenbelt Trl	29	4476117596	4470617604	CIRC	450	450	2.23	55.1	426.0	178.9	42%	0.38	0.84	247.1	2.47	4.2	2.8	Shallow
Chipping Greenbelt Trl	30	4470617604	4468017615	CIRC	450	450	2.32	28.4	435.0	179.3	41%	0.05	0.22	255.7	2.51	2.8	1.7	Shallow
Chipping Greenbelt Trl	31	4468017615	4466917636	CIRC	450	450	39.55	23.6	1.793.0	179.5	10%	0.08	0.30	1.613.5	1.03	1.7	3.1	Shallow
Chipping Greenbelt Trl	32	4466917636	4472617716	CIRC	750	750	0.40	97.8	703.0	519.2	74%	0.08	0.28	183.8	1.10	3.1	2.7	0.00.00
Chipping Greenbelt Trl	33	4472617716	4472917726	CIRC	750	750	3,90	9.7	2.199.0	520.4	24%	0.03	0.13	1.678.7	1.09	2.7	3.6	
Chipping Greenbelt Trl	34	4472917726	4468317784	CIRC	1350	1350	0,67	74.4	4.370.0	800.2	18%	0.10	0.41	3.569.8	0.53	3.6	3.3	Outlet
	54	11,201,720	1100017704		1000	1000	0.07	,	.,	000.2	10/0	0.10	0.71	0,000.0	0.00	0.0	5.5	Callet
	1			1			I	1										

Pipes indicated as Shallow cannot meet 1.8m HGL Criteria. These are located within the riverines/valleys and therefore are exempt from HGL criteria.

Surcharge State is from InfoWorks ICM Output; SS<1 means the pipe is not surcharged. SS=1 means the surcharge is caused by downstream water levels. SS=2 means the flow through the pipe is greater than pipe full capacity BFPP indicates Toronto's Basement Flooding Protection Program, which identified a recommended solution to mitigate the elevated HGL on Langbourne / The Donway W

FILE NUMBER:	165660180	
DATE:	October 2023	
ANALYZED BY:	KV	
CHECKED BY:	DFE	

Project Number: ALL-00256815-B0 Date: October 2023

Appendix D – Hydrogeology Investigation and Groundwater Pump Design Correspondence

EXCERPT FROM HYDROGEOLOGICAL REPORT BY EXP DATED OCTOBER 26, 2023

Project Number: BRM- 00607375-A0 Date: September 23, 2019 Revision 1: May 28, 2021 Revision 2: October 20, 2021 Revision 3: January 13, 2022 Revision 4: October 26, 2023

4.3 Stormwater

Additional pumping capacity may be required to maintain dry conditions within the excavation during and following significant precipitation events. Therefore, the dewatering rates at the Site should also include removing stormwater from the excavation.

A 15 mm precipitation event was utilized for the estimate. Given that the total area of the excavation is approximately $10,140 \text{ m}^2$ the estimated stormwater volume to be collected in the excavation is approximately 152 m^3 for a 15 mm precipitation event. The calculations for the stormwater estimate are included in Appendix E.

It is noted that a two (2) year storm event over a 24-hour period is approximately 57 mm. During large precipitation events, the water should be retained onsite to not exceed the allowable water taking and discharge limits as necessary.

4.4 Results of Dewatering Rate Estimate

4.4.1 Construction Dewatering Rate Estimate

For this assessment, it was assumed that the proposed construction plans include an excavation with shoring extending to the Site boundaries. EXP should be retained to review the assumptions outlined in this section, should the assumed shoring design change. Short-term (construction) dewatering calculations are presented in Appendix E. Based on the assumptions provided in this report, the results of the dewatering rate estimate are summarized in Table 4-2

Peak Dewatering Flow Rate Including Rain Collection Volume and Zone of Influence										
Description	Units	Value								
Estimated Short Term Dewatering Rate (without safety factor or precipitation)	L/day	73,000								
From Precipitation Event of 15 mm in one day	L/day	152,000								
With Factor of Safety of 2 (excluding Precipitation) for designs and budgeting	L/day	145,000								
Without Factor of Safety (including Precipitation)	L/day	225,000								
With Factor of Safety of 2 (including Precipitation)	L/day	298,000								
Radius of Influence from sides of excavation	m	8								

Table 4-2 Summary of Dewatering Flow Rate Estimate

This peak dewatering flow rates accounts for accumulation of some precipitation, seasonal fluctuations in the groundwater table, flow from beddings of existing sewers, and variation in hydrogeological properties beyond those encountered during this study. This peak dewatering flow rate also provides additional capacity for the dewatering contractor.

