

/amperecloud

October 2024

From *development to O&M* structuring efficient PV projects

Your speakers today

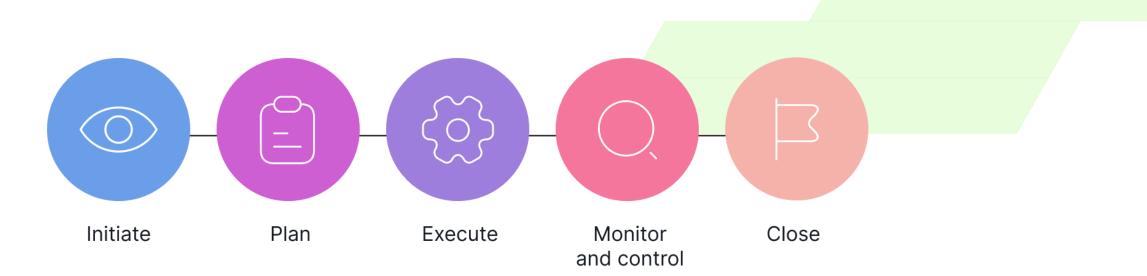
Frederik Merz CEO & Co-Founder of Amperecloud

Daniel Oliveira Technical Advisor at RatedPower

doliveira@ratedpower.com

frederik.merz@ampere.cloud

01. PV development02. Software showcase03. O&M04. Q&A session



Smart energy

flow

Project Lifecycle – When?

Development Timeline of a Solar Project

¹Power Market Analysis, Site Prospection, Financial Feasibility ²Financial Analysis, Engineering Feasibility

Challenges in the Development of PV projects

Complex Regulatory Landscape

Navigating permits, grid access, and environmental assessments

Variability in regulations across regions

The need for extensive documentation and compliance

Impact on project timelines and budgets

Manual Processes

Time-consuming design cycles and documentation

Lengthy design cycles that can take weeks

Increased likelihood of human error

Engineering teams spending valuable time on repetitive tasks

Prospecting challenges Data Management

Difficulty in finding optimal sites for solar projects

The importance of accurate site assessments

Limited access to reliable data and analytics

Identifying optimal configurations can be cumbersome

Inefficient handling of project data, leading to errors and delays Lack of integrated data

Challenges in tracking project progress and

KPIs

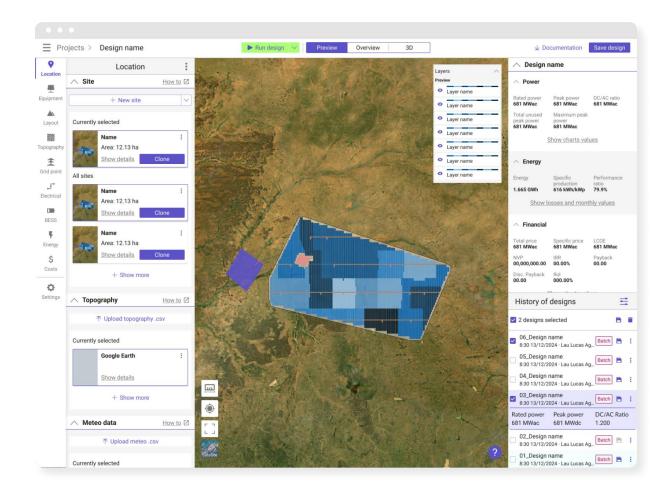
management systems

Difficulty in making datadriven decisions

+ Project delays and increased costs

- + Inefficient use of resources
- + Missed opportunities for optimizing project performance ...

