

# **NanoDetect PRO User Support Guide**

## **Table of Contents**

**NanoView App Download & NanoView Dashboard Access**

**NanoDetect PRO Connectivity**

**NanoDetect PRO Device Operational Support**

**NanoView Dashboard**

**NanoView Pollutants & Air Quality Index (AQI)**

**NanoDetect PRO Cleaning & Re-calibration**

**NanoDetect PRO & NanoView Troubleshooting**

## **NanoView App Download & NanoView Dashboard Access**

### **NanoView**

WellAir NanoView transforms real-time IAQ and IEQ data from NanoDetect sensors into clear, actionable insight for building owners, operators, and facility management teams. Engineered to support certification, compliance, and operational optimization, NanoView provides continuous visibility into indoor environmental conditions—enabling organizations to monitor, validate, and manage air quality performance against design intent, regulatory requirements, and the real-world impact of air purification solutions.

Delivered through both a mobile app and a secure web-based dashboard, NanoView offers complete flexibility and control anytime, anywhere.

### **NanoView App – Access and Overview**

The **WellAir NanoView App** is designed to support quick setup, configuration, and monitoring of your **NanoDetect PRO IAQ sensor**.

The app provides the following key functionality:

- **Device setup and connectivity**
  - Used primarily for seamless device commissioning, including Bluetooth-enabled configuration and Wi-Fi setup
- **Parameter configuration**
  - Allows customization of IAQ / IEQ parameters to align with building certification standards (e.g., WELL, LEED, RESET) or internal company requirements
- **Device status verification**
  - Enables quick confirmation that NanoDetect PRO devices are online, connected, and operating correctly
- **Real-time monitoring and alerts**
  - Provides access to basic real-time environmental data and alerts for users who need visibility while on the move

### **App Availability**

The **WellAir NanoView App** can be downloaded from:

- **Apple App Store**
- **Google Play Store**

The app is also available for download directly from the **WellAir website**.

The WellAir NanoView App can be downloaded from either Apple APP Store or Google Play



## Getting Started

Once the app is installed, follow the **on-screen guided instructions** to complete device setup and configuration.

## NanoView Dashboard – Access & Overview

The **NanoView Dashboard** is the primary platform for ongoing monitoring, analysis, and management of NanoDetect PRO devices across one or multiple locations.

The Dashboard provides the following functionality:

- **Built for operational teams**
  - Designed for the daily workflows of facility managers, sustainability teams, and building operators
- **Advanced data and insights**
  - Provides comprehensive monitoring, analytics, reporting, and alerting capabilities
- **Certification-ready visualization**
  - Includes **Kiosk Mode**, which is required by many building certification programs and standards
- **Secure, cloud-based access**
  - Delivered as a Software-as-a-Service (SaaS) platform and accessible via a secure web login from any supported browser

## Accessing the NanoView Dashboard

To access the NanoView Dashboard, navigate to the following link and log in using your assigned credentials:

<https://cloud.wellairsolutions.com/#/login>

## Support & Troubleshooting

If you experience any issues accessing or using the NanoView App or Dashboard, please refer to the **Troubleshooting Guide** for step-by-step assistance.

## NanoDetect PRO Connectivity

This section explains how to add a NanoDetect PRO sensor to your account using the NanoView App.

### Use Case 1 – Add a NanoDetect PRO to Wi-Fi network

#### Connecting a sensor to Wi-Fi

Use this method when commissioning a new sensor or connecting a sensor to a wireless network.

#### Before You Begin

- Ensure the NanoView App is installed on your mobile device
- Ensure **Bluetooth is enabled** on your mobile device and permissions are granted to the NanoView App
- Ensure your mobile device is connected to the **same Wi-Fi network** you want the sensor to use
- Have your **Wi-Fi network name (SSID) and password** available

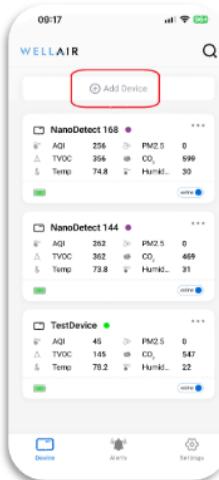
#### Connecting a Sensor to Wi-Fi

##### 1. Open the NanoView App

Launch the NanoView App on your mobile device.



##### 2. Create or log in to your account


If this is your first time using the app, follow the prompts to create a username and password. Returning users can log in with existing credentials.

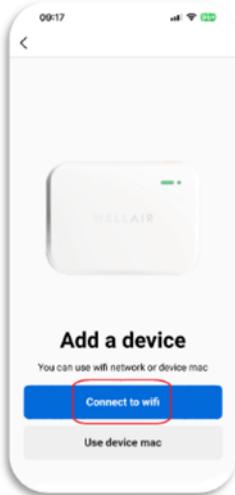
### 3. Enable Bluetooth access

Confirm that Bluetooth is turned on and shared with the NanoView App when prompted.

### 4. Start the Add Device process

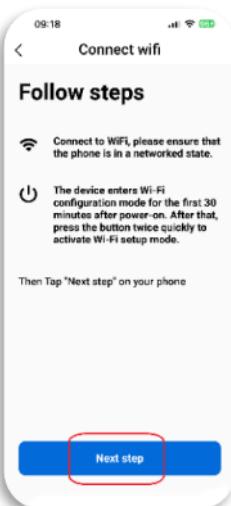
From the main app screen, tap **Add Device**.




### 5. Select the device type

On the next screen, select **NanoDetect PRO**.

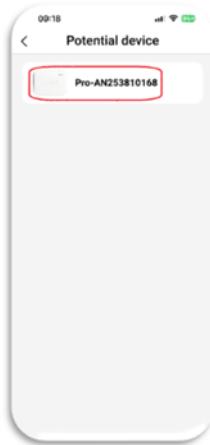



### 6. Choose Wi-Fi setup

Select the option to add the device using a **Wi-Fi network**.

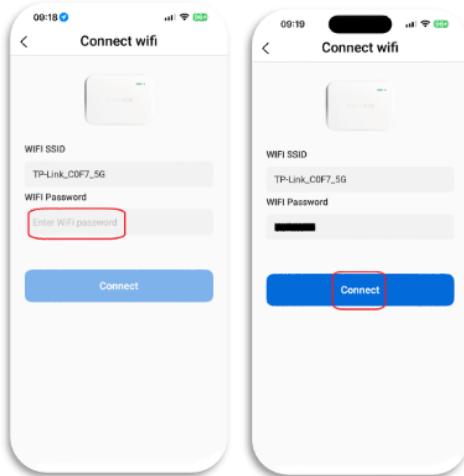


## 7. Review Wi-Fi and device status


The app will display your current Wi-Fi connection and device status. When ready, tap **Next Step**.



## 8. Select your sensor


A list of available sensors will appear. Identify your sensor by matching:

- Device model (e.g., *NanoDetect PRO*)
- Serial number (located on the product label on the back of the sensor)  
Select the correct device from the list.



## 9. Enter Wi-Fi credentials

Confirm the Wi-Fi network name (SSID), enter the network password, and tap **Connect**.



## 10. Confirm successful connection

Once the setup is complete, the sensor will appear on the main **Devices** screen, indicating it is successfully connected to the Wi-Fi network.

### Tips

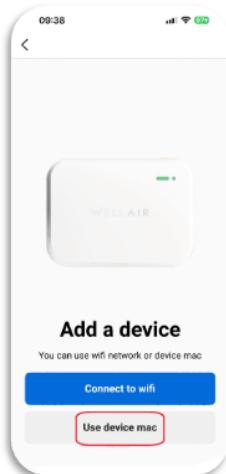
- Keep your mobile device connected to Wi-Fi for the entire setup process
- Remain within close range of the sensor during configuration
- If setup fails, verify Bluetooth permissions and Wi-Fi credentials before retrying

## Use Case 2 – Add a NanoDetect PRO using MAC address

Use this method when the device is **already connected to the network** or when using a **wired Ethernet connection**.

### Add a Device Using MAC Address

## 1. Open the NanoView App


From the main screen, tap **Add Device**.

## 2. Select the device type

Choose **NanoDetect PRO** on the device selection screen.

## 3. Choose the MAC address option

Tap **Add Device Using MAC Address** (or **Use Device MAC**, depending on app version).



## 4. Enter device details

Enter the device's **MAC address**, located on the product label on the back of the sensor.

You may also assign a custom device name for easier identification.



## 5. Confirm device addition

Tap **Confirm**. The device will now be added to your account.

### Important Note

Adding a device using a MAC address **does not configure Wi-Fi connectivity**.

Use this option only if:

- The device is already connected to the network, or

- The device is connected via the **Ethernet port**

If Wi-Fi setup is required, refer to **Use Case 1 – Add a Device to a Wi-Fi Network**.