Localized dewatering may be required for pits (elevator pits, sump pits) if they extend deeper than the dewatering target. Dewatering estimates should be reviewed once the pit dimensions are available.

It is noted that the maximum flow estimate equation calculated with a high K-value, provides a conservative estimate to account for higher-than-expected flow rates during the construction dewatering.

Please note that it is the responsibility of the contractor to ensure dry conditions are always maintained within the excavation at all costs.

4.4.2 Post-Construction Dewatering Rate Estimate

It is our understanding that the development plan includes a permanent foundation sub-drain system that will ultimately discharge to the municipal sewer system if conventional footings are installed.

As of January 1, 2022, the foundation drainage policy from the City of Toronto prohibits post construction discharge of groundwater into the municipal sewer system.

The long-term dewatering was based on the same equations as construction dewatering shown in Section 4.1.

The calculation for the estimated flow to the future sub-drain system (with no cutoff walls) is provided in Appendix E. The dewatering target for the foundation drainage system is taken at 0.5 m below the lowest slab elevation.

The foundation drain analysis provides a flow rate estimate. Once the foundation drain is built, actual flow rate measurements of the sump discharge will be required to confirm the estimated flow rate.

Seasonal and daily fluctuations are expected. These estimates may be affected by hydrogeological conditions beyond those encountered at this time, fluctuations in groundwater regimes, surrounding Site alterations, and existing and future infrastructures.

For the design of shallow foundations without perimeter and/or foundation drainage system, shallower wells need to be considered to evaluate the shallow groundwater table. The hydrogeologist needs to be consulted during the design process.

Table 4-3: Summary of Long-Term Dewatering Rate

Long-Term Dewatering Flow Rate	Building with P1 (L/day)
Long-Term Dewatering Rate without Safety Factor	8,000
Long-Term Dewatering Rate with Safety Factor of 1.5 for design, budgeting and permitting	11,000

Intermittent cycling of sump pumps and seasonal fluctuation in groundwater regimes should be considered for pump specifications. A safety factor was applied to the flow rate to account for water level fluctuations due to seasonal changes.

These estimates assume that pits (elevator and/or sump pits) are made as watertight structures (without drainage), if their depths extend below the dewatering target, as previously stated. The dewatering assumptions are based on using shoring system without open cuts. Open cuts can act as preferential groundwater pathways in the long-term and cause foundation drainage volumes to increase.

The sub-drain rate estimate is based on the assumptions outlined in this report. Any variations in hydrogeological conditions beyond those encountered as part of this investigation may significantly influence the sub-drain discharge volumes.

4.5 MECP Water Taking Permit

4.5.1 Short-Term Discharge Rate (Construction Phase)

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering will be more than 50 m³/day but less than 400 m³/day, then an online registration in the Environmental Activity and Sector Registry (EASR) with MECP is required. If groundwater dewatering rates exceed 400 m³/day, then an application for a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

As of July 1, 2021, an amendment of O. Reg. 63/16 has come into effect and replaced the former subsection 7 (5) such that the water taking limit of 400,000 L/day would apply to groundwater takings of each dewatered work area only, excluding stormwater.

The maximum flow estimate, which was calculated with a representative K-value, provides a conservative estimate to account for higher-than-expected flow rates during construction dewatering. The dewatering estimate including a safety factor and excluding precipitation is stated below. The MECP construction dewatering rate excludes the precipitation amount and is the rate used for the permit application. Based on the MECP construction dewatering an EASR will be required to facilitate the construction dewatering program of the Site.

Table 4-4: MECP Construction Dewatering Flow Rate

Scenario	Building with P1 (L/day)
MECP Construction Dewatering Flow Rate With Safety Factor of 2 (excluding rainwater collection)	145,000

A Discharge Plan (dewatering sketch, sewer discharge agreement) must be developed and applied for any discharges from the Site. Monitoring of both water quantity and water quality must be carried out for the entire duration of the construction dewatering phase. During this phase, the Discharge Plan and the daily water taking records must be available onsite.

The EASR, Discharge Plan, hydrogeological investigation report, and geotechnical assessment of settlements must also be available at the construction Site during the entire construction dewatering. EXP should be notified immediately about any changes to the construction dewatering schedule or design, since the EASR will need to be updated to reflect these modifications. Altogether, the hydrogeological report, EASR, Discharge Plan and geotechnical assessment constitute the Water Taking Plan which needs to be available onsite during the construction dewatering.