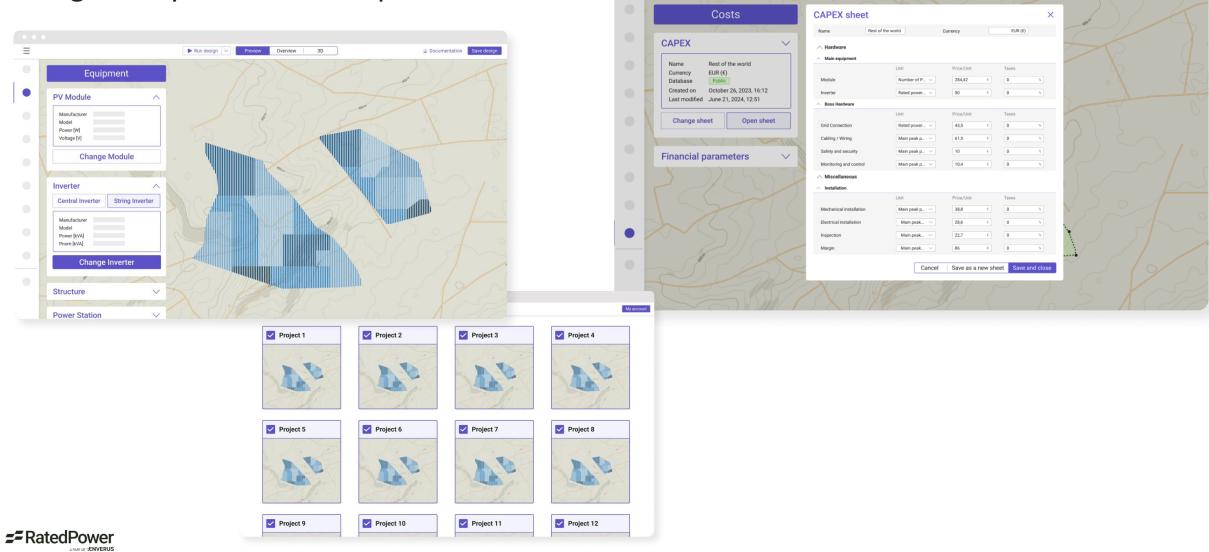
Feasibility Studies


A solar power **feasibility analysis** determines if the renewable energy project gets the green light by identifying roadblocks in the beginning of the planning phase spanning all project stages:

- → Site Selection
- ightarrow Solar Resource Assessment
- \rightarrow System Sizing
- → Technology Selection
- ightarrow Solar Plant Layout And Design
- → Electrical Design
- \rightarrow Interconnection And Grid Integration
- \rightarrow Civil And Structural Design
- → Environmental Impact Assessment
- → Project Economics

z RatedPower

A PART OF -ENVERUS


- \rightarrow Construction And Commissioning
- → Operation And Maintenance
- \rightarrow Monitoring And Performance Analysis

The goal is to limit project risk and address issues early on. When identified, many critical design constraints can be overcome effectively with planning, avoiding going over budget or getting stalled.

How??

