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01 Defining  
Generative  
Design



GENERATIVE
adjective, able to produce or 

create something.
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Among the various definitions of generative design, one of the 
most common describes it as a design methodology that employs 
computational processes to explore, evaluate and refine design 
solutions within a defined rule-based framework. 
Rather than directly shaping the final outcome, designers establish 
a set of rules and constraints—such as geometrical relationships, 
material properties, or other evaluation criteria, allowing the system 
to iteratively generate (and assess) multiple design variations.
The process begins with an abstracted idea that is translated into 
a sequence of algorithmic operations, forming a source code that 
the computer can interpret (ref. Generative Gestaltung - Lazzeroni, 
Bohnacker, Groß and Laub 2009). This code acts as a set of 
instructions that guide the generation of different design alternatives. 
By integrating evaluation criteria directly into the system and 
utilising a special class of algorithms (i.e. evolutionary algorithms) 
designs can be tested and optimized against predefined objectives, 
leading to solutions that might not have been conceived through 
conventional approaches.
Before examining its role in the AE industry, it is important to 
acknowledge that the generative approach extend beyond this field. 
In art, generative software allows artists to create evolving visuals 
through code. In music, composers like Brian Eno have experimented 
with generative systems to create compositions that shift and 
transform over time. The manufacturing industry also applies 
generative strategies to develop products that are both lightweight 
and structurally efficient.
This broad application highlights the versatility of generative 
principles, demonstrating how these computational methods can 
enhance creativity, optimize processes, and redefine problem-
solving across disciplines.

What is 
Generative Design? 

Figure 1. Generative chair design 
variations matrix
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Key features 

Across all disciplines that use generative processes, there are some 
common characteristics to be found. At the core always lies an an 
algorithm-driven approach, where rule-based models automate the 
generation and refinement of design variations. Iterative exploration 
is another shared feature, where solutions evolve through continuous 
computational cycles, leveraging feedback loops to address 
complex, often multi-objective, design challenges.
Another recurring theme is the negotiation between the designer 
and the machine, where human-defined inputs meet algorithmic 
optimization to generate design variations. In this context, input 
constraints play a crucial role with  each discipline - whether 
architecture, engineering, or art - adhering to specific parameters 
that respond to formal, material, structural, or environmental criteria. 
Finally, these processes embrace output diversity, generating 
multiple solutions rather than a single predefined result, fostering a 
broader exploration of alternative outcomes.
These characteristics are further detailed in the paragraphs below.

GENERATIVE DESIGN PROCESS

Figure 2. Generative design 
process flowchart
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Algorithmic-driven process

Generative design is fundamentally an algorithm-driven process, 
relying on computational models and parametric logic to generate 
and optimize design solutions. Unlike traditional design workflows 
that rely on manual iteration, generative design automates the 
exploration of vast solution spaces through advanced algorithms. 
This enables designers to analyze thousands of potential 
configurations and identify the most effective solutions based on 
predefined performance criteria.

Figure 3. Frank Gehry’s Barcelona 
fish sculpture advanced 3D 
modeling anticipated elements of 
today’s algorithmic design
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Iterative exploration

Generative design is inherently iterative, with solutions evolving 
through continuous refinement cycles. Using optimization 
techniques, the system progressively enhances each iteration, 
discarding suboptimal configurations and converging toward 
solutions that best balance competing objectives. This feedback-
loop approach is particularly valuable in complex applications 
across architecture and engineering, where multiple constraints and 
optimization goals must be addressed simultaneously.

Figure 4. (above) Craig Reynolds’ 
Boids simulates flocks using 
simple interaction rules

Figure 5. (right) A flock of birds in 
coordinated flight
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Input constraints

Input constraints play a crucial role in shaping the generative 
design process, as designers define key parameters such as spatial, 
structural, and manufacturing requirements, among others. These 
constraints provide a structured framework within which the 
algorithm explores viable solutions, ensuring that all generated 
outcomes align with the specified criteria.

Figure 6. Conway’s Game of Life 
evolution is shaped by its initial 
setup
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Designer-Machine negotiation

Generative design operates as an ongoing negotiation between 
the designer and the machine, where human-defined rules and 
inputs interact with algorithmic logic to shape the design process. 
Rather than simply setting fixed constraints, the designer actively 
engages with the system, interpreting, adjusting, and responding to 
generated variations. This exchange allows for a dynamic interplay 
between human intent and computational exploration, requiring 
iterative refinement to guide the algorithm toward meaningful and 
contextually relevant outcomes.

Figure 7. URBAN5 by Nicholas 
Negroponte is a pioneering 
system that reflects users’ own 
design choices
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Figure 8. Evolution of Tuscan 
columns by genetic algorithms by 
John Frazer with Peter Graham

Output diversity

A key feature of generative design is its ability to generate a wide 
array of optimized solutions instead of a single fixed outcome. 
These variations represent different trade-offs across the defined 
parameters and performance criteria, providing designers with a 
broad selection of potential solutions that may not arise through 
conventional design approaches.
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Pre-Digital 
Generative Design 
Before the advent of digital tools, the essence of generative design 
was already alive in the methods of some architects, engineers, and 
designers who engaged in form-finding through physical models. 
This empirical process involved manipulating material to explore 
structural and formal possibilities, often guided by intuition and 
hands-on experimentation. The physical interaction with materials 
allowed designers to intuitively understand and optimize forms 
based on how they behaved under different forces - gravity, tension, 
or compression.
Material and structural optimization was often achieved through 
a blend of craftsmanship and scientific insight. Think of Gaudí’s 
hanging chain models for the Sagrada Família or Frei Otto’s soap 
bubble experiments to discover minimal surfaces. These analog 
techniques were early explorations of optimization principles - 
seeking the most efficient structure with the least material. They 
inherently balanced form and function, much like today’s generative 
algorithms that weigh multiple criteria.  
This empirical and iterative approach was central to these 
explorations. Designers would build, test, observe, and refine, 
learning through each cycle of creation. This hands-on iterations 
mimicked the evolutionary processes now echoed in generative 
design algorithms, where solutions are tested, mutated, and selected 
for fitness. 
These pre-digital practices laid the conceptual groundwork for 
what would later be encoded into software. The shift to digital 
generative design did not erase these traditions but rather encoded 
and expanded them - transforming tactile, iterative exploration into 
a computationally powered expansion of possibilities. The same 
principles of experimentation, optimization, and form-finding endure, 
now accelerated and amplified by the power of computation.