4.5.2 Long-Term Discharge Rate (Post Construction Phase)

In accordance with the Ontario Water Resources Act, if the water taking for the construction dewatering is more than 50,000 L/day, then an application for a Category 3 Permit to Take Water (PTTW) will be required from the MECP.

The maximum flow rate, which was calculated with a representative K-value, provides a conservative estimate to account for higher-than-expected flow rates during post-development dewatering. Based on the dewatering estimate of approximately 11,000 L/day (applying a safety factor of 1.5) for this project, no permit to take-water will be required for the post-development phase.

exp

The safety factor for construction (short-term) dewatering is selected larger than for long-term to account for anticipated greater groundwater volumes during initial dewatering. The applied analytical formula is adequate for long-term (steady state) conditions as it omits specific yield and time dependency. When the formula is used for short-term conditions a larger safety factor is recommended to cover a larger initial dewatering rate, which is required to remove stored groundwater. Moreover, a large initial construction dewatering rate is favorable, as it supports reducing the time to reach the dewatering target elevation.

6 Environmental Impact

6.1 Surface Water Features

The Site is located within the Don River Watershed. No surface water features exist onsite. The nearest surface water feature is a small tributary of the Don River East Branch, located approximately 400 meters northeast of the Site boundary. The Don River East Brach is approximately 770 meters northeast of the Site. Roughly 1,1 km southwest flows Wilket Creek, a tributary of the Don River West Branch. Lake Ontario is approximately 8.8 kilometers southeast of the Site boundary.

Due to the limited extent of zone of influence and the large distance of the nearest surface water feature, no impacts to surface water features are expected during construction activities.

6.2 Groundwater Sources

Well Records from the MECP Water Well Record (WWR) Database were reviewed to determine the number of water supply wells present within a 500 m radius of the Site centroid. Given that the dewatering zone of influence, no dewatering related impact is expected on the water wells in the area.

6.3 Geotechnical Considerations

Under certain conditions, dewatering activities can cause settlements due to an increase of the effective stress in the dewatered soil. A letter related to geotechnical issues (i.e. settlement) as it pertains to the Site is recommended to be completed under a separate cover.

6.4 Groundwater Quality

It is our understanding that the potential discharge from the dewatering system during the construction will be directed to the municipal sewer system. As such, the quality of groundwater discharge is required to conform the City of Toronto Sewer Use By-Law.

Based on the water quality results for the water sample collected for ESA, the concentrations of all tested parameters were reported below both Sanitary and Storm Sewer Use By-Law limits. For the short-term dewatering system (construction phase), it is anticipated that TSS levels and some other parameters (for example, Total Manganese) in the pumped groundwater may become elevated and exceed both, Sanitary and Storm Sewer Use By-Law limits. To control the concentration of TSS and associated metals, it is recommended that a suitable treatment method be implemented (filtration or decantation facilities and/ or any other applicable treatment system) during construction dewatering activities to discharge to the applicable sewer system. The specifications of the treatment system will need to be adjusted to the reported water quality results by the treatment contractor/process engineer.

Dewatering (short and long-term) may induce migration of contaminants within the zone of influence and beyond due to changing hydraulic gradients, hydrogeological conditions beyond Site boundaries and preferential pathways in utility beddings etc. The water quality sampling conducted as part of this assessment was performed under static conditions. As a result, monitoring may be required during dewatering activities (short and long-term) to monitor potential migration, and this should be performed more frequently during early dewatering stages.

Fort the long-term dewatering (post-construction), the water is suitable to be released into the Sanitary Sewer system without a treatment system. However, the pumped water is unsuitable to be discharged into the Storm Sewer system without implementing an appropriate pre-treatment system as required.

It is noted that the water quality results presented in this report may not be representative of the long-term condition of groundwater quality onsite. As such, regular water quality monitoring is recommended for the post-construction phase as required by the City.

An agreement to discharge into the sewers owned by the City of Toronto will be required prior to discharging dewatering effluent.

The Environmental Site Assessment Report(s) should be reviewed for more information on the groundwater quality conditions at the Site.

6.5 Well Decommissioning

In conformance with Regulation 903 of the Ontario Water Resources Act, the installation and eventual decommissioning of any dewatering system wells or monitoring wells must be completed by a licensed well contractor. This will be required for all wells that are no longer in use.

EXP Services Inc.

Project Number: ALL-00256815-B0 Date: October 2023

Appendix E – City's Servicing Report Groundwater Review Form

SERVICING REPORT GROUNDWATER SUMMARY

The form is to be completed by the Professional that prepared the Servicing Report. Use of the form by the City of Toronto is not to be construed as verification of engineering/hydrological content.