RatedPower, the smartest way to design utility-scale solar PV plants

 \equiv

▶ Run design | ∨

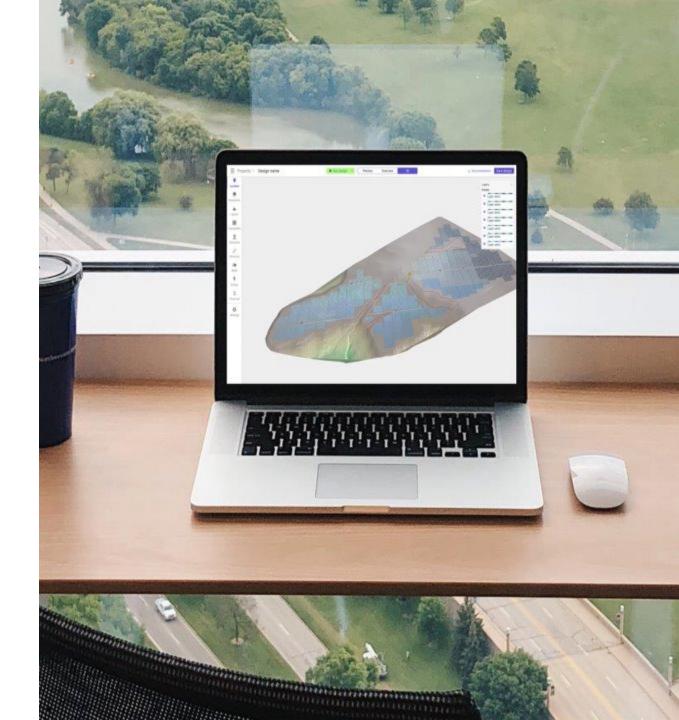
Overview

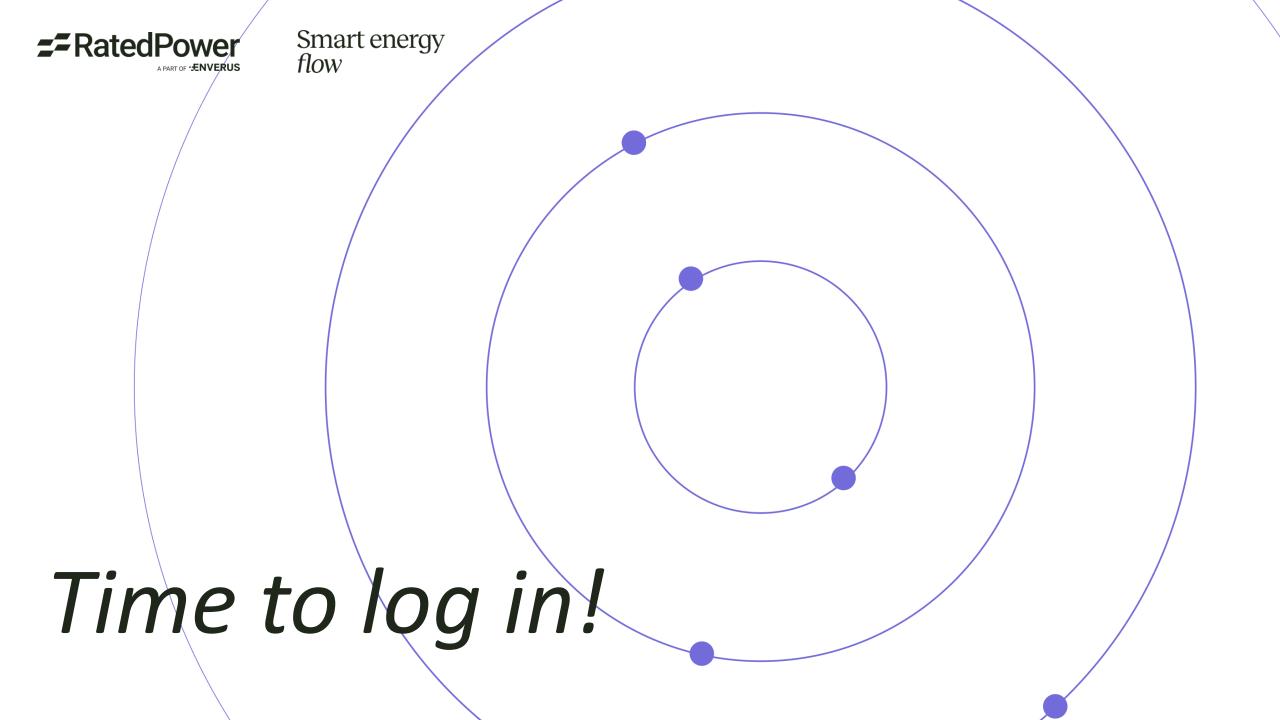
ЗD

October 2024

02. Software showcase

RatedPower case study: Spain


Site location: Almería, Spain PV module: Bifacial 610 W Central inverter: 2310 kVA Structure: SAT


Objective:

