
Aurora - Staking
Farm

NEAR Smart Contract Security
Audit

Prepared by: Halborn

Date of Engagement: February 9th, 2022 - March 25th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 AUDIT SUMMARY 8

1.3 TEST APPROACH & METHODOLOGY 8

RISK METHODOLOGY 9

1.4 SCOPE 11

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 12

3 FINDINGS & TECH DETAILS 13

3.1 (HAL-01) HAL01 - PUBLICLY CALLABLE FUNCTIONS LEADING TO OUT-OF-

CONTRACT FUNDS BURN - HIGH 15

Description 15

Code Location 15

Proof of Concept 16

Risk Level 16

Recommendation 16

Remediation Plan 17

3.2 (HAL-02) HAL02 - IMPROPER ROLE-BASED ACCESS CONTROL POLICY -

HIGH 18

Description 18

Code Location 18

Risk Level 18

Recommendation 18

Remediation Plan 19

1

3.3 (HAL-03) HAL03 - MULTIPLE STAKING ACTIONS CAN BE PERFORMED WHILE

CONTRACT IS PAUSED - MEDIUM 20

Description 20

Risk Level 20

Recommendation 20

Remediation Plan 20

3.4 (HAL-04) HAL04 - LACK OF VALIDATION OF BURN FRACTION - MEDIUM

21

Description 21

Code Location 21

Proof of Concept: 22

Risk Level 24

Recommendation 24

Remediation Plan 24

3.5 (HAL-05) HAL05 - VALUE CONVERSION TO SMALLER SIZES MAY RESULT

IN OVERFLOWS - LOW 25

Description 25

Code Location 25

Risk Level 25

Recommendation 25

Remediation Plan 26

3.6 (HAL-06) HAL06 - DELEGATOR AND PREDECESSOR CAN BE THE SAME -

LOW 27

Description 27

Code Location 27

Recommendation 27

Remediation Plan 27

2

3.7 (HAL-07) HAL07 - USE OF VULNERABLE CRATES - LOW 28

Description 28

3.8 Recommendation 28

Remediation Plan 28

3.9 (HAL-08) HAL08 - DEPOSIT ATTACHED IS NOT ASSERTED - LOW 29

Description 29

Code Location 29

Recommendation 29

3.10 (HAL-09) HAL09 - REDUNDANT ASSERTION - INFORMATIONAL 30

Description 30

Code Location 30

Recommendation 30

Remediation Plan 30

3.11 (HAL-10) HAL10 - ASSERTION SHOULD BE REPLACED BY A MACRO -

INFORMATIONAL 31

Description 31

Code Location 31

Recommendation 31

Remediation Plan 31

3.12 (HAL-11) HAL11 - DEFAULT IMPLEMENTATION SHOULD BE REPLACED BY A

MACRO - INFORMATIONAL 32

Description 32

Code Location 32

Recommendation 32

3

Remediation Plan 32

4 AUTOMATED TESTING 33

4.1 AUTOMATED ANALYSIS 34

Description 34

Results 34

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 02/22/2022 Mustafa Hasan

0.2 Document Edits 03/08/2022 Mustafa Hasan

0.3 Document Edits 03/19/2022 Mustafa Hasan

0.4 Document Edits 03/22/2022 Timur Guvenkaya

0.5 Final Draft 03/25/2022 Timur Guvenkaya

0.6 Draft Review 03/25/2022 Gabi Urrutia

1.0 Remediation Plan 04/20/2022 Mustafa Hasan

1.1 Remediation Plan Review 04/20/2022 Gabi Urrutia

5

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Timur Guvenkaya Halborn Timur.Guvenkaya@halborn.com

Mustafa Hasan Halborn Mustafa.Hasan@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Timur.Guvenkaya@halborn.com
mailto:Mustafa.Hasan@halborn.com

7

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Aurora engaged Halborn to conduct a security assessment on the staking farm

NEAR smart contracts utilized by them, beginning on February 9th, 2022

and ending March 25th, 2022. Aurora provides Ethereum compatibility,

NEAR Protocol scalability, and industry-first user experience through

affordable transactions.

Though this security audit’s outcome is satisfactory, only the most

essential aspects were tested and verified to achieve objectives and

deliverables set in the scope due to time and resource constraints. It

is essential to note the use of the best practices for secure development.