Figure 9. Experiment by Carolyn 
Olivia Butler inspired by Frei 
Otto’s minimal path research
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Frei Otto

Figure 10. A portrait of Frei Otto in 
his studio, 1972

Figure 11. Tanzbrunner Pavillion by 
Frei Otto
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Frei Otto
Frei Paul Otto (1925-2015) was a German architect and structural 
engineer noted for his use of lightweight structures, in particular 
tensile and membrane structures, including the roof of the Olympic 
Stadium in Munich for the 1972 Summer Olympics. 
In Frei Otto perspective, architecture was a process of discovery 
rather than predetermined design, deeply rooted in natural principles, 
structural efficiency, and material economy. He saw design as an 
evolutionary process, where forms emerged through empirical 
experimentation and adaptation rather than preconceived top-down 
outcomes. His work focused on lightweight, adaptable structures, 
drawing inspiration from nature’s efficiency - such as spiderwebs, 
soap films, and biological growth patterns. His approach was deeply 
interdisciplinary, merging engineering, physics, and material science 
to create architectures that were structurally innovative.

Frei Otto can be considered a pioneer of generative design due 
to his exploratory, empirical, and optimization-driven approach to 
architectural form-finding. 
His work was grounded in physical experimentation, using soap films 
and tensile membranes to naturally determine structures that were 
both materially efficient and structurally performative. These analog 
models functioned as early generative systems, where natural forces 
such as tension, gravity, and surface tension “computed” the most 
efficient forms - prefiguring today’s algorithm-driven optimization 
techniques. By embracing an iterative, rule-based process, Otto’s 
research laid the foundation for computational generative design, 
demonstrating how natural principles and mathematical logic could 
inform architecture in a way that balances structural performance, 
resource efficiency, and aesthetic elegance. His influence persists 
in contemporary digital workflows that use parametric modeling 
and evolutionary algorithms to achieve similar goals through 
computational means.
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Antoni Gaudì

Figure 13. Interiors of Sacrada 
Famìlia by Antoni Gaudì, from 
1883

Figure 12. Reproduction of a 
hanging model of the church of 
Colònia Guell
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Antoni Gaudì
Antoni Gaudí (1852-1926) was a Catalan architect known for his 
distinctive approach to modernist architecture, blending organic 
forms, intricate ornamentation, and structural innovation, with 
landmark works such as the Sagrada Família in Barcelona.
Antoni Gaudí envisioned architecture as a synthesis of nature, 
structure and spirituality, where form followed the inherent logic of 
natural systems. He saw buildings as organic entities, shaped by the 
same geometric and structural principles that govern the natural 
world. His designs were deeply influenced by biomimicry, using 
catenary arches, hyperboloids, and ruled surfaces to create both 
ornamental and structural elements. Gaudí also viewed architecture 
as an evolving, experimental process, relying on physical models and 
hands-on craftsmanship rather than rigid, pre-defined blueprints. His 
work was not just about functionality but about creating spaces that 
embodied a deeper spiritual and symbolic meaning, as seen in the 
intricate, nature-inspired forms of the Sagrada Família. 

Antoni Gaudí’s innovative form-finding methods and empirical 
approaches to structural optimization position him as a pioneer 
of generative design. Rather than designing purely from drawings, 
he used physical models and natural principles to develop highly 
efficient and organic architectural forms. 
His most notable form-finding experimentation that embeds 
generative principles was the hanging chain model, where he 
suspended weighted chains to simulate catenary arches and 
structural loads, allowing gravity to determine the most efficient 
form. By inverting these models, he achieved structurally optimized 
designs for projects like the Sagrada Família and Colònia Güell 
Chapel. 
This iterative, evolutionary-like design method prefigured modern 
computational generative design, where algorithms now perform 
similar gravity-based optimizations. Gaudí’s work exemplifies an 
early analog version of generative thinking - using natural forces, 
experimentation, and rule-based form-finding to create structurally 
sound and highly expressive architectures.
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Luigi Moretti

Figure 14. A portrait of Luigi Moretti 

Figure 15. Model of Stadium 
designed by Moretti according to 
visual equality curves, 1960
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Luigi Moretti
Luigi Walter Moretti (1906-1973) was an Italian architect. Active 
especially in Italy from the 1930s, he designed buildings such as the 
Watergate Complex in Washington DC, The Academy of Fencing and 
Il Girasole house, both in Rome. He was the founder of the Institute 
for Operations Research and Applied Mathematics Urbanism, where 
he developed his research on the history of architecture, and on the 
application of algorithmic methods to architectural design. 
Although not directly linked to generative design, Luigi Moretti’s 
pioneering work in parametric architecture played a crucial role in 
laying the foundations for computational design thinking, influencing 
the development of methodologies that explore form through data-
driven parameters.

In 1971, Luigi Moretti articulated his vision of parametric architecture 
in Moebius, emphasizing the need to move beyond empirical design 
through the integration of mathematics, computational techniques, 
and operational research. He outlined eight principles that defined 
this approach, focusing on objective analysis, the quantification 
of design parameters, and the precise relationship between 
form, function, and context—foundational ideas that anticipated 
contemporary computational design methodologies. 
Moretti’s vision of parametric architecture - as both an art and 
a science - can be fully understood through the analysis of 
his projects. Stadium N embodies this approach, with its form 
derived from 19 parameters related to visual perception, structural 
efficiency, and cost. Defined through typology, parameters, and 
analytical descriptions, its geometry is optimized for ideal sightlines, 
showcasing how data-driven processes shape architectural 
outcomes.
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“You never change things by fighting the existing reality. 
To change something, build a new model that makes the 
existing model obsolete.”