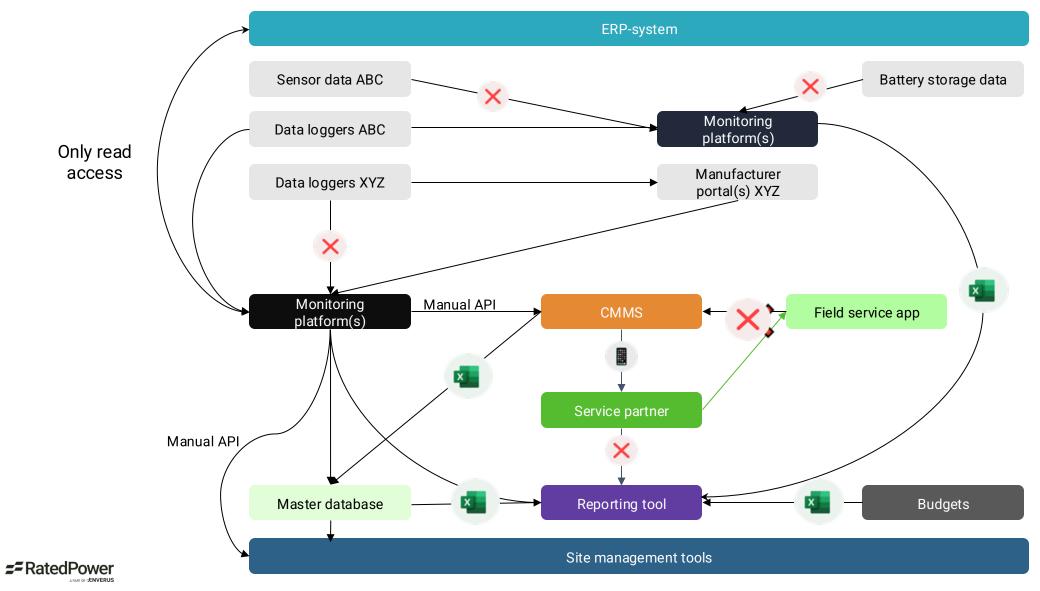
- Find the best DC/AC ratio to minimize LCOE
- Compare the results and decide on final design

Tools:

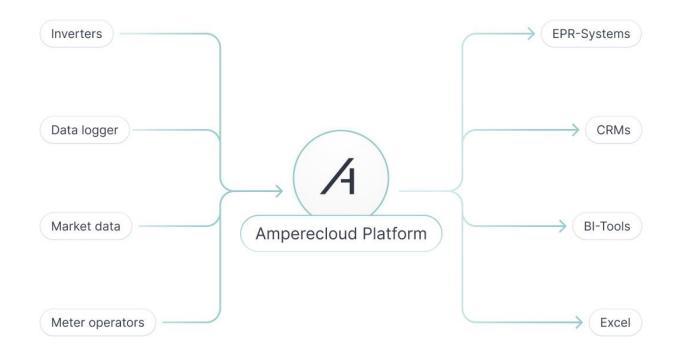
- Batch design
- Comparison tool

October 2024

03. O&M


Development Timeline of a Solar Project

¹Power Market Analysis, Site Prospection, Financial Feasibility ²Financial Analysis, Engineering Feasibility