1.2 AUDIT SUMMARY

The team at Halborn was provided 6 weeks for the engagement and assigned

two full-time security engineers to audit the security of the assets

in scope. The engineers are blockchain and smart contract security

experts with advanced penetration testing, smart-contract hacking, and

deep knowledge of multiple blockchain protocols.

The purpose of this audit is to achieve the following:

• Identify potential security issues within the NEAR smart contracts.

In summary, Halborn identified few security risks that were mostly ad-

dressed by the Aurora team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual view of the code and automated

security testing to balance efficiency, timeliness, practicality, and

accuracy in regard to the scope of the smart contract audit. While

8

EX
EC

UT
IV

E
OV

ER
VI

EW

manual testing is recommended to uncover flaws in logic, process, and

implementation; automated testing techniques help enhance coverage of

smart contracts and can quickly identify items that do not follow security

best practices. The following phases and associated tools were used

throughout the term of the audit:

• Research into architecture, purpose, and use of the platform.

• Manual code read and walkthrough.

• Manual Assessment of use and safety for the critical Rust vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes.

• Fuzz testing. (cargo fuzz, honggfuzz)

• Checking the unsafe code usage. (cargo-geiger)

• Scanning of Rust files for vulnerabilities.(cargo audit)

• Deployment to devnet through near-cli

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

9

EX
EC

UT
IV

E
OV

ER
VI

EW

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

10

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

• Staking Factory

• Staking Farm

11

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/referencedev/staking-farm/tree/master/staking-factory
https://github.com/referencedev/staking-farm/tree/master/staking-farm

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 2 2 4 3

IM
PA
CT

LIKELIHOOD

(HAL-03)
(HAL-04)

(HAL-02) (HAL-01)

(HAL-05)
(HAL-06)
(HAL-07)

(HAL-08)

(HAL-09)
(HAL-10)
(HAL-11)

12

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - PUBLICLY CALLABLE FUNCTIONS
LEADING TO OUT-OF-CONTRACT FUNDS

BURN
High NOT APPLICABLE

HAL02 - IMPROPER ROLE-BASED ACCESS
CONTROL POLICY

High PARTIALLY SOLVED

HAL03 - MULTIPLE STAKING ACTIONS
CAN BE PERFORMED WHILE CONTRACT IS

PAUSED
Medium SOLVED - 04/12/2022

HAL04 - LACK OF VALIDATION OF BURN
FRACTION

Medium SOLVED - 04/12/2022

HAL05 - VALUE CONVERSION TO SMALLER
SIZES MAY RESULT IN OVERFLOWS

Low SOLVED - 04/12/2022

HAL06 - DELEGATOR AND PREDECESSOR
CAN BE THE SAME

Low NOT APPLICABLE

HAL07 - USE OF VULNERABLE CRATES Low RISK ACCEPTED

HAL08 - DEPOSIT ATTACHED IS NOT
ASSERTED

Low NOT APPLICABLE

HAL09 - REDUNDANT ASSERTION Informational SOLVED - 04/12/2022

HAL10 - ASSERTION SHOULD BE
REPLACED BY A MACRO

Informational SOLVED - 04/12/2022

HAL11 - DEFAULT IMPLEMENTATION
SHOULD BE REPLACED BY A MACRO

Informational SOLVED - 04/12/2022

13

EX
EC

UT
IV

E
OV

ER
VI

EW

14

FINDINGS & TECH
DETAILS

3.1 (HAL-01) HAL01 - PUBLICLY
CALLABLE FUNCTIONS LEADING TO
OUT-OF-CONTRACT FUNDS BURN - HIGH

Description:

The unstake_burn() and burn() functions in “staking-farm/src/stake.rs”

can be publicly callable by anyone, allowing malicious users to continu-

ally call the functions with each new epoch, which leads to the reduction

of the total stakes in the pool, which would result in fewer rewards for

each user who stakes and the transfer of all unstaked tokens to address

zero.

Code Location:

Listing 1: staking-farm/src/stake.rs

127 pub fn unstake_burn (&mut self) {

128 self.internal_unstake_all (& AccountId :: new_unchecked(

ë ZERO_ADDRESS.to_string ()));

129 }

Listing 2: staking-farm/src/stake.rs

132 pub fn burn(&mut self) {

133 let account_id = AccountId :: new_unchecked(ZERO_ADDRESS.