## Tips

- Have the MAC address available before starting
  - Note: You can find it on the product label or packaging
- Double-check the MAC address entry to avoid setup delays

## **NanoDetect PRO Device Operational Support**

### **NanoDetect PRO Multi-Function Button Functionality**

When power is supplied to the NanoDetect PRO sensor, the device will automatically power on and begin operating.

The sensor includes a **multi-function button** and visual indicators to support setup, configuration, and basic control.



Press the button **consecutively** (in quick succession) to perform the following actions:

- **2 presses** – Enable Bluetooth  
Activates Bluetooth for Wi-Fi setup or configuration using the WellAir NanoView App
- **7 presses** – Toggle buzzer on or off  
Enables or disables the audible buzzer alerts
- **8 presses** – Disable buzzer permanently  
Disables the device's buzzer setting
- **10 presses** – Toggle pollution level indicator  
Turns the pollution level indicator on or off
- **20 presses** – Factory reset  
Restores the device to factory default settings  
*(Use with caution. This will remove existing configuration and network settings.)*

### **Important Notes**

- When the device is powered on for the **first time**, **Bluetooth is enabled by default**
- If no configuration activity occurs within **30 minutes**, Bluetooth will automatically turn off

- To re-enable Bluetooth after it turns off, press the multi-function button **twice consecutively**

## NanoDetect PRO LED display indicators

An **indicator light** is located on the front of the NanoDetect PRO device, as shown in the image below.



The indicator light provides visual feedback on Indoor Air Quality, as follows:



## NanoView Dashboard

The **WellAir NanoView Dashboard** enables users to monitor real-time IAQ data, export historical records, configure alerts, and visualize air quality across one or multiple locations.

Users can access the full Dashboard experience by logging in at:  
[cloud.wellairsolutions.com](http://cloud.wellairsolutions.com)

### Use Case 1 – Add a Device to the Dashboard

Use this process to add a NanoDetect PRO device to your Dashboard account.

#### 1. Navigate to the Devices page

From the left-hand navigation menu, click **Devices**.

#### 2. Add a new device

**+ Add new**

Click the **Add New** icon located on the right-hand side of the screen. This will open an embedded configuration panel.

#### 3. Enter device details

- Enter the device **MAC address**
- Assign a **device name**
- Select or assign the **device location** within the building

The screenshot shows the WELLAIR dashboard with the 'Devices' tab selected. A modal window is open, titled 'Add new device', containing fields for 'Device mac' (f4ab5cfc762a), 'Device name' (Main Office), and 'Location' (DDU). A 'Confirm' button is at the bottom of the modal. The main table shows one device, 'Test 1', with various sensor readings.

| Device | Device Mac   | Location | AQI | CO <sub>2</sub> (ppm) | TVOCIndex | PM2.5(ug/m <sup>3</sup> ) | PM10(ug/m <sup>3</sup> ) | Temperature(°F) | Humidity(%) | Mold Index | CO <sub>2</sub> (ppm) | NO <sub>2</sub> (ppb) |
|--------|--------------|----------|-----|-----------------------|-----------|---------------------------|--------------------------|-----------------|-------------|------------|-----------------------|-----------------------|
| Test 1 | f4ab5cfc7621 | DDU      | 33  | 412                   | 13        | 9                         | 7                        | 71              | 18          | 8.8        | 5.0                   | 10                    |

#### 4. Confirm and save

Click **Confirm** to complete the process.

Once complete, the device will appear in your **Devices list** and will be available for monitoring and configuration.

The screenshot shows the WELLAIR dashboard with the 'Devices' tab selected, displaying 2 devices: 'Main Office' and 'Test 1'. The 'Main Office' device has a higher AQI of 37 compared to 'Test 1' at 33. Both devices show similar sensor values for CO<sub>2</sub>, TVOC, PM2.5, and PM10.

| Device      | Device Mac   | Location | AQI | CO <sub>2</sub> (ppm) | TVOCIndex | PM2.5(ug/m <sup>3</sup> ) | PM10(ug/m <sup>3</sup> ) | Temperature(°F) | Humidity(%) | Mold Index | CO <sub>2</sub> (ppm) | NO <sub>2</sub> (ppb) |
|-------------|--------------|----------|-----|-----------------------|-----------|---------------------------|--------------------------|-----------------|-------------|------------|-----------------------|-----------------------|
| Main Office | f4ab5cfc762a | DDU      | 37  | 667                   | 101       | 9                         | 8                        | 75              | 38          | 8.8        | 5.0                   | 10                    |
| Test 1      | f4ab5cfc7621 | DDU      | 33  | 412                   | 13        | 9                         | 7                        | 71              | 18          | 8.8        | 5.0                   | 10                    |

### Use Case 2 – Real-Time Data View

The **NanoView Dashboard** provides real-time measurements for all supported IAQ/IEQ parameters, including both **standard and optional sensors**. Real-time data is accessed through the **Devices** tab.

#### 1. Individual IAQ/IEQ Parameter (Column View)

This view displays detailed, real-time readings for each IAQ/IEQ parameter across all connected devices.

- From the left-hand navigation menu, click **Devices**.

All connected NanoDetect PRO devices will be displayed, with individual IAQ/IEQ parameters shown in a **column-based view**.

WELLAIR

| 3 Devices    |              |          |     |          |             |              |             |                 |
|--------------|--------------|----------|-----|----------|-------------|--------------|-------------|-----------------|
| Device       | Device Mac   | Location | AQI | CO2(ppm) | TVOC(index) | PM2.5(µg/m3) | PM10(µg/m3) | Temperature(°F) |
| Main Office  | f4ab5c9c762a | DCU      | 18  | 536      | 52          | 0            | 0           | 69              |
| Meeting Room | f4ab5c9c765c | DCU      | 19  | 549      | 53          | 0            | 0           | 74              |
| Test 1       | f4ab5c9c75e1 | DCU      | 119 | 407      | 129         | 42           | 55          | 65              |

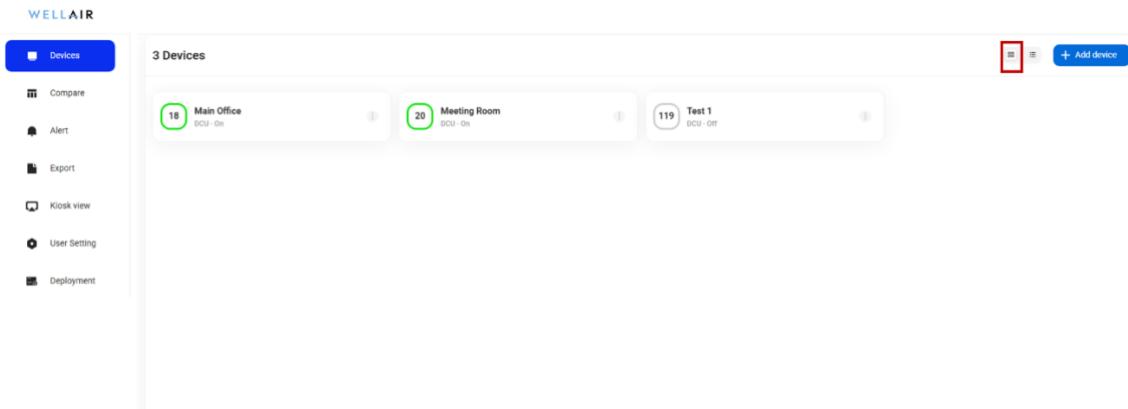
b) **Scroll horizontally** to view additional IAQ/IEQ parameters.

WELLAIR

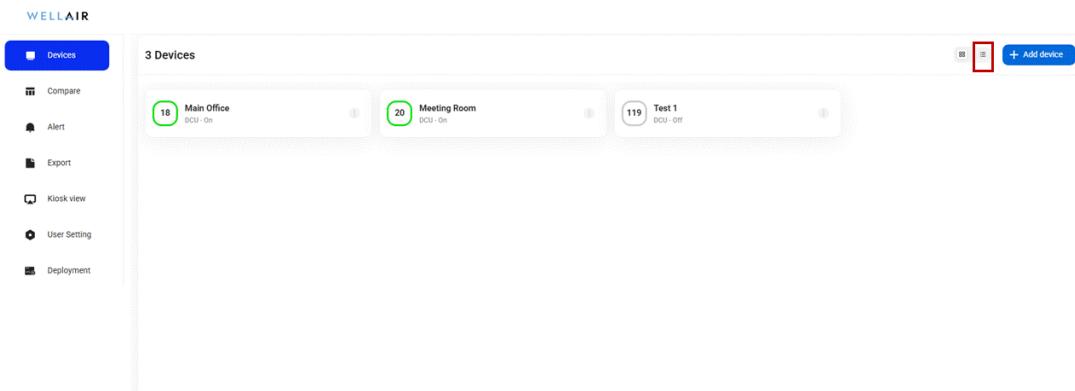
| 3 Devices    |             |                 |             |            |          |          |            |               |            |
|--------------|-------------|-----------------|-------------|------------|----------|----------|------------|---------------|------------|
| Device       | PM10(µg/m3) | Temperature(°F) | Humidity(%) | Mold Index | CO2(ppm) | NO2(ppb) | Ozone(ppb) | Pressure(hPa) | Light(lux) |
| Main Office  | 0           | 69              | 34          | 0.0        | --       | --       | --         | 991           | 69         |
| Meeting Room | 0           | 74              | 39          | 0.0        | 0        | --       | --         | 991           | 68         |
| Test 1       | 55          | 55              | 42          | 0.0        | --       | --       | --         | 1023          | 227        |

c) The device list can be **sorted in ascending or descending order** by selecting any parameter column header.