Richard Buckminster Fuller
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03 Roots of 
Generative 
Design



Figure 16. Evolution chart of 
design by Raymond Loewy, in 
Industrial Design, 1930
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The roots of generative design can be traced back to the 
convergence of architectural experimentation with the advent of 
digital technologies. While the concept of using rule-based systems 
to generate form has historical precedents - visible in parametric 
explorations like those of Luigi Moretti - the introduction of 
computational tools profoundly transformed the scope and potential 
of these methods. Digital technologies enabled architects to shift 
from static representations of form to dynamic processes capable of 
generating endless design variations through algorithmic logic.
On one hand, the emergence of computation, closely tied to the 
pioneering work of Alan Turing, laid the foundation for algorithmic 
thinking. Turing’s contributions to computer science introduced 
the idea of machines capable of processing complex operations 
through logical sequences, an idea that would later become central 
to generative design. 
On the other hand, generative design has been profoundly influenced 
by Darwin’s theory of evolution, which introduced the concept 
of adaptation through variation, mutation and selection. These 
principles have been translated into computational methodologies, 
giving rise to algorithms that mimic natural processes to generate 
and optimize design solutions. At the intersection of these ideas, 
Celestino Soddu emerged as a pioneer in the late 1980s. Through 
developing “Argenia” , one of the earliest generative design 
software programs, he demonstrated how algorithmic processes 
could simulate natural morphogenesis, generating endless design 
variations while maintaining coherence with an initial design intent.

Figure 17. Venice reimagined 
by Argenia, the first generative 
design software, by Celestino 
Soddu
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Alan Turing and 
Modern Computing
Alan Turing (1912–1954), a British mathematician, logician, and 
cryptographer, is widely regarded as one of the founding figures of 
modern computing. 
In his groundbreaking 1936 paper, On Computable Numbers, 
he introduced the concept of the Turing Machine - a theoretical 
model that formalized the principles of algorithms and mechanical 
computation. This abstract device demonstrated how any problem 
solvable by an algorithm could be executed by a machine, laying 
the theoretical groundwork for digital computers. Turing’s ideas 
were later realized in hardware through the development of stored-
program architectures, most notably by John von Neumann, which 
enabled computers to process both data and instructions flexibly. 
Beyond his pivotal role in codebreaking during World War II and his 
contributions to artificial intelligence - most notably through the 
proposal of the Turing Test - Turing’s work fundamentally shaped how 
we conceptualize computation. His theories not only enabled the 
development of modern computers but also laid the foundations for 
algorithmic thinking, which is central to generative methodologies. 
The notion of rule-based systems, iterative processes, and 
computational logic in generative design can be directly traced back 
to Turing’s exploration of how machines can process and generate 
complex outputs through predefined instructions. Without his 
contributions, the evolution of generative design, with its reliance 
on algorithmic frameworks and automated systems, would not have 
been possible.

Figure 18. Alan Turing and the 
code-breaking machine used 
during WWII at Bletchey Park
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The Theory of Evolution 

Darwin’s theory of evolution, introduced in On the Origin of Species 
(1859), profoundly shaped not only biological sciences but also 
influenced various disciplines, including the development of 
generative design principles. 
At its core, the theory suggests that within any species, individuals 
exhibit variations - differences that, while often subtle, can provide 
distinct advantages in survival and reproduction. Over time, traits 
that enhance an organism’s ability to thrive in its environment 
are passed on to future generations, while less advantageous 
characteristics gradually disappear. This continuous process of 
variation, selection, and adaptation leads to the dynamic evolution of 
species, shaping the incredible diversity of life observed in nature.
What makes Darwin’s theory revolutionary is its emphasis on 
change as a constant force, driven not by predetermined outcomes 
but by interactions between organisms and their environments. It 
highlights the importance of systems that are flexible, adaptive, and 
capable of responding to shifting conditions through incremental 
transformations. This idea of complexity emerging from simple rules 
and iterative processes has resonated far beyond biology, influencing 
fields such as systems theory, cybernetics, and ultimately, design 
methodologies.
In generative design, Darwin’s principles provide a framework 
for how solutions evolve. Focusing on variation, adaptation, 
and refinement, designers use rule-based systems to explore 
possibilities, shaping designs through iterative processes that 
respond to specific constraints—much like species adapting to their 
environments.

Figure 19. Darwin’s finches and 
the theory of evolution of the 
species
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Evolutionary Computation 

Evolutionary computation emerged at the intersection of computer 
science and evolutionary biology, combining the algorithmic 
foundations laid by Alan Turing with the adaptive principles of 
Darwin’s theory of natural selection. 
While Turing’s theoretical work in the 1950s hinted at the potential 
for machines to learn through evolutionary principles, the formal 
development of evolutionary computation began with researchers 
like John Holland, who introduced genetic algorithms in his 1975 book 
Adaptation in Natural and Artificial Systems. Holland’s work provided 
a framework for simulating natural evolutionary processes within 
computational environments, allowing algorithms to evolve solutions 
to complex problems. Around the same time, Lawrence Fogel 
pioneered evolutionary programming, focusing on evolving finite-
state machines to predict system behavior, particularly useful in 
areas like control systems and pattern recognition. Ingo Rechenberg 
and Hans-Paul Schwefel further advanced the field through the 
development of evolution strategies, applying them to engineering 
problems such as aerodynamic design optimization.
These contributions collectively shaped evolutionary computation 
into a vast research field, enabling optimization techniques used 
in various industries today, including engineering, finance, and 
architecture, to optimize designs, automate decision-making, and 
solve problems that are difficult for traditional algorithms.
In generative design, evolutionary models adds an extra layer that 
helps optimize design solutions by mimicking natural evolution. 
Instead of following fixed rules, designs evolve over time through 
variation and selection. Multiple options are generated and tested 
against specific goals allowing continuous improvement through 
feedback. Rather than aiming for a single perfect solution from 
the start, evolutionary computation helps uncover unexpected, 
innovative outcomes by allowing designs to adapt and evolve in 
response to specific challenges and goals.