	For City Staff Use Only:		
Name of ECS Case Manager (please print)		:)	
	Date Review Summary provided to to TW		
ORMAITON		Included in SR (reference page number)	Report Includes this information City staff (Check)
30, 2023		Title	
		Title	
Report: EX	P Services Inc.	Title	
230 The Toronto, C	e Donway West Ontario	Title	
M3B 2V	8	Title	
Donway Corpora	Co-operative Development tion	Title	
6 storey resident	residential complex with tial units and church	pg 2	
Resider	tial with Church	pg 2	
Three le	evels	pg 2	
	DRMAITON 30, 2023 Report: EX 230 The Toronto, C M3B 2V Donway Corpora 6 storey resident Resider Three le	For City Staff Use Only: Name of ECS Case Manager (please print) Date Review Summary provided to to TW DRMAITON 30, 2023 Report: EXP Services Inc. 230 The Donway West Toronto, Ontario M3B 2V8 Donway Co-operative Development Corporation 6 storey residential complex with residential with Church Three levels	For City Staff Use Only: Name of ECS Case Manager (please print) Date Review Summary provided to to TW DRMAITON Included in SR (reference page number) 30, 2023 Title 30, 2023 Title 230 The Donway West Toronto, Ontario Title M3B 2V8 Title Donway Co-operative Development Corporation Title 6 storey residential complex with residential units and church pg 2 Residential with Church pg 2 Three levels pg 2

Does the SR include a private water drainage			
system (PWDS)?			
PWDS: Private Water Drainage System: A subsurface drainage system which may consist of but is not limited to weeping tile(s), foundation drain(s), private water collection sump(s), private water pump or any combination thereof for the disposal of private water on the surface of the ground or to a private sewer connection or drainage system for disposal in a municipal sewer.	If Yes continue completing Section B (Information Relating to Groundwater) <u>ONLY</u> If Yes, Number of PWDS? 1 (Each of these PWDS may require a separate Toronto Water agreement) If No skip to Sections C (On-site Groundwater Containment) and/or D (Water Tight Requirements) as applicable	VYES O NO	
B. INFORMATION RELAT	ING TO GROUNDWATER	Included in SR (reference page number)	Report Includes this information City Staff (Check)
B. INFORMATION RELAT	ING TO GROUNDWATER	Included in SR (reference page number)	Report Includes this information City Staff (Check)
B. INFORMATION RELAT A copy of the pump schedule(s) for ALL groundwater sump pump(s) for the development site has been included in the SR <u>Or</u> A letter written by a Mechanical Consultant	ING TO GROUNDWATER	Included in SR (reference page number)	Report Includes this information City Staff (Check)

If there is more than one groundwater sump they must ALL be included in the letters along with a combined flow Is it proposed that the groundwater from the development site will be discharged to the	Sanitary Sewer		
sanitary, combined or storm sewer?	Combined Sewer Storm Sewer	p10	
Will the proposed PWDS discharge from the site go to the Western Beaches Tunnel (WBT)?	⊖ yes 🕅 no		
Reference attached WBT drainage map	If Yes, private water discharge fees will apply and site requires a sanitary discharge agreement.		
What is the street name where the receiving sewer is located?	The Donway West	p10	
What is the diameter of the receiving sewer?	375 mm	p10	
Is there capacity in the proposed local sewer system? YES O NO	Are there any improvements required to the sewer system? If yes, identify them below and refer to the section and page number of the SR where this information can be found. Additional consultation with City staff is recommended to address extreme wet weather flow conditions If a server approace is required, the ormer is required to enter into an Agreement with the City to improve the infrastructure? YES	p9	
Has Toronto Water-WIM confirmed that there is there capacity in the proposed infrastructure listed below? - Trunk System? O YES NO -Pumping Station? O YES NO	Pending Toronto Water approval		

M TORONTO

-Wastewater treatment plant? YES NO -Outfall? YES NO -Combined Sewer Overflow? YES NO N/A *If there is no capacity in any of the above then alternative options need to be considered by the Owner and site cannot discharge to City sewer system.			
Total allowable peak flow rate during a 100 year storm event (L/sec) to storm sewer When groundwater is to be discharged to the storm sewer the total groundwater and stormwater discharge shall not exceed the permissible peak flow rate during a 2 year pre development storm event, as per the City's Wet Weather Flow Management Guidelines, dated 2006	<u>99.4</u> GW is to be discharged to the municipal sanitary sewer for this development	p10 & p11	
Short-Term Groundwater Discharge Provide proposed total flow rate to the sanitary/combined sewer in post-development scenario Total Flow (L/sec) = sanitary flow + peak short- term groundwater flow rate	Total Flow = Sanitary Flow (0L/s) + Peak Short-Term GW Rate (3.45L/s) = 3.45L/s <u>3.45</u> L/sec	p10 & p11	
Long-Tem Groundwater Discharge Provide proposed total flow rate to the sanitary/combined sewer in post-development scenario	Total Flow = Sanitary Flow (6.6L/s) + Peak Long-Term GW Rate (1.3L/s) = 7.9L/s L/sec	p10 & p11	