- First click: sorts devices in ascending order
- Second click: sorts devices in descending order
- Third click: clears the sorting and returns to the default view


WELLAIR

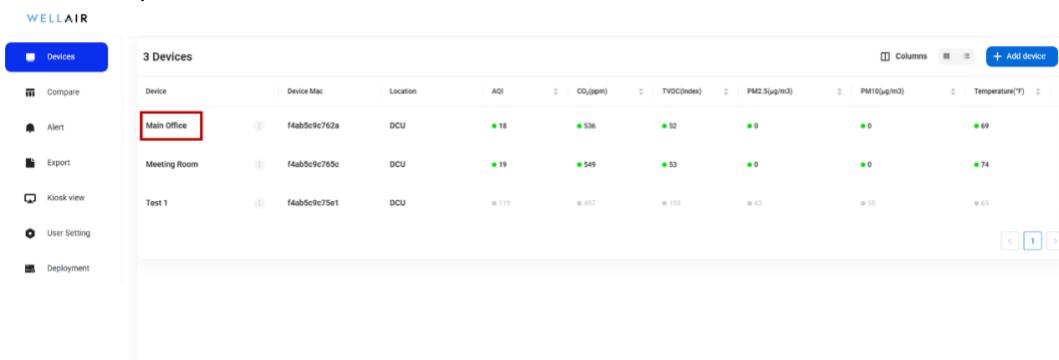
| 3 Devices    |              |          |     |          |             |              |             |                 |
|--------------|--------------|----------|-----|----------|-------------|--------------|-------------|-----------------|
| Device       | Device Mac   | Location | AQI | CO2(ppm) | TVOC(index) | PM2.5(µg/m3) | PM10(µg/m3) | Temperature(°F) |
| Main Office  | f4ab5c9c762a | DCU      | 18  | 518      | 100         | 0            | 0           | 72              |
| Meeting Room | f4ab5c9c765c | DCU      | 19  | 549      | 100         | 0            | 0           | 75              |
| Test 1       | f4ab5c9c75e1 | DCU      | 119 | 407      | 129         | 42           | 55          | 65              |


## 2. High-Level Device AQI View

This view provides a simplified, high-level overview of device performance using only the Air Quality Index (AQI).

a) From the **Devices** page, toggle to **Device View** to display devices by **AQI index**.




b) To return to the detailed pollutant view, toggle back to **Column View**.



### 3. Individual Device Graphical View

This view allows deeper analysis of a single NanoDetect PRO device.

a. Click on a specific **NanoDetect PRO** device from the Devices list.



b. A detailed graphical view will open, displaying:

- **graphical matrix** showing real-time values for each individual pollutant parameter
- **A trend graph** displaying up to **two IAQ/IEQ parameters** simultaneously
- The ability to select which 2 parameters are shown in the trend graph

## Main Office

DCU - last seen: 0 min ago - Firmware Version:50028 RSSI:-61 PM-TVOC: 85.8% HCHO: 93.1%



c. To change the parameters displayed in the trend graph:

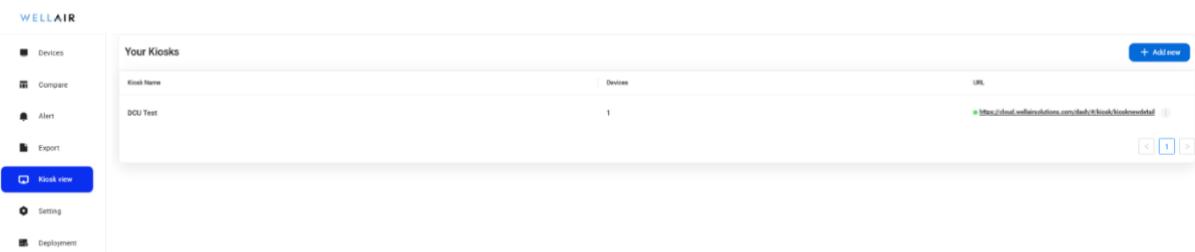
1. Click the **highlighted parameter cell** to remove it from the graph
2. Click an **alternative parameter cell** to add it to the graph



d. The **time range** of the trend graph can be adjusted using the **drop-down time selection menu**.

## Main Office

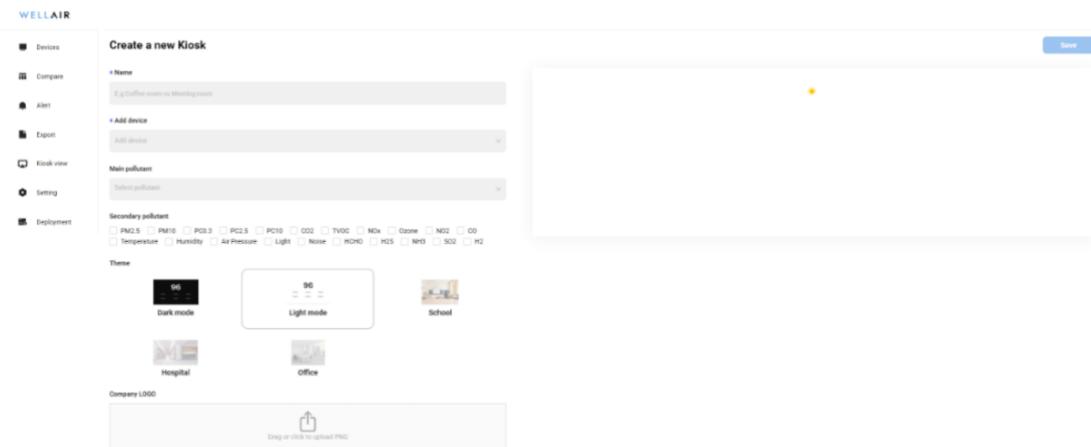
DCU - last seen: 0 min ago - Firmware Version:50028 RSSI:-61 PM-TVOC: 85.8% HCHO: 93.1%




## Use Case 3 – Create a Kiosk View

Kiosk Views are commonly required for building certification programs and provide a public-facing, real-time air quality display.

### 1. Navigate to the Kiosk page


From the left-hand navigation menu, click **Kiosk**.



### 2. Create a new Kiosk View

**+ Add new**

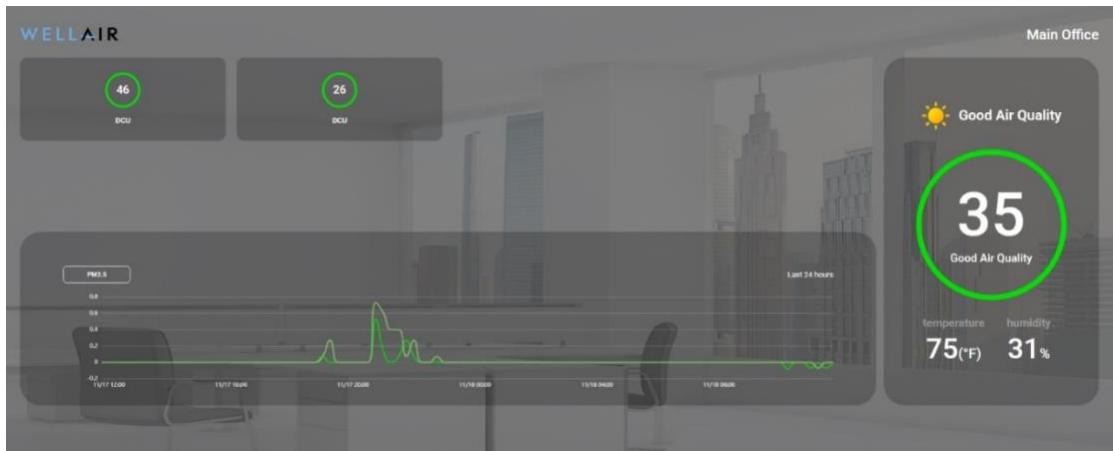
Click the **Add New** icon on the right-hand side of the screen to open the Kiosk configuration page.



### 3. Configure the Kiosk View

- Enter a **name** for the Kiosk View
- Select **one or more devices** to display
- Choose **primary and secondary parameters** for real-time visualization
- Select the **IAQ / IEQ parameter** to be shown in the time-based chart
- Optional:
  - Choose a layout theme
  - Upload a **.png company logo**

#### 4. Save the Kiosk View


Once all selections are complete, click the **Save** icon  on the right-hand side of the screen.