Figure 20. Geometrical 
aggregations shaped by 
parameters variation
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EVOLUTION OF DIGITAL DESIGN TECHNOLOGY

Figure 21. Evolution of digital 
design technology over time
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Brain, Hand, Machine

The relationship between the designer’s brain, hand and the machine 
has evolved alongside technological advancements, driven by the 
tools that mediate the design process. 
Until the 1980s, design was an entirely manual process - drawing by 
hand directly shaped the final outcome, with no digital mediation.
The introduction of Computer-Aided Design (CAD) in the 1980s 
marked a shift, building on the pioneering work of Ivan Sutherland 
and his development of Sketchpad in the 1960s. CAD tools began to 
mediate the translation of ideas into their final representations. While 
still largely dependent on manual input, these tools empowered 
designers to craft and store large drawings in a digital environment.
By the early 2000s, the spread of Algorithm-Aided Design (AAD) 
transformed this relationship further, moving from direct geometric 
manipulation to rule-based procedural processes. Designers could 
now define sets of parameters and constraints, allowing parametric 
models to generate design variations. 
In recent years, generative design has gained momentum in the AEC 
industry, fueled by the integration of algorithmic tools into most used 
modelling software. 
The increased accessibility of these tools has enabled designers to 
explore iterative workflows and incorporate evolutionary algorithms 
such as genetic algorithms (GA) into their design process to develop 
performance-driven solutions.

Figure 22. Brain–hand–machine 
interaction diagram. Adapted 
from Arturo Tedeschi’s AAD 
Algorithm-Aided Design book
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“Digitalization is as inevitable as the Renaissance 
was after the tools of perspective, as modernism 
was after movies and trains, as postmodernism 
was after cars and television.”

Lars Spuybroek, 
‘The Architecture of Continuity’
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Algorithmic Modelling

Algorithmic-Aided Design (AAD) represents a shift in the way 
designers conceptualize and generate architectural forms. Unlike 
traditional CAD, where geometry is directly drawn and manipulated, 
AAD relies on algorithms - structured sets of instructions that 
automate design processes. At its core, an algorithm can be defined 
as a structured sequence of operations designed to solve a problem 
or execute a specific task. 
In architectural design, this translates into rule-based modelling, 
where defined parameters and their interdependencies guide the 
generation and control of geometry. Arturo Tedeschi, in his book 
Algorithms-Aided Design, emphasizes this approach as a mean 
of encoding design logic rather than merely shaping a fixed form, 
fostering an interactive and adaptable workflow.
Rather than manually crafting each geometric element, designers 
define constraints, mathematical functions, and dependencies, 
allowing the system to produce geometric variations parametrically. 
Beyond improving efficiency, algorithmic modelling has given 
architects new possibilities to expand their architectural language, 
allowing them to move beyond Cartesian spatial constraints. By 
embedding rules that govern geometric relationships, this approach 
has enabled the exploration of fluid, complex forms that were once 
challenging to conceive or fabricate. 
Early pioneers, such as Frank Gehry, leveraged digital tools to push 
the boundaries of 3D modeling, setting the stage for contemporary 
algorithmic design.
The algorithmic approach has laid the foundation for generative 
design in the AEC industry by enabling rapid exploration of 
design alternatives within a form-finding process. By structuring 
design logic through parametric rules, architects can generate 
multiple iterations while maintaining control over constraints and 
relationships.

Figure 23. MI.C parametric 
facade design by Park
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The gene pool of the algorithms consists of 0 and 1 strings. 
The adaptive value of each string is assessed, and the best 
strings are paired and generate offspring through crossing 
over.

Chromosomal cross-over: mechanism of recombination of 
genetic material.

Evolutionary Design

Evolutionary design represent a subset of generative 
design inspired by biological evolution, where 
solutions emerge through iterative cycles of 
generation, evaluation, evolution and selection. Unlike 
other generative design workflows that generate 
variations based on predefined rules, an evolutionary 
approach introduces a dynamic optimization 
process, enabling solutions to evolve towards 
optimal performance. Peter J. Bentley and David W. 
Corne, in An Introduction to Creative Evolutionary 
Systems, outline five fundamental components 
that define an evolutionary system:
 Evolutionary Algorithm: The      
 computational engine responsible for    
 generating solutions through specific rules   
 such as genetic algorithms (GAs).
 Genotype Representation: The search   
 space, consisting of all possible combinations  
 of genes (design parameters), which defines   
 the pool from which populations of solutions   
 are generated.
 Embryogeny: The mapping process that   
 translates a genotype into a phenotype,    
 effectively constructing the design output from  
 encoded parameters.
 Phenotype Representation: The resulting   
 solution, expressed in a recognizable form,   
 such as a geometric configuration.
 Fitness Function: A quantitative evaluation   
 metric that assigns a performance score to   
 each generated solution based on predefined  
 design objectives.