Total Flow (L/sec) = sanitary flow + peak long- term groundwater flow rate			
Does the water quality meet the receiving sewer Bylaw limits? YES NO	If the water quality does not meet the applicable receiving sewer Bylaw limits and the applicant is proposing a treatment system the applicant will need to include a letter stating that a treatment system will be installed and the details of the treatment system will be included in the private water discharge application that will be submitted to TW EM&P.	EXP's HG report in Appendix D	
C. ON-SITE GROUNDWATER CONTAINMENT		Included in SR (reference page number)	Report Includes this information City Staff (Check)
How is the site proposing to manage the groundwater discharge on site?			
Has the above proposal been approved by:	O TW-WIM		
	○ TW-EM&PAnd○ ECS		
If the site is proposing a groundwater infiltration gallery, has it been stated that the groundwater infiltration gallery will not be connected to the	⊖ YES		
municipal sewer? A connection between the infiltration gallery/dry well and the municipal sewer is not permitted	O NO		
Please be advised if an infiltration gallery/dry			

DI TORONTO

SERVICING REPORT GROUNDWATER SUMMARY well on site is not connected to the municipal sewer, the site must submit two letters using the templates in Schedule B and Schedule C. Confirm that the infiltration gallery can infiltrate 100% of the expected peak groundwater flow year round, ensure that the top of the infiltration trench is below the frost line (1.8m depth), not less than 5 m from the building foundation, bottom of the trench 1m above the seasonally high water table, and located so that the drainage is away from the building. Included Report **D. WATER TIGHT REQUIREMENTS** in SR Includes (reference this page information number) **City Staff** (Check) If the site is proposing a water tight structure: 1. The owner must submit a letter using the template in Schedule D. 2. A Professional Engineer (Structural), licensed to practice in Ontario and qualified in the subject must submit a letter using the template in Schedule E. 3. A Professional Engineer (Mechanical), licensed to practice in Ontario and qualified in the subject must submit a letter using the template in Schedule F.

Provide a copy of the approved SR to Toronto Water Enviro pwapplication@toronto.ca.	onmental Monitoring & P	Protection Unit at
Consulting Firm that prepared Servicing Report:	ervices Inc.	So and the
Professional Engineer who completed the report summary:	Steve Park	S C. PARK H00168818
	Print Name	TOLINCE OF ONTARIO

October 19, 2023

Attention:	Executive Director, Engineering and Construction Services c/o Manager, Development Engineering Engineering & Construction Services City of Toronto 100 Queen St. W Suite 16E Toronto, ON M5H 2N2
C.C.	General Manager, Toronto Water c/o Manager, Environmental Monitoring and Protection Unit 2126 Kipling Ave, Toronto ON M9W 4K5
Re:	<u>Proposed Co-operative Development at 230 and 240 The Donway West, Toronto –</u> Private Water Discharge

Dear Sir or Madam,

This letter is to confirm that ground water from the Private Water Drainage System, consists of two submersible sump pumps (duty-standby) inside a 1,200mm sump pit in lower P-2 level of U/G parking, will be collected and discharged into the sanitary control manhole, at a maximum peak flow rate of [0.65 L/sec].

The groundwater sump pumps will be sized at [0.65 L/sec] and are expected to run approximately [4.7 hours per day].

This peak flow rate will be used for assessing capacity for the peak discharge flow into the City's sanitary sewer system.

Once the proposed groundwater peak flow rate of [0.65 L/sec] is approved by Engineering Construction Services (ECS), City of Toronto at the zoning stage, the property owner will not be allowed to amend this flow rate in the future. Should there be any amendment to the peak flow rate of [0.65 L/sec] total in future, the property owner shall re-submit either the updated pump schedule or a revised letter to ECS. In addition, the sewer capacity will need to be re-assessed.

Sincerely,

Novatrend Engineering Group Ltd.

EXP Services Inc.

Project Number: ALL-00256815-B0 Date: October 2023

End Document