#### 5. Access the Kiosk View

Use the **URL link** shown on the right-hand side of the Kiosk list to open the selected Kiosk View.

#### Important Note

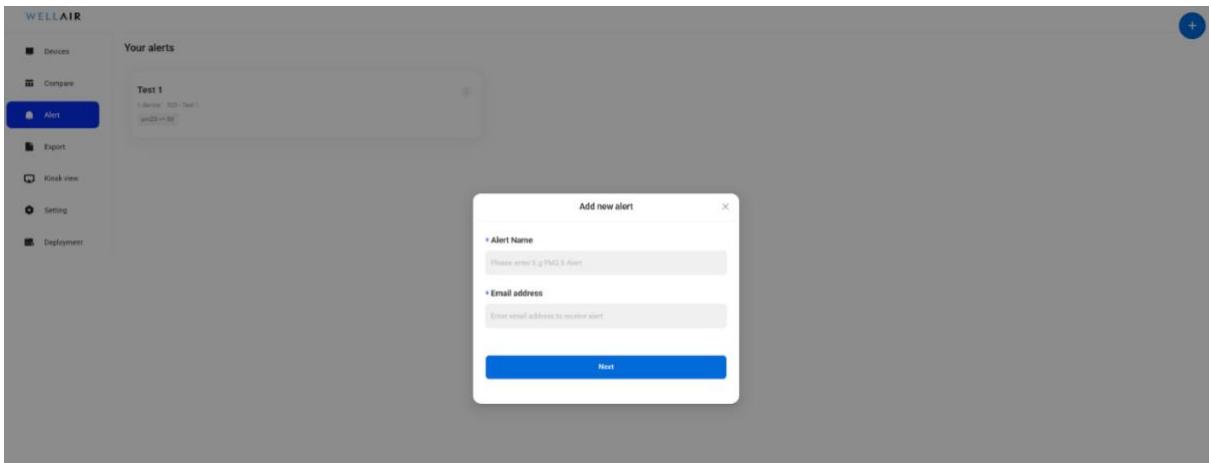
If multiple devices are selected for a single Kiosk View, only the **primary IAQ parameter** will be displayed in the real-time data panel.



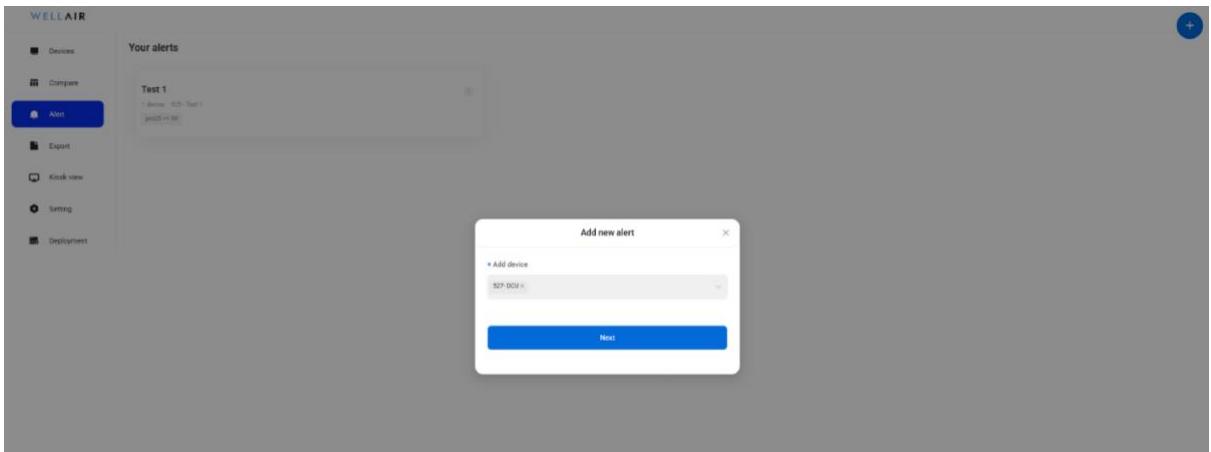
#### Use Case 4 – Create an Alert

Alerts notify designated users when pollutant levels exceed defined thresholds.

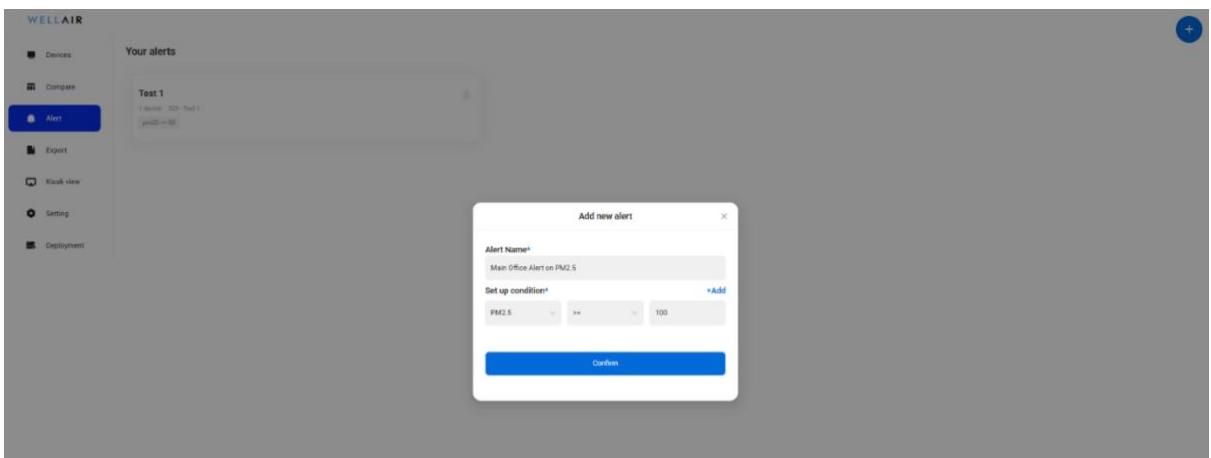
##### 1. Navigate to the Alerts page


From the left-hand navigation menu, click **Alerts**.

##### 2. Create a new alert


Click **Add New** to begin alert configuration.

##### 3. Configure alert details


- Enter a **name** for the alert
- Enter the **email address(es)** that will receive notifications



- Select the **device(s)** the alert applies to



- Choose the **IAQ / IEQ parameter**
- Define the **Boolean condition** (e.g., greater than, less than)



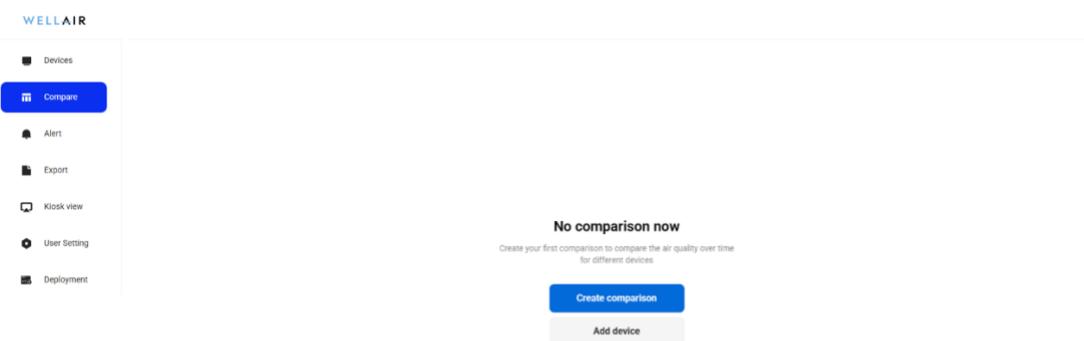
#### 4. Save the alert

Click **Save** to activate the alert.

### Use Case 5 – Compare Two Devices

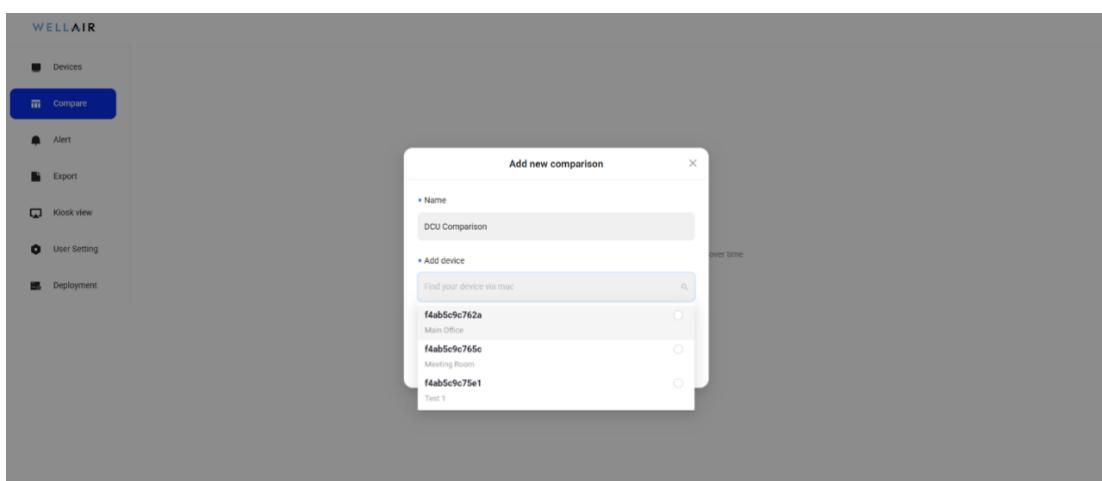
The **Compare** feature allows users to visually compare IAQ/IEQ parameters from **two NanoDetect PRO devices** using graphical charts.