The evolutionary process begins with generating 
an initial population of solutions. Each solution is 
represented by a genome, which encodes genes 
corresponding to specific design parameters. 
These genomes define multiple possible design 
alternatives, expressed as phenotypes - the 
outcomes of the generative process.
Once the initial population is generated, each 
phenotype is evaluated using the fitness function, 
which measures how well a given solution meets 
the predefined performance criteria. The best-
performing designs are selected for reproduction, 
where genetic operators such as mutation 
(random alterations to introduce diversity) and 
crossover (combining elements from different 
solutions) refine subsequent generations. This 
cycle continues iteratively, allowing the design 
population to evolve towards increasingly 
optimized solutions. 
By integrating evolutionary systems  into 
generative pipelines, designers can enhance 
their ability to explore complex design spaces. 
Advancing computational power and accessible 
parametric software make evolutionary design 
increasingly accessible, providing a robust 
framework for solving multi-objective challenges in 
architecture and engineering.

Figure 24. Meiotic crossing-over 
under the microscope
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Figure 25. Morphogenetic Design 
Experiment 01 
by Achim Menges
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GENE = 
  VARIABLE

FITNESS  = 
  EVALUATION METRIC 

PHENOTYPE = 
  RESULTING SOLUTION

GENOME = 
  SET OF VARIABLES

Set of all genes in an 
organism

Elementary unit of genetic 
information

Value that describes the ability of a 
genome to meet a given objective

Set of characteristics of an organism, 
resulting from its genome and the 
influence of environmental factors
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Figure 26. An example of fitness 
function with a single objective 
set
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EXPLORE → →DESIGN
PROBLEM

EVALUATE

GENERATE

EVOLVE

Algorithmic modelling
Variables & Constraints

Evolutionary computation

Results visualization
Comparison of alternatives 
Decision-making strategies

Quantification of objectives
Response calculation

EVOLUTIONARY DESIGN PROCESS

Generate

The process begins with generating an initial population of design 
solutions based on predefined parameters. These solutions, encoded 
as digital genomes, represent a diverse set of possibilities within 
a defined search space. The generation phase establishes the 
foundation for exploration by introducing variation in the generate 
configurations.

Figure 27. Evolutionary design 
process flowchart
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EVOLUTIONARY DESIGN PROCESS

Evaluate

Each generated solution undergoes evaluation using a fitness 
function - a computational metric that assesses performance against 
specific criteria. This step ensures that each iteration is quantitatively 
measured, allowing the system to identify solutions that best align 
with the design objectives.

Figure 27. Evolutionary design 
process flowchart
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EVOLUTIONARY DESIGN PROCESS

Evolve

Through selection, crossover, and mutation, the best-performing 
solutions are combined and modified to enhance their effectiveness. 
This iterative refinement introduces genetic diversity while 
progressively optimizing results. Over successive generations, the 
algorithm steers solutions toward an optimal balance between the 
various evaluation criteria.

Figure 27. Evolutionary design 
process flowchart
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EVOLVE

EVOLUTIONARY DESIGN PROCESS

Explore

Evolutionary design does not converge on a single solution but 
continuously generates new possibilities. This phase emphasizes the 
creative potential of this kind of generative workflows, encouraging 
designers to investigate multiple alternatives and uncover 
unexpected yet viable solutions that might not have emerged 
through conventional design approaches.

Figure 27. Evolutionary design 
process flowchart
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diagram, based on Darwin’s 
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“From the time of ancient Vitruvian geometric ideals 
to modern Corbusian regulating lines and Miesian 
modular grids, architecture has always been bound 
to (if not by) a conscious use of numbers.”

Brett Steele,
‘Weapons of the Gods’ in The New Mathematics 
of Architecture by Jane Burry and Mark Burry
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Generative design introduces a new dimension into architectural 
thinking, allowing designers to move beyond traditional workflows 
and embed computational methods that enhance creativity, 
optimize performance, and dynamically respond to complex design 
challenges. Instead of one single methodology, generative design 
offers a flexible framework that redefines how form, data, and 
algorithmic processes relate. 
This chapter examines how generative design is applied within 
contemporary practice and provides a framework through which to 
understand the varied ways in which these strategies take shape in 
design intent. 
We have chosen to highlight three key approaches that illustrate how 
generative design integrates into the design process and contributes 
to redefining design methodologies: 

 Form-driven design utilizes computational tools to generate  
 and manipulate complex geometries, expanding possibilities for  
 spatial articulation and aesthetic expression. 
 Performance-driven design focuses on optimizing    
 measurable criteria such as energy efficiency, structural integrity  
 and environmental performance. 
 Nature-driven design, inspired by biomimicry, translates   
 biological principles into architectural strategies that foster   
 adaptive and resilient systems. Whereas each approach    
 prioritizes different aspects of the design process, they do not  
 exclude one another. 
Understanding their differences allows architects to strategically 
apply computational and generative design tools and balance 
creative exploration with functional optimization to enhance and 
support the design process.

Figure 29. Slime mould mimics 
Tokyo’s railway system
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Figure 30. Roger Johnston’s 
fractal art
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Form-driven Design
Form-driven design prioritizes 
geometry, aesthetics, and 
spatial articulation, leveraging 
generative design to generate 
and manipulate formal solutions 
within a parametric framework that 
facilitates iterative exploration and 
refinement of complex forms.

Performance-driven Design

Nature-driven Design

A form-driven design approach focuses on geometry, aesthetics, and 
spatial articulation, leveraging generative design and computational 
strategies allows to generate and manipulate formal solutions within 
a parametric framework.
Unlike traditional approaches, where form emerges from intuition 
or typological references, generative design is based on rule-driven 
systems that give more priority to the definition of geometric 
parameters and computational rules over direct form-making. 
Just as architects have traditionally defined composition rules 
through proportions and modular relationships to structure spatial 
design, generative design follows a similar logic but shifts the 
emphasis toward the creation of a framework and process that drive 
form generation rather than directly shaping the final outcome. This 
allows for an iterative exploration of possibilities, where compositions 
emerge dynamically within a structured yet flexible design system.
Generative algorithms, including Voronoi diagrams, Metaball fields, 
Cellular Automata, and Shape Grammars, exemplify this approach by 
enabling rule-based form generation and spatial organization.
Implementing Voronoi diagram algorithms, which partition space into 
regions based on proximity to specific points, can generate intricate, 
cellular patterns in façades and spatial layouts. 
Networked field interactions in metaball algorithms, instead of rigid 
geometries, create dynamic, organic surfaces that adapt fluidly to 
spatial constraints.
In this approach, formal expression plays a central role, enabling 
designers to push the boundaries of architectural languages while 
maintaining coherence in geometric logic.
Despite its primary focus on aesthetics and spatial complexity, 
this approach does not operate in isolation; it intersects with 
performance and contextual considerations, ensuring that formal 
generation remains purposeful and adaptable.
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An architectural expression of natural patterns, inspired by the intricate, 
interwoven structure of a bird’s nest.