ë to_string ());

134 let account = self.internal_get_account (& account_id);

135 if account.unstaked > MIN_BURN_AMOUNT {

136 // TODO: replace with burn host function when available.

137 self.internal_withdraw (& account_id , account.unstaked);

138 }

139 }

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

The following test case was developed to showcase the issue:

Listing 3

1 fn public_token_burning () {

2 let (root , pool) = setup(to_yocto("5"), 1, 3);

3 let user1 = create_user_no_stake (&root , &pool);

4 wait_epoch (&root);

5 assert_all_success(call!(root , pool.ping()));

6 wait_epoch (&root);

7 //User forces all of the zero address account 's tokens to be

ë unstaked

8 assert_all_success(call!(user1 , pool.unstake_burn ()));

9 println!("Unstaked balance: {}", to_int(view!(pool.

ë get_account_unstaked_balance(burn_account ()))));

10 //Wait for epochs before funds can be withdrawn to the zero

ë address account (effectively burning them)

11 wait_epoch (&root);

12 wait_epoch (&root);

13 wait_epoch (&root);

14 wait_epoch (&root);

15 assert_all_success(call!(user1 , pool.burn()));

16 //Zero address should have zero unstaked tokens

17 println!("Unstaked balance: {}", to_int(view!(pool.

ë get_account_unstaked_balance(burn_account ()))));

18 }

Risk Level:

Likelihood - 4

Impact - 5

Recommendation:

Check if the owner is calling the functions before executing their logic,

otherwise revert.

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

NOT APPLICABLE: The team accepts this behavior as it is intentional

based on the reasoning at https://github.com/referencedev/staking-farm#

burning-rewards

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/referencedev/staking-farm#burning-rewards
https://github.com/referencedev/staking-farm#burning-rewards

3.2 (HAL-02) HAL02 - IMPROPER
ROLE-BASED ACCESS CONTROL POLICY -
HIGH

Description:

It was observed that most of the privileged functionality is controlled

by the owner. Additional authorization levels are needed to implement

the principle of least privilege, also known as least authority, which

ensures that only authorized processes, users, or programs can access

necessary resources or information. Role ownership is useful in a simple

system, but more complex projects require more roles by using role-based

access control policy.

Code Location:

The owner can access those functions:

• stop_farm function in farm.rs

• All functions in owner.rs

Risk Level:

Likelihood - 3

Impact - 5

Recommendation:

Adding additional roles is recommended to adhere to the principle of least

privilege and limit owner privileges. You can include the pauser role

and change assert_owner_or_authorized_user() to allow only authorized

users to perform actions. Also, do not allow the owner to be set as an

authorized user via add_authorized_user.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

PARTIALLY SOLVED: The Aurora team introduced a fix that separates owner

and pauser permissions in https://github.com/referencedev/staking-

farm/pull/11. However, the fix is partial, since the owner can still

become a pauser and the pausers list could become empty by removing all

pausers.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) HAL03 - MULTIPLE
STAKING ACTIONS CAN BE PERFORMED
WHILE CONTRACT IS PAUSED - MEDIUM

Description:

The internal_restake() function in “staking-farm/src/internal.rs” checks

if the contract is paused before performing its internal logic, however

multiple functions that perform other staking actions do not perform

that check before execution, allowing staking actions to be carried out

even when staking is paused. Such functions include internal_stake() and

inner_unstake().

Risk Level:

Likelihood - 2

Impact - 5

Recommendation:

All functions that perform logic that affects staking actions should

start by checking whether the contract is paused or not.

Remediation Plan:

SOLVED: The Aurora team fixed this issue in https://github.com/referencedev/staking-

farm/pull/11.