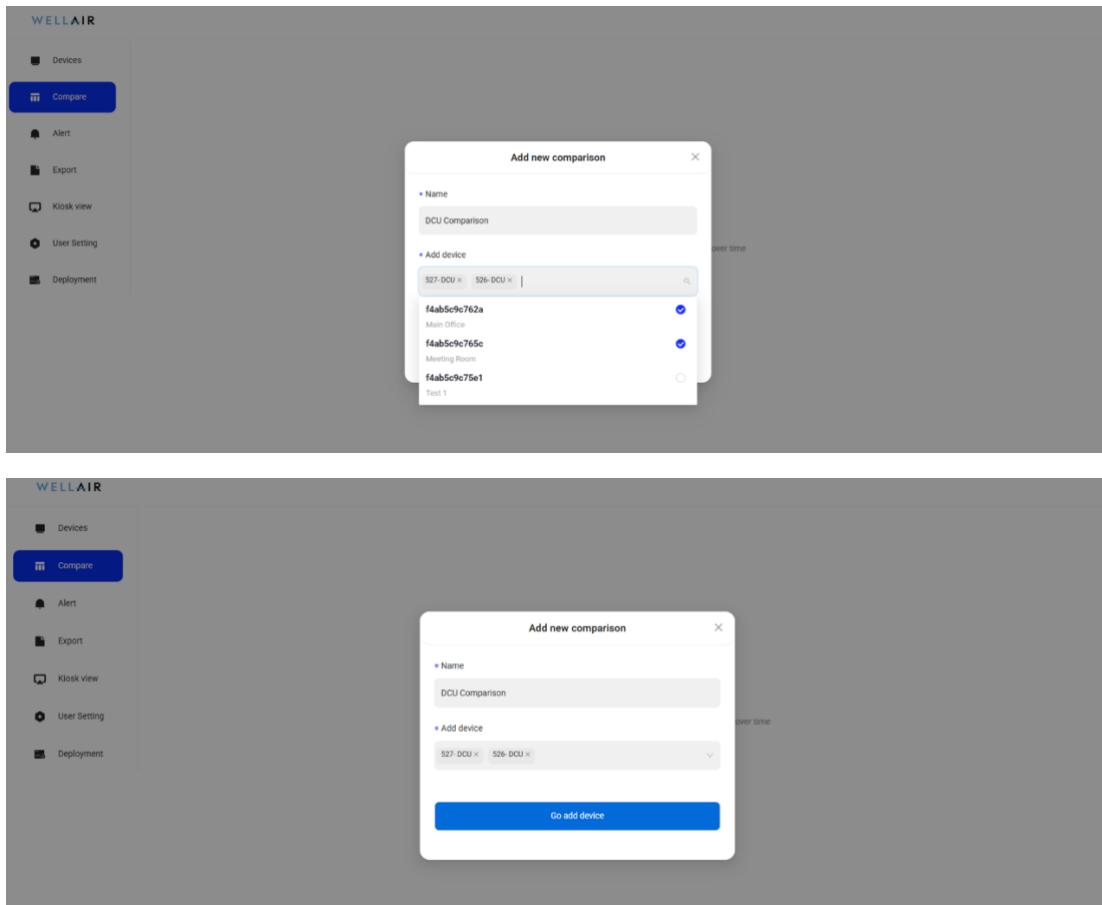
## Creating a Device Comparison


### 1. Navigate to the Compare page

From the left-hand navigation menu, click **Compare**.

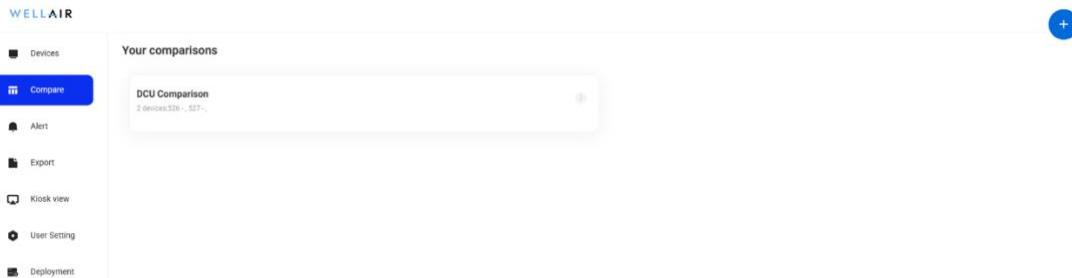
### 2. Create a new comparison


Click **Create Comparison**.


A configuration pop-up will appear.



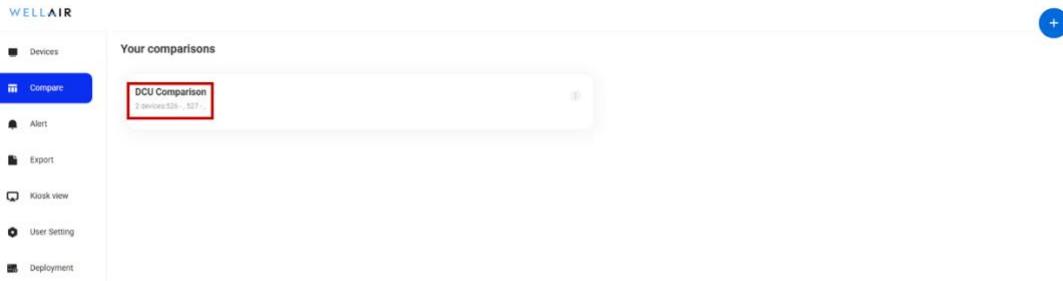
### 3. Configure the comparison


- Enter a **name** for the comparison
- Add **two devices** to be compared
- Click **Add Device** to confirm each selection

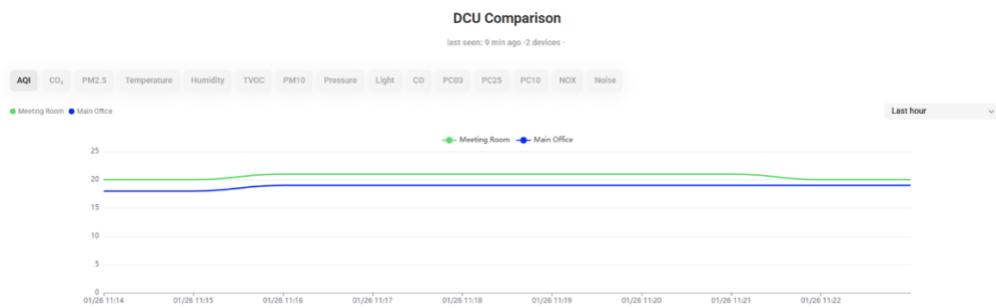




#### 4. Launch the comparison


Once configured, the comparison will be saved and listed in the main **Compare** tab.




#### Viewing and Adjusting the Comparison

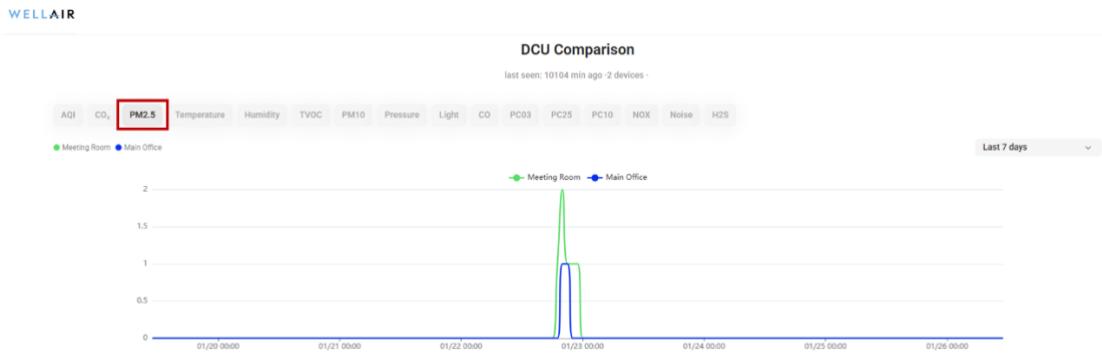
##### 5. Open a saved comparison

Click on the comparison **name** from the Compare list to launch the graphical view.