A design inspired by soap bubble geometry, reflecting self-organizing 
systems for structural efficiency.

Features a facade inspired by cellular structures, combining aesthetic 
complexity with functional performance.

Form-driven Design

Figure 31. Olympic Stadium 
Beijing by Herzog & de Meuron

Figure 32. Water Cube by PWT 
Architects

Figure 33. Torre de 
Especialidades by Elegant 
Embellishments
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Form-driven Design

Performance-driven design 
prioritizes measurable criteria, 
using generative processes to 
optimize structural, environmental, 
and spatial performance while 
balancing efficiency with design 
intent. 

Performance-driven Design

Nature-driven Design

A performance-driven design approach shifts the emphasis from 
purely aesthetic or spatial exploration to optimizing measurable 
criteria such as energy efficiency, structural integrity, and 
environmental performance. Generative design becomes a form-
finding tool, leveraging computational techniques for evaluating and 
improving solutions based on quantifiable data. Rather than defining 
a fixed form from the outset, this approach sets performance 
objectives and allows algorithms to explore and evolve optimal 
design configurations. 
 
Parametric models play a critical role by enabling dynamic 
simulations, real-time feedback, and iterative testing of multiple 
variations. Computational tools like structural optimization 
algorithms and daylighting simulations, help architects make 
data-driven decisions from the early design stages. Evolutionary 
algorithms further develop this process by simulating natural 
selection, iterating through generations of design variations to 
identify solutions that best balance competing performance criteria. 
 
A key benefit of this approach is its ability to resolve complex, multi-
variable challenges—such as maximizing natural lighting while 
minimizing solar heat gain or optimizing structural weight while 
ensuring stability. By embedding performance-based evaluation 
into generative workflows, architects can develop solutions that are 
not only visually appealing but also highly efficient, functional, and 
responsive to changing environmental conditions.
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Performance-driven Design

The diagrid canopy of the British Museum’s Great Court by Foster and Partners was designed using 
optimization techniques to refine the roof’s geometry and structural efficiency.

The tensile membrane structures for the Munich Olympic Stadium by Frei Otto reflects an early performative 
design approach, rooted in physical form-finding experiments that predate the digital era yet align with 
contemporary generative principles.

Figure 34. Munich Olympic 
stadium canopy by Frei Otto

Figure 35. British Museum’s 
Great Court by Foster and 
Partners
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Nature-driven design, often referred to as biomimicry in architecture, 
draws inspiration from biological processes, patterns, and 
ecosystems to develop innovative design solutions. 
Rather than imposing man-made forms on the built environment, 
this approach looks into how nature optimizes structures, materials, 
and systems to develop functional and sustainable designs. 
Generative design plays a crucial role in this process, enabling 
architects to translate biological principles into computational 
models that can emulate natural growth, self-organization, and 
material intelligence. 
 
Parametric tools and simulation software allow designers to analyze 
and replicate biological strategies such as structural efficiency 
found in bone formations, aerodynamic shaping inspired by animal 
morphologies, and material adaptability seen in plant behavior. 
Through iterative computation, architects can generate solutions 
that evolve in response to environmental forces, optimizing 
performance while maintaining organic aesthetics. 
This approach has inspired innovative architectural solutions that 
echo nature’s intelligence—façades that adjust like a tree’s canopy to 
provide shade, structures that mimic the strength and efficiency of 
cellular formations, and systems that dynamically respond to shifting 
environmental conditions. By embedding these principles into 
generative workflows, nature-driven design fosters an architecture 
that is not only efficient but also deeply intertwined with natural 
processes. Nature-driven design applies 

biomimetic principles, using 
generative processes to develop 
innovative architectural solutions 
inspired by natural systems.

Form-driven Design

Performance-driven Design

Nature-driven Design
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A biomimetic design inspired by soap bubbles and geodesic patterns, 
adapting to an irregular quarry site while optimizing solar gain and 
structural efficiency.

A biomimetic structure inspired by beetle wing covers, showcasing 
fiber-composite design, computational fabrication, and resource-
efficient architecture.

The building’s distinctive lattice-like exoskeleton mimics that of 
the Venus’s flower basket sea sponge and helps power the natural 
ventilation system, reducing the need for air conditioning.

Nature-driven Design

Figure 36. The Eden project by 
Grimshaw

Figure 37. 30 St Mary Axe by 
Foster and Partners

Figure 38. ICD-ITKE Research 
Pavilion 2013-14
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“Process is more important than outcome. When the 
outcome drives the process we will only ever go to where 
we’ve already been. If process drives outcome we may not 
know where we’re going, but we will know we want to be 
there.” 

Bruce Mau
‘Incomplete manifesto of growth’, 1998 
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By concentrating residential volume in five towers, it was 
possible to elevate the accents’ heights beyond what was 
specified in the brief, thus enhancing the quality of views in a 
context dominated by high-rise buildings.

The planimetric configuration of the towers was conceived 
in order to harmonise floor plan efficiency whilst maximising 
views of Bratislava’s landmarks like the historical city, castle 
and river Danube. This results in apartments with unparalleled 
panoramic views, enhancing the value of the asset.