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) HAL04 - LACK OF
VALIDATION OF BURN FRACTION -
MEDIUM

Description:

When a new instance of StakingContract is created, a burn fraction has

to be provided and is then used to determine the amount of tokens burned

with each call to the ping() function. An assert_valid() function is

implemented on the Ratio struct that represents the fraction, however

it is never called on the passed fraction value before it is used in

the StakingContract. This allows an owner to carry out the following

scenarios:

1. Create a staking pool with a burn fraction that evaluates to 1,

meaning all rewards will be burned and nothing will remain for the owner

and delegators

2. Create a staking pool with a burn fraction that evaluates to more than

1, which will cause a panic case every time internal_ping() is called

3. Create a staking pool with a burn fraction that evaluates to 0,

meaning nothing will ever burn, which would allow the owner to basically

harvest all the rewards if they set the reward fee to a fraction that

evaluates to 1

Code Location:

Listing 4: staking-farm/src/lib.rs (Lines 198,221)

193 #[init]

194 pub fn new(

195 owner_id: AccountId ,

196 stake_public_key: PublicKey ,

197 reward_fee_fraction: Ratio ,

198 burn_fee_fraction: Ratio ,

199) -> Self {

200 assert!(!env:: state_exists (), "Already initialized");

201 reward_fee_fraction.assert_valid ();

202 assert!(

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

203 env:: is_valid_account_id(owner_id.as_bytes ()),

204 "The owner account ID is invalid"

205);

206 let account_balance = env:: account_balance ();

207 let total_staked_balance = account_balance -

ë STAKE_SHARE_PRICE_GUARANTEE_FUND;

208 assert_eq!(

209 env:: account_locked_balance (),

210 0,

211 "The staking pool shouldn 't be staking at the

ë initialization"

212);

213 let mut this = Self {

214 stake_public_key: stake_public_key.into(),

215 last_epoch_height: env:: epoch_height (),

216 last_total_balance: account_balance ,

217 total_staked_balance ,

218 total_stake_shares: NumStakeShares ::from(

ë total_staked_balance),

219 total_burn_shares: 0,

220 reward_fee_fraction: UpdatableRewardFee ::new(

ë reward_fee_fraction),

221 burn_fee_fraction ,

222 accounts: UnorderedMap ::new(StorageKeys :: Accounts),

223 farms: Vector ::new(StorageKeys :: Farms),

224 active_farms: Vec::new(),

225 paused: false ,

226 authorized_users: UnorderedSet ::new(StorageKeys ::

ë AuthorizedUsers),

227 authorized_farm_tokens: UnorderedSet ::new(StorageKeys

ë :: AuthorizedFarmTokens),

228 };

Proof of Concept::

Test cases were done and indeed they resulted in 0 rewards, panic and

the owner collected the full reward for the 3 cases mentioned above,

respectively:

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 5: Burning all rewards

1 fn burn_all_rewards () {

2 let (root , pool) = setup(to_yocto("10000") + 1_000_000_000_000

ë , 10, 10);

3 let _ = create_user_and_stake (&root , &pool);

4 wait_epoch (&root);

5 assert_all_success(call!(root , pool.ping()));

6

7 wait_epoch (&root);

8 assert_all_success(call!(root , pool.ping()));

9 }

Listing 6: Panic on every ping() function call

1 fn panic_on_ping () {

2 let (root , pool) = setup(to_yocto("10000") + 1_000_000_000_000

ë , 10, 11);

3 let _ = create_user_and_stake (&root , &pool);

4 wait_epoch (&root);

5 assert_all_success(call!(root , pool.ping()));

6 }

Listing 7: Owner getting all rewards

1 fn owner_gets_all_rewards () {

2 let (root , pool) = setup(to_yocto("10000") + 1_000_000_000_000

ë , 10, 0);

3 let user1 = create_user_and_stake (&root , &pool);

4 wait_epoch (&root);

5 assert_all_success(call!(root , pool.ping()));

6

7 let mut root_balance = to_int(view!(pool.

ë get_account_total_balance(root.account_id ())));

8 let mut user_balance = to_int(view!(pool.

ë get_account_total_balance(user1.account_id ())));

9

10 log!("First iteration: Root balance: {}\ nUser balance: {}",

ë root_balance , user_balance);

11

12 wait_epoch (&root);

13 assert_all_success(call!(root , pool.ping()));

14

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

15 root_balance = to_int(view!(pool.get_account_total_balance(

ë root.account_id ())));

16 user_balance = to_int(view!(pool.get_account_total_balance(

ë user1.account_id ())));

17

18 log!("Second iteration: Root balance: {}\ nUser balance: {}",

ë root_balance , user_balance);

19 }

Risk Level:

Likelihood - 2

Impact - 5

Recommendation:

The assert_valid() function must be called before the fraction is used

to create the StakingContract instance.