The graphical view of selected IAQ/IEQ parameters are displayed as follows:




## 6. Adjust the timeline

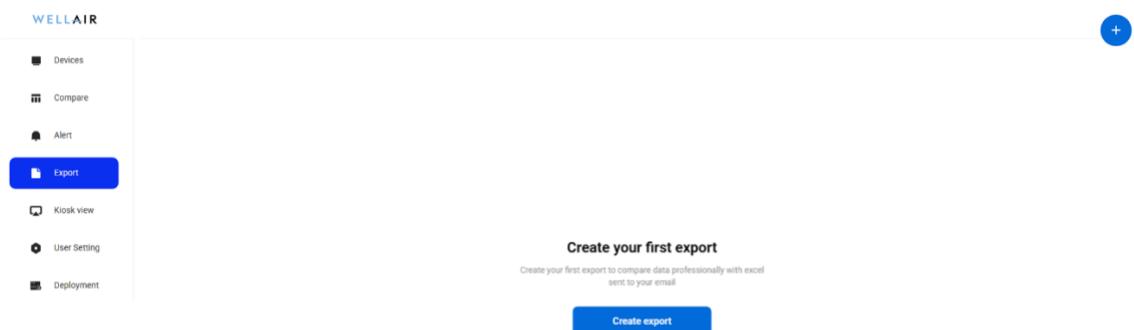
Use the **time-range drop-down menu** to modify the line graph timeline.



## 7. Switch parameters

Toggle between individual pollutant parameters to compare device performance across different measurements.




## Use Case 6 – Export Data

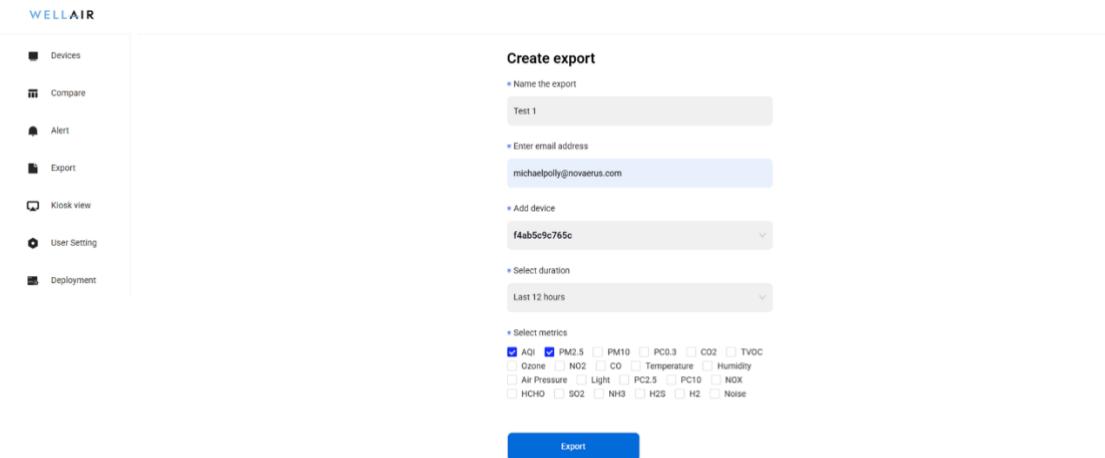
The NanoView Dashboard allows users to export historical data from NanoDetect PRO devices to **Excel** for reporting, analysis, or compliance documentation.

### Creating a Data Export

#### 1. Navigate to the Export page

From the left-hand navigation menu, click **Export**.




#### 2. Create a new export

Click **Create Export**.

A configuration pop-up will appear.

### 3. Configure the export

- Enter a **name** for the export
- Enter the **email address** that will receive the exported file
- Select the **device** from which data is required
- Choose the **time range** (data duration)
- Select the **IAQ/IEQ parameters** to be included in the report



WELL.AIR

**Create export**

Name the export  
Test 1

Enter email address  
michaelpolly@novaerus.com

Add device  
f4ab5c9c765c

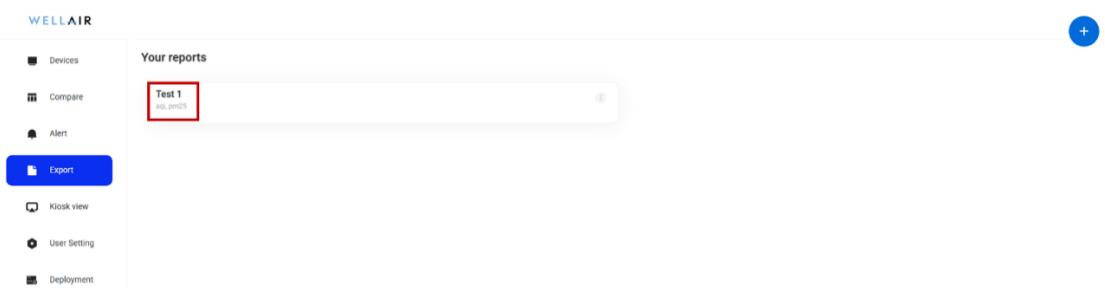
Select duration  
Last 12 hours

Select metrics

AQI  PM2.5  PM10  PC0.3  CO2  TVOC  
 Ozone  NO2  CO  Temperature  Humidity  
 Air Pressure  Light  PC2.5  PC10  NOX  
 HCHO  SO2  NH3  H2S  H2  Noise

Export

### 4. Generate the export


Confirm the selection to generate the report.

An email containing the export file will be sent to the specified email address.

## Viewing and Downloading Exported Data

### 5. Open the export report

Alternatively, click on the **export report name** within the Export tab to view the data directly in the Dashboard.



WELL.AIR

Your reports

Test 1

+  

### 6. Review graphical data

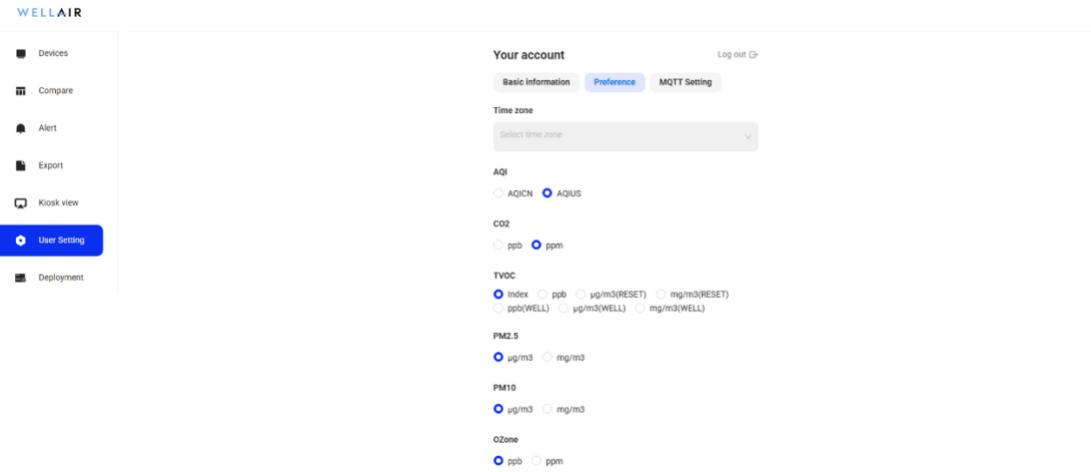
A graphical visualization of the selected data will be displayed.

| Date       | Time  | Air Quality | PM10 | PM25 | CO2 | TVOC | Humidity | Temperature(°F) | Air pressure | CO  | Ni2 | Ozone | PC25 | PC10 | NOx | HOx | SO2 | NH3 | H2S | H2  | Noise |
|------------|-------|-------------|------|------|-----|------|----------|-----------------|--------------|-----|-----|-------|------|------|-----|-----|-----|-----|-----|-----|-------|
| 2026-01-25 | 23:29 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:32 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:33 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:34 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:35 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:37 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:38 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:39 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:41 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |

## 7. Download to Excel

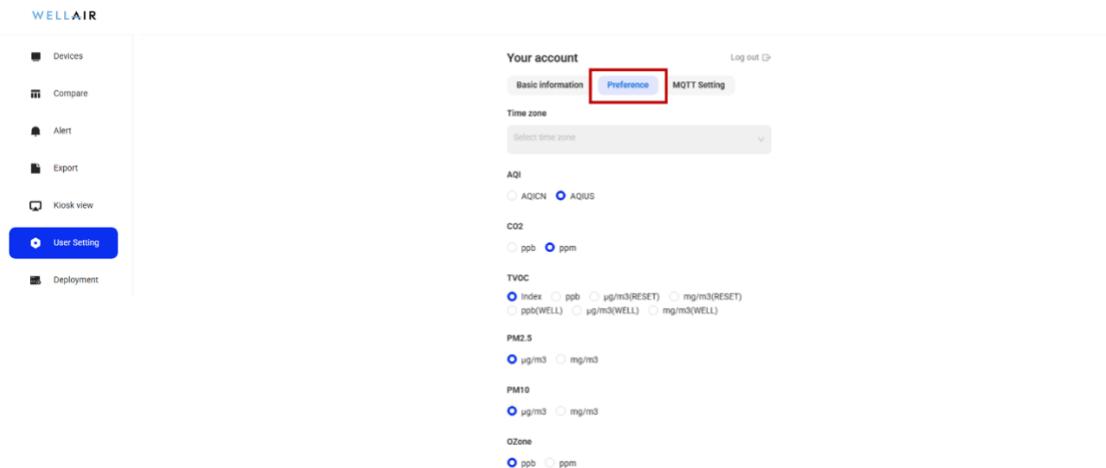
Click **Download to Excel** to save the report locally.

| Date       | Time  | Air Quality | PM10 | PM25 | CO2 | TVOC | Humidity | Temperature(°F) | Air pressure | CO  | Ni2 | Ozone | PC25 | PC10 | NOx | HOx | SO2 | NH3 | H2S | H2  | Noise |
|------------|-------|-------------|------|------|-----|------|----------|-----------------|--------------|-----|-----|-------|------|------|-----|-----|-----|-----|-----|-----|-------|
| 2026-01-25 | 23:29 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:32 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:33 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:34 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:35 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:37 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:38 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:39 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |
| 2026-01-25 | 23:41 | • 0         | • -  | • 0  | • - | • -  | • -      | • NaN           | • -          | • - | • - | • -   | • -  | • -  | • - | • - | • - | • - | • - | • - | • -   |


## Use Case 7 – Change IAQ / IEQ Parameter Metrics

The NanoView Dashboard allows users to customize **IAQ / IEQ parameter units** to suit individual preferences or to align with building certification requirements such as **WELL** or **LEED**.

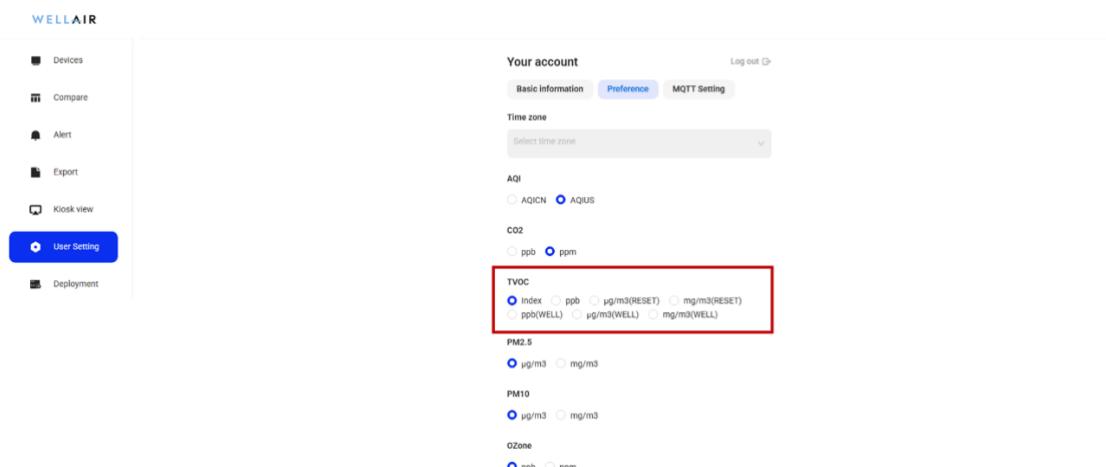
## Changing Parameter Metrics


### 1. Open User Settings

From the left-hand navigation menu, click **User Settings**.



## 2. Access Preferences


Within the User Settings screen, select **Preferences**.



## 3. Update parameter units

For each available IAQ or IEQ parameter, use the toggle to select the desired measurement unit

(for example for TVOC the options are index value, ppb, or microns per meter cubed).



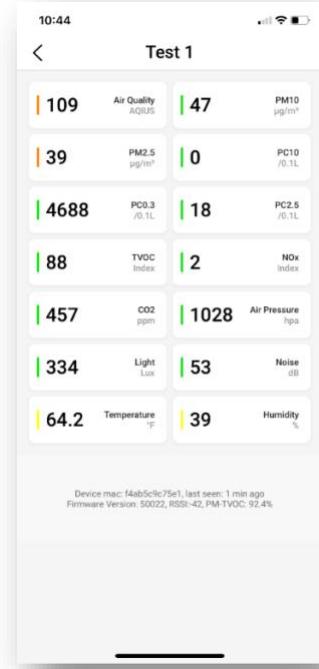
Changes are applied automatically and reflected across the Dashboard views.

## NanoView Pollutants and Air Quality Index (AQI)

The **NanoDetect PRO** measures a range of indoor air quality pollutants. Each pollutant is classified into defined air quality levels that help users quickly understand current conditions.

This section explains the **color index system** used to represent air quality levels for:

- The **overall Air Quality Index (AQI)**, and
- **Individual pollutant parameters**  
across both the **NanoView App** and the **NanoView Dashboard**.


### Color Index Representation

Air quality levels are displayed using a consistent color scheme throughout the NanoView platform to provide intuitive, at-a-glance interpretation.

- On the **NanoView Dashboard**, color indexing is applied to **historical trend graphs**, showing how air quality changes over time
- For example, the historic trend graph below illustrates the color-coded representation of both **Air Quality Index (AQI)** and **PM10** over a one-hour period



- Within the **NanoView App**, colors are assigned to **individual real-time pollutant readings**, as shown below, allowing users to quickly assess current air quality conditions



## Air Quality Index (AQI)

The **Air Quality Index (AQI)** represents the **overall air quality status** of the NanoDetect PRO sensor.

The AQI value is calculated using a **weighted average of multiple individual pollutant parameters**, providing a single, easy-to-understand indicator of overall indoor air quality.

|         |                                |
|---------|--------------------------------|
| 0-50    | Good                           |
| 51-100  | Moderate                       |
| 101-150 | Unhealthy for sensitive groups |
| 151-200 | Unhealthy                      |
| 201-300 | Very Unhealthy                 |
| 301-500 | Hazardous                      |

## STANDARD SENSORS

### Particulate Matter (PM2.5)

| PM2.5 Range ( $\mu\text{g}/\text{m}^3$ ) | Air Quality Level              |
|------------------------------------------|--------------------------------|
| 0.0-9.0                                  | Good                           |
| 9.1-35.4                                 | Moderate                       |
| 35.5-55.4                                | Unhealthy for sensitive groups |
| 55.5-125.4                               | Unhealthy                      |
| 125.5-224.4                              | Very Unhealthy                 |
| 225.4-325.4                              | Hazardous                      |

### Particulate Matter (PM10)

| PM10 Range ( $\mu\text{g}/\text{m}^3$ ) | Air Quality Level              |
|-----------------------------------------|--------------------------------|
| 0-54                                    | Good                           |
| 54.1-154                                | Moderate                       |
| 154.1-254                               | Unhealthy for sensitive groups |
| 254.1-354                               | Unhealthy                      |
| 354.1-424                               | Very Unhealthy                 |
| 424.1 - 604                             | Hazardous                      |

### Carbon Dioxide (CO<sub>2</sub>)

| CO <sub>2</sub> Range (ppm) | Air Quality Level              |
|-----------------------------|--------------------------------|
| 400-800                     | Good                           |
| 801-1500                    | Moderate                       |
| 1501-2000                   | Unhealthy for sensitive groups |
| 2001-2500                   | Unhealthy                      |
| 2501-5000                   | Very Unhealthy                 |
| 5001-10000                  | Hazardous                      |

### TVOC Index Scale

On the **TVOC index scale**, a reference baseline is always mapped to a value of **100** to keep interpretation simple.