Map your data flows

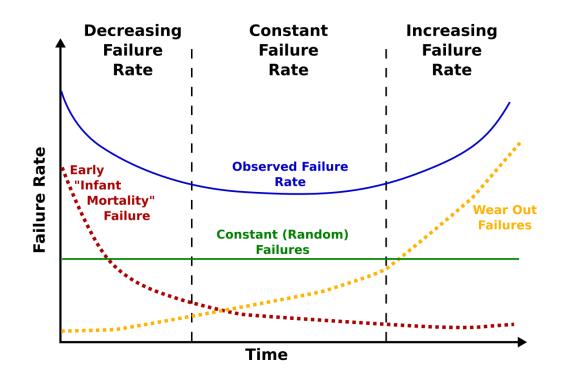
0&M

Map your data flows and streamline it with a central data warehouse

Map & automate your reporting structure

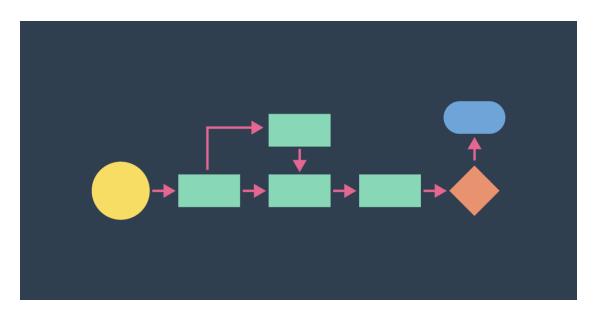
- → Create a list of stakeholders (e.g. investors, grid operators, clients) and their needs
- → Setup KPIs and events you want to report about in your monitoring system
- $\rightarrow\,$ Best case: Build real-time dashboards for stakeholders they can view themselves
- $\rightarrow\,$ Big plants = many stakeholders + lot of data $\rightarrow\,$ Automate your reporting

Amperecloud <		© Englis	sh ~	(i
Monitoring	REPORTS SCHEDULED			
Master Display		Report Templates		
Dashboards		Name V		
D: Status		Yield Report (Monthly)		
Alerts		Lists the yields of a facility in a month and displays a short service report		
Maintenance		Yearly Load Profile		
1) Tickets		Excel-Report that exports the quarterhourly power of a facility for an entire year		
Services		Yearly Load Profile Excel-Report that exports the guarterhourly power of a facility for an entire year		
Logbook		Proof of Remote Controllability		
fanagement		This proof is used to automatically proof the remote controllability of a facility when using ampere.clouds energy trading		
j Digital Twin		Monthly Yield Report		
Master Data		Lists the performance of an installation in one month and shows a short service report		
all Reports		Maintenance Report (two columns) Maintenance Report in a different layout.		
Data				
Data Studio		Maintenance Report This is a Maintenance Report after an on site service		
1 Data Export				
Configuration				
4 Power Management				
Amperecloud Log				
FTP Dataloggers				
emote Control				
Remote Control				
,				


Implement an intelligent alarm structure

- → Bigger plants = more components = exponentially more alarms
- $\rightarrow\,$ Setup hierarchies in your alarm system to prevent alarm fatigue
- $\rightarrow\,$ Challenge your alarm structure in the first 12 months on a constant basis