The arrangement of towers was meticulously studied using 
computational design, optimizing views and winter sunlight. 
The script, starting from specific input data, evaluated 
numerous options for tower height combinations and 
efficiency in terms of the quality of views and solar exposure.
By setting a quality target, it was possible to select the most 
efficient configuration aligned with the overall design vision.

The proposed towers become prominent landmarks, visible 
from both the east entrance roads into Bratislava and the 
city’s main viewpoints, contributing to the city’s identity and 
establishing a distinctive visual connection with its landmarks.

Conventionally, the threshold for a high 
quality view was established to guarantee 
a minimum of 20% of quality panorama. 
A quality panorama was considered as a 
view overlooking the Danube, Bratislava’s 
Castle, and the Historic Town.

Massing options fullfilling quality targets

quality 
target

quality 
target

Design Technology at Park

In the AECO industry (Architecture, Engineering, 
Construction, and Operation), the term “Design 
Technology” refers to the research, development, 
and implementation of emerging digital 
technologies aimed at conceiving, designing, 
constructing, and managing a project.
The Design Technology department at Park 
is composed of a team of in-house BIM and 
Computational Design specialists that investigate 
and implement innovative digital design tools 
across the office in a collaborative manner. 

Experimentation and collaboration are the two 
core principles driving the Design Technology 
department, whose main objective is to support 
project teams in achieving efficient, informed, 
and collaborative design outcomes. Leveraging 
its expertise, the group works alongside other 
departments to develop tailored digital tools and 
to implement innovative methodologies that 
enhance the design process across all project 
phases, from urban planning to product design. 
Alongside its regular activities, it carries out applied 
research to identify opportunities for incorporating 
new workflows and digital tools into design 
operations, while also organising training sessions 
to disseminate knowledge within the practice, 
fostering a culture of digital innovation across 
teams.

Figure 39. Park Design 
Technology workflows palette
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Building Information Modelling

From the early stages of the design process, Park approaches new 
projects by implementing the Building Information Modeling (BIM) 
methodology. This ensures efficient management and coordination 
of project data among all parties involved in the design process, 
facilitating communication and collaboration. At the core of this 
approach is the information model, which plays a pivotal role 
throughout all design phases by housing all relevant project data. The 
Design Technology department plays a crucial role by providing daily 
support to project teams, ensuring adherence to quality standards 
and effective creation and management of information models. This 
ongoing assistance is key in streamlining workflows, addressing 
technical challenges, and ensuring alignment with project objectives.

Figure 40. Interoperability 
approach for Palazzo Sistema’s 
facade design by Park
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Computational Design and R&D

The use of Computational Design tools applied to project workflows 
blends with the office ethos and design culture. The digital tools 
developed by the team are characterized by their innovative and 
technological capabilities, designed to facilitate collaborative and 
versatile use across design teams. Currently, these tools are being 
deployed for various use cases, including parametric modelling 
for design optioneering, workflow automation and software 
interoperability, as well as optimization of complex geometries and 
integrated environmental performance analysis. Design Technology 
at Park also provides a safe space for exploring and experimenting 
with emerging digital technologies, including innovative solutions in 
XR, UI design, and generative AI. 

Figure 41. Environmental 
performance analysis of a 
massing scenario
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Our approach to Generative Workflows

At Park, our approach to computational and generative design 
transcends the boundaries of formalism; it is a methodology aimed 
at amplifying the design intent and enhancing project outcomes. For 
us, these tools are not just meant to create and manage complex 
geometries but strategic instruments to address specific design 
challenges, improve efficiency and unlock creative potential.
The following case studies showcase how we at Park have leveraged 
generative design metholodogies to address diverse architectural 
challenges. The two examples below not only illustrate the potential 
of these tools to unlock innovative solutions but also the challenges 
we navigated in developing tailored workflows to suit each project’s 
unique demands. 

Figure 42. Park - Milan studio
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Project overview
This project is a proposal for a new mixed-use 
masterplan development in Bratislava, that 
reinterprets some of the archetypal elements 
drawn from historical Italian cities, integrating 
covered arcades and residential towers to create 
a dynamic urban fabric.  The design emphasizes 
pedestrian permeability, transforming the block 
into a car-free zone with interconnected galleries 
that foster vibrant public spaces. Residential 
volumes are concentrated in five towers set on a 
three-story plinth, allowing for optimized views of 
Bratislava’s landmarks, including the historic city, 
the city castle, and the Danube River. Generative 
design tools were employed to evaluate multiple 
massing scenarios, optimizing tower heights and 
placements to maximize panoramic views, solar 
exposure, and urban integration. 

Building Massing Exploration
 
One of the key design challenges we face whenever 
we embark on the concept phase of a new building 
project is the articulation of the building’s massing 
and its relationship with the surrounding context.
Defining how volumes interact with adjacent 
spaces, respond to environmental conditions, 
and integrate within the urban fabric is a complex 
process that often requires balancing multiple, 
sometimes conflicting, factors. In the example, we 
illustrate how, for this specific project, the use of 
generative design tools enabled us to conduct in-
depth evaluations of how the building’s massing 
interacts with its context and to move beyond 
intuitive decision-making, providing data-driven 
insights that informed the development of a 
massing strategy aligned with both design intent 
and contextual dynamics.