- A **TVOC index above 100** indicates that total volatile organic compound (TVOC) levels are **higher than the average baseline**
- A **TVOC index below 100** indicates that TVOC levels are **lower than the average baseline**

This approach allows users to quickly understand whether indoor air quality conditions are improving or degrading relative to normal levels.

| TVOC Range (Index) | Air Quality Level              |
|--------------------|--------------------------------|
| 1-100              | Good                           |
| 101-150            | Moderate                       |
| 151-200            | Unhealthy for sensitive groups |
| 201-300            | Unhealthy                      |
| 201-500            | Very Unhealthy                 |

#### Temperature (°F | °C)

| Temperature (°F)      | Temperature (°C)       | Air Quality Level              |
|-----------------------|------------------------|--------------------------------|
| 64.4–77.0             | 18-25                  | Good                           |
| 60.8–64.4 & 77.2–80.6 | 16-17.99 & 25.1-26.99  | Moderate                       |
| 50.0–60.8 & 80.6–86.0 | 10-15.99 & 26.99-29.99 | Unhealthy for sensitive groups |
| 42.8–50.0 & 86.0–96.8 | 5.99-10 & 29.99-35.99  | Unhealthy                      |
| <42.8 & >96.8         | <5.99 & > 35.99        | Very Unhealthy                 |

#### Humidity (% RH)

| Humidity (% RH) | Air Quality Level |
|-----------------|-------------------|
| 40-50%          | Good              |

|                 |                                |
|-----------------|--------------------------------|
| 35-39% & 51-60% | Moderate                       |
| 20-34% & 61-64% | Unhealthy for sensitive groups |
| 15-19% & 65-80% | Unhealthy                      |
| 1-14% & 81-100% | Very Unhealthy                 |

### Nitrogen Oxide (NO<sub>x</sub>)

| NOx Range (index) | Air Quality Level              |
|-------------------|--------------------------------|
| 0-50              | Good                           |
| 51-100            | Moderate                       |
| 101-150           | Unhealthy for sensitive groups |
| 151-200           | Unhealthy                      |
| 201-300           | Very Unhealthy                 |
| 301-500           | Hazardous                      |

### Noise (dB)

| Noise (dB) | Air Quality Level              |
|------------|--------------------------------|
| <=70dB     | Good                           |
| >70dB      | Unhealthy for sensitive groups |

## OPTIONAL SENSORS

### Nitrogen Dioxide (NO<sub>2</sub>)

| NO <sub>2</sub> Range (ppb) | Air Quality Level |
|-----------------------------|-------------------|
| 0-53                        | Good              |
| 54-100                      | Moderate          |

|           |                                |
|-----------|--------------------------------|
| 101-360   | Unhealthy for sensitive groups |
| 361-649   | Unhealthy                      |
| 650-1249  | Very Unhealthy                 |
| 1250-2049 | Hazardous                      |

### Formaldehyde (HCHO)

| HCHO Range (ppb) | Air Quality Level              |
|------------------|--------------------------------|
| 0-25             | Good                           |
| 26-50            | Moderate                       |
| 51-80            | Unhealthy for sensitive groups |
| 81-200           | Unhealthy                      |
| 201-400          | Very Unhealthy                 |
| >400             | Hazardous                      |

### Carbon Monoxide (CO)

| CO Range (ppm) | Air Quality Level              |
|----------------|--------------------------------|
| 0-4.4          | Good                           |
| 4.5-9.4        | Moderate                       |
| 9.5-12.4       | Unhealthy for sensitive groups |
| 12.5-15.4      | Unhealthy                      |
| 15.5-30.4      | Very Unhealthy                 |
| 30.5-50.5      | Hazardous                      |

### Sulphur Dioxide (SO2)

| SO2 Range (ppb) | Air Quality Level |
|-----------------|-------------------|
| 0-20            | Good              |

|         |                                |
|---------|--------------------------------|
| 21-75   | Moderate                       |
| 76-185  | Unhealthy for sensitive groups |
| 186-304 | Unhealthy                      |
| 305-500 | Very Unhealthy                 |
| >500    | Hazardous                      |

### Ammonia (NH<sub>3</sub>)

| NH <sub>3</sub> Range (ppb) | Air Quality Level              |
|-----------------------------|--------------------------------|
| 0-200                       | Good                           |
| 201-500                     | Moderate                       |
| 501-1700                    | Unhealthy for sensitive groups |
| 1701-2500                   | Unhealthy                      |
| 2501-5000                   | Very Unhealthy                 |
| >5000                       | Hazardous                      |

### Ozone (O<sub>3</sub>)

| O <sub>3</sub> Range (ppb) | Air Quality Level              |
|----------------------------|--------------------------------|
| 0-54                       | Good                           |
| 55-70                      | Moderate                       |
| 71-85                      | Unhealthy for sensitive groups |
| 86-105                     | Unhealthy                      |
| 106-200                    | Very Unhealthy                 |
| 201-604                    | Hazardous                      |

### Hydrogen (N<sub>2</sub>)

| H <sub>2</sub> Range (ppb) | Air Quality Level |
|----------------------------|-------------------|
| 0-0.1                      | Good              |

|          |                                |
|----------|--------------------------------|
| 0.11-0.5 | Moderate                       |
| 0.51-1.0 | Unhealthy for sensitive groups |
| 1.1-2.0  | Unhealthy                      |
| 2.1-4.0  | Very Unhealthy                 |
| >4.0     | Hazardous                      |

### Hydrogen sulfide (H<sub>2</sub>S)

| H <sub>2</sub> S Range (ppb) | Air Quality Level              |
|------------------------------|--------------------------------|
| 0-1.4                        | Good                           |
| 1.5-7                        | Moderate                       |
| 8-30                         | Unhealthy for sensitive groups |
| 31-100                       | Unhealthy                      |
| 101-300                      | Very Unhealthy                 |
| >300                         | Hazardous                      |

## **NanoDetect PRO Cleaning and Re-calibration**

Regular maintenance helps ensure the NanoDetect PRO continues to deliver accurate and reliable air quality data.

### **Cleaning Process**

To maintain sensor accuracy, the NanoDetect PRO should be cleaned on a regular basis.

- **Recommended cleaning interval:** every **3 to 6 months**, depending on the operating environment
- In environments with **high levels of dust, pollen, or particulate matter** (e.g. wildfire smoke or construction areas), more frequent cleaning may be required

### **Cleaning instructions:**

- Clean the exterior of the device using a **dry, soft cloth**
- **Do not** use liquid cleaners, solvents, or aerosol sprays on the device

### **Sensor Re-calibration**

The sensors within the NanoDetect PRO have an expected operational life of approximately **18 to 24 months**, depending on environmental exposure.

- Both the **NanoView App** and **NanoView Dashboard** provide a visual indication of remaining sensor operating life

**PM-TVOC: 85.8% HCHO: 93.1%**

### **Important Note**

If the NanoDetect PRO is used as part of a **WELL Certified building**, the device must be **re-calibrated annually**, regardless of the remaining sensor life indicator.

### **Re-calibration Process**

When sensor re-calibration is required, follow the steps below:

1. **Order replacement sensor capsule(s)** directly from WellAir
2. **Replace the sensor capsule** by swapping the new capsule with the existing one
3. **Dispose of the used sensor capsule** in accordance with **WEEE directives** or applicable local regulations

This modular capsule replacement approach provides a **fast, cost-effective method** of re-calibrating the device while minimizing downtime.

# NanoDetect PRO and NanoView Troubleshooting Guide

## Troubleshooting – Device Not Operating as Expected

If the NanoDetect PRO device is not operating correctly, check the following items in order:

### Basic Power & Installation Checks

- Confirm there is an **active electrical power supply**
- Verify the **power input connection** to the device is secure
- Ensure all wiring connections are **correct, secure, and properly tightened**
- Reconnect any **loose or disconnected wires** as needed

### Network & System Status Checks

- Confirm the device status using the **NanoView App or NanoView Dashboard**
- Verify the **Wi-Fi network is operational** and accessible
- Ensure the device is installed in a location **protected from water exposure or splashing**

### Maintenance & Environmental Checks

- Confirm the device has been cleaned correctly
  - The NanoDetect PRO should be cleaned **only with a dry cloth**
  - **Do not** use liquids, solvents, or aerosol cleaners
- If applicable, test **dry contact wiring** using a multimeter set to **continuity mode**

### If No Issues Are Found

If the checks above do not resolve the issue:

#### 1. Power cycle the device

Turn the sensor off, wait a few seconds, then turn it back on

#### 2. Perform a factory reset

Follow the factory reset procedure outlined earlier in this guide

*(Note: A factory reset will remove existing configuration and network settings.)*

### PM10 and PM2.5 Readings Appear Inaccurate

If **PM10 or PM2.5 readings** appear unusually high or low, perform the following checks:

- Inspect the **air inlets and outlets**, as well as the interior of the device, for **dust, debris, or blockage** that may affect airflow and sensor accuracy
- Confirm the **cleaning process** has been carried out correctly
  - In environments with elevated dust or particulate levels, cleaning may need to be performed **more frequently**

If readings remain inconsistent after these checks, allow the device time to stabilize following cleaning and verify readings again via the NanoView App or Dashboard.

#### **Temperature measurement reading different than the actual ambient reading**

The temperature measurement should be within a couple of degrees of the ambient temperature. However, the temperature measurement could be affected if:

Higher Temperature:

- the monitor is in direct sunlight,
- the wall the monitor is mounted on is radiating heat, or
- heated ventilation air is blowing onto the monitor.

Lower Temperature

- The wall the monitor is mounted on is cooler than ambient, or
- Cooled ventilation air is blowing onto the monitor.