perecloud								S English	5		PH
Master Display	Туре	v Unacknowledged v	Assignees -						< All	-	>
Monitoring Dashboards	Severity	Name	Facility	From	То	Yield Loss	Assignees	Action	1		
Status	WARNING	Facility: Power < 0,6% (Pac, 10:00-14:59)	Köthen BF_4	7/21/2024, 1:20:00 PM	7/21/2024, 1:40:00 PM	0 kWh		\$ O .	< at	+1 Alarms	
A Hens tavitenance D Tickets B Services D Logbook	ERROR	4e Anlege: Leistung < 5% (Bei Einstrahlung	Köthen BF_4	7/29/2024, 7:10:00 AM		0 kWh	6 6	\$0.	< at	+1 Alarms	
	WARNING	Facility: Power < 0,6% (Pac, 10:00-14:59)	Köthen BF_3	7/21/2024, 1:40:00 PM	7/21/2024, 2:00:00 PM	0 kWh	00	\$ O .	< at	+1 Alarms	
	ERROR	4e Anlage: Leistung < 5% (Bei Einstrahlung	Köthen BF_3	7/21/2024, 12:50:00 PM		0 kWh	6 6	\$0.	< at	+3 Alarms	
ment		4e Anlage: Leistung < 5% (Bei Einstrahlung	Köthen BF_2	7/18/2024, 8:30:00 PM		0 kWh	0 0	\$0.	< at	+3 Alarms	
ital Twin ster Data	ERROR	4e Anlage: Leistung < 5% (Bei Einstrahlung	Köthen BF_6.2	7/24/2024, 8:50:00 AM	7/28/2024, 11:00:00 AM	0 kWh	0 0	\$ O .	< at	+2 Alarms	
ster Data	CRITICAL	4e Anlage: Leistung < 5% (Bei Einstrahlung	Köthen BF_10	7/21/2024, 12:50:00 PM	7/26/2024, 12:40:00 AM	0 kWh	0 0	\$0.	< at	+4 Alarms	
	CRITICAL	Facility: Power < 5% (Irradiation > 50W)	Barth	7/16/2024, 10:40:00 PM	7/22/2024, 10:55:00 AM	0 kWh	0 0	\$ O .	< at	+3 Alarms	
te Studio te Export		No data acquired (60 min, all devices)	Barth	7/7/2024, 10:00:02 AM		0 kWh	0 0	\$ O -	< at	+6 Alarms	
alysis	WARNING	AA Einstrahlungsdaten unplausibel (Park)	Barth	7/16/2024, 2:35:00 PM	7/16/2024, 3:40:00 PM	O kWh	0 0	\$ O .	< at	+2 Alarms	
ation wer Management		AA Abweichung zw. den spez. Wirkleistung	Nedergörsdorf	7/16/2024, 11:30:00 AM	7/28/2024, 8:30:00 PM	O kWh	0 0	\$ O -	< at	+34 Alarms	
perecloud Log		Inverter: deviation greater than 99% for sit	Luckau	7/16/2024, 11:00:00 AM	7/22/2024, 12:15:00 PM	0 kWh	0 0	\$ O .	e at	+10 Alarms	
note Cantrol Remote Control		AA Zeit seit dem letzten Kontakt (Park)	Luckau	7/17/2024, 8:05:03 AM	7/17/2024, 4:30:03 PM	0 kWh	0 0	\$0.	e at	+1 Alarms	
		AA Fehlende Einstrahlungsdaten (Park)	Luckau	7/24/2024, 10:00:00 PM	7/25/2024, 12:15:00 AM	0 kWh	0 0	\$ O .	e lat	+1 Alarms	
		AA Zeit seit dem letzten Kontakt (Trafo)	Luckau	7/17/2024, 6:15:03 PM	7/24/2024, 5:50:02 PM	© 0 kWh	0 0	\$ O .	< at	+19 Alarms	
		AA Zeit seit dem letzten Kontakt (WR)	Luckau	7/17/2024, 5:55:02 AM	7/24/2024, 4:10:01 PM	0 kWh	0 0	\$0.	< at	+284 Alarms	
ş çantar 3					R	мсн	و ح	• • •	 л1 	I	+10 Alarms
					F	M CH	2'	• • •	×	I	+1 Alarms
					R	МСН	°'	• • •	×	I	+1 Alarms
					R	мсн	0' 1	• • •	 лі 	I	+19 Alarms


Anticipate initial failures

- $\rightarrow\,$ Most hardware failures happen in the first months of operation
- \rightarrow Brief your control rooms about it
- \rightarrow Setup more sensitive alarms
- \rightarrow Plan regular maintenance at smaller intervals
- → Best case: Have a stock of hardware components right next to your plant

Constantly challenge your (monitoring) workflows

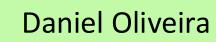
- You can already automate > 90 % of monitoring processes
- \rightarrow Our best practice: review processes once a quarter
- → Implement new, automated workflows for most time consuming tasks in the next quarter
- → "We are doing this in excel" is the best hint that you need to automate a process :)

04. Q&A session

Smart energy

flow

Questions?


We're all ears! Drop yours in the question box!

Frederik Merz

frederik.merz@ampere.cloud

amperecloud.com Linkedin: /amperecloud

doliveira@ratedpower.com

ratedpower.com Instagram: @rated_power Linkedin: /ratedpower