Figure 43. (above) Bratislava 
masterplan aerial concept view
Figure 44. (right) Bratislava 
masterplan concept view
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Figure 45. Matrix of the selected 
generative massing solutions

Workflow
The form-finding process for this mixed-use masterplan began 
with the selection of an archetypal building typology, serving as 
the foundation for exploring massing strategies. The generative 
design process focused on optimizing the positioning and height 
distribution of the residential towers in relation to key contextual 
factors, including the ground-level public realm, panoramic views, 
and solar exposure.
The first step involved developing a parametric model designed 
to test alternative tower locations based on their interaction with 
pedestrian flows and connections to public spaces. This model 
enabled rapid exploration of different configurations, providing 
insights into how the towers could best integrate with the 
surrounding urban fabric while enhancing the vibrancy of the public 
realm.
Once the optimal positioning of the towers was identified, the focus 
shifted to the strategic allocation of residential Gross Floor Area 
(GFA) to meet the client’s brief while allowing for massing articulation 
that responded to the site’s environmental and urban context. The 
objective was to achieve a balance between maximizing views, 
optimizing solar performance, and maintaining urban coherence.
Three key parameters guided the generative process:
 1. Maximizing Exposure to Quality Panoramic Views
 2. Minimizing Incident Solar Radiation 
 3. Meeting GFA Targets 
By integrating these parameters into a generative framework, 
multiple massing scenarios were generated and evaluated. This 
iterative process enabled the design team to identify the most 
efficient and contextually responsive configuration to further 
develop.
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Facade Geometry Exploration 

Figure 46. MI.C by Park

Project overview
MI.C is an architectural design project aimed 
at regenerating Milan’s Stazione Centrale area, 
transforming the iconic Hotel Michelangelo into a 
vibrant new architectural complex.
The design features two adjacent towers 
seamlessly blending with Milan’s urban landscape. 
The façade of the towers, which is the most 
dynamic element of the project, adapts and 
changes in accordance with the building’s daily 
life. As well as being a motif of architectural 
design, glass plays a starring role thanks to cusp-
shaped elements – some opaque, other partially 
transparent – that change their inclination 
vertically. This vertical variation is carefully 
designed to respond to the dual objectives of 
maximizing openings towards the surrounding 
views and minimizing heat gain and solar radiation. 
At higher levels, where panoramic views are 
most desirable, the façade becomes more open 
and transparent, framing vistas of the cityscape. 
Conversely, at lower levels, where privacy and 
shading are more critical, the façade incorporates 
increased opacity and tighter angles to shield 
interiors from excessive sunlight.

The following example focuses on the application 
of a generative design process to the development 
of a building façade, tracing the integration of these 
tools from the earliest concept design stages. In 
this case, the design process aimed to create a 
façade that not only responded to functional and 
aesthetic goals but also engaged in a dialogue with 
its surrounding context. By incorporating data-
driven insights, generative design supported the 
exploration of solutions that reflect and respond 
to environmental and spatial conditions, helping 
to shape a façade that is both dynamic and 
contextually aware.
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Figure 47. (left) MI.C facade 
design outcome
Figure 48. (right) MI.C facade 
solutions assessment, selection 
and development

Workflow
The initial concept sought to create a building with a façade that 
acts as an dynamic element, responding to both the environmental 
conditions and building programme. This resulted in the 
development of a geometric language capable of adapting and 
varying its configuration to meet changing needs as the height of the 
towers increases.
A parametric model was developed to facilitate control over 
the façade’s geometry, enabling the testing of various design 
alternatives. This model was developed around three key variables—
width, length, and rotation angle of the  fins—which directly interact 
with the glazed elements.
The next step involved employing a generative design methodology, 
driven by the need to control and optimize specific metrics to 
achieve geometrical outputs aligned with the broader project goals: 
 1. Minimizing glazed surfaces 
 2. Minimizing Solar Heat Gain
 3. Optimizing façade depth and glass warp
These metrics were integrated into the same parametric model, 
allowing for the automated generation and evaluation of multiple 
design variations. A genetic algorithm (GA) was employed to 
simultaneously optimize these criteria, enabling an iterative 
optioneering process where each solution was assessed and ranked. 
The preferred design solution was selected by the designers, based 
on the algorithm’s evaluation of the trade-offs between the various 
objectives, ultimately shaping the façade geometry.
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Key Takeaways and Beyond

Figure 49. Geometry 
rationalization of a double-
curvature canopy

To optimize this process and  maintain coherence 
throughout project development, it is essential 
to define key design objectives and embed 
meaningful parameters relevant to the project’s 
specific goals right from the beginning of the 
design process. By focusing on these from the 
start, generative models can produce design 
outputs that stay aligned with the original intent 
while addressing practical constraints, such as 
constructability, as the design evolves.
When thoughtfully integrated, generative design 
tools serve as a powerful asset within the design 
process. They not only support the pursuit of 
design intent through data-driven insights but also 
enhance the efficiency of workflows. Moreover, 
they facilitate the exploration of design possibilities 
that may remain undiscovered through traditional 
design methods.

The case studies presented highlight both the 
potential and the challenges of implementing 
generative design principles in real-world projects.  
One of the most significant hurdles is the resource-
intensive nature of this approach. Developing 
project-specific generative workflows demands 
significant time and computational power to 
set-up and deploy which can strain tight project 
schedules. Additionally, the lack of holistic models 
limits the ability to address multiple design 
challenges simultaneously, as current tools focus 
on specific, easily quantifiable parameters. 
Furthermore, the iterative nature of generative 
design adds other complexity—each change in 
geometric concepts or design objectives triggers 
new solution cycles.
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Looking ahead, the advent of Machine Learning and the more recent 
emergence of genAI tools in the AEC field offer exciting opportunities 
while raising important questions about their integration into more 
established computational and generative design workflows.
Beyond the current hype, AI holds the potential to manage complex, 
large-scale data and support predictive design and analysis models, 
that can further enhance the design process. However, its adoption 
requires a critical and ethical approach to ensure it truly enhances 
design processes—a complex challenge that is still unfolding and 
requires further exploration.

Figure 50. Park Hub 3D point 
cloud model
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Method over style.
“Style is accustomed to aging, but method 
endures. We prioritize method as the foundation 
for innovation, drawing from the past to create 
transformative and enduring environments that 
meet tomorrow’s challenges.”

Park 
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