Remediation Plan:

SOLVED: The Aurora team fixed this issue in https://github.com/referencedev/staking-

farm/pull/11.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.5 (HAL-05) HAL05 - VALUE
CONVERSION TO SMALLER SIZES MAY
RESULT IN OVERFLOWS - LOW

Description:

This behavior exists in multiple areas of the project, for example in

the multiply() function implemented for the Ratio struct in “staking-

farm/src/lib.rs”. It is required to enforce that the ratio is valid.

Code Location:

Listing 8: staking-farm/src/lib.rs

175 pub fn multiply (&self , value: Balance) -> Balance {

176 if self.denominator == 0 || self.numerator == 0 {

177 0

178 } else {

179 (U256::from(self.numerator) * U256::from(value) / U256

ë ::from(self.denominator))

180 .as_u128 ()

181 }

182 }

Risk Level:

Likelihood - 2

Impact - 3

Recommendation:

Ratio validation should always take place to avoid cases of overflow.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

SOLVED: The Aurora team fixed this issue in https://github.com/referencedev/staking-

farm/pull/11.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.6 (HAL-06) HAL06 - DELEGATOR AND
PREDECESSOR CAN BE THE SAME - LOW

Description:

It was observed that the claim() function accepts that delegator_id

is equal to env::predecessor_account_id(). Enabling this will cause

the smart contract to perform a redundant operation of doing a cross

contract call to the delegator and then setting claim_account_id and

send_account_id to the same value in internal_claim().

Code Location:

• staking-farm/src/farm.rs: claim()

Recommendation:

Consider asserting delegator_id != env::predecessor_account_id() to

avoid redundant operations.

Remediation Plan:

NOT APPLICABLE: The Aurora team will not fix since it does not pose a

direct risk and updating the code might introduce other bugs.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.7 (HAL-07) HAL07 - USE OF
VULNERABLE CRATES - LOW

Description:

The following crates used in the project dependencies have known vulner-

abilities:

ID package Short Description

RUSTSEC-2020-0159 chrono Potential segfault in ‘localtime_r‘ invoca-

tions

RUSTSEC-2021-0067 cranelift-

codegen

Memory access due to code generation flaw

in Cranelift module

RUSTSEC-2021-0013 raw-cpuid Soundness issues in ‘raw-cpuid‘

RUSTSEC-2021-0089 raw-cpuid Optional ‘Deserialize‘ implementations

lacking validation

RUSTSEC-2022-0013 regex Regexes with large repetitions on empty sub-

expressions take a very long time to parse

RUSTSEC-2020-0071 time Potential segfault in the time crate

RUSTSEC-2021-0110 wasmtime Multiple Vulnerabilities in Wasmtime

3.8 Recommendation

Even if those vulnerable crates cannot affect the underlying application,

it is recommended to be aware of them. Furthermore, you need to configure

dependency monitoring to always be alert when a new vulnerability is

disclosed in one of the project crates.

Remediation Plan:

RISK ACCEPTED: The Aurora team accepted the risk of this finding; however,

no fixes were introduced as the affected crates are not under the team’s

control.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2021-0067
https://rustsec.org/advisories/RUSTSEC-2021-0013
https://rustsec.org/advisories/RUSTSEC-2021-0089
https://rustsec.org/advisories/RUSTSEC-2022-0013
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2021-0110

3.9 (HAL-08) HAL08 - DEPOSIT
ATTACHED IS NOT ASSERTED - LOW

Description:

The deposit() function does not assert that the attached deposit works.

Users can call this function without attaching a deposit by making the

amount zero in the internal_deposit function.

Code Location:

• staking-farm/src/stake.rs: deposit()

Recommendation:

It is advised to assert at least one to avoid any redundant calls to that

function.

NOT APPLICABLE: The Aurora team decided this will not be fixed since it

does not pose a direct risk.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.10 (HAL-09) HAL09 - REDUNDANT
ASSERTION - INFORMATIONAL

Description:

In the new function, an assert prevents anyone from re-initializing

the contract. However, since the #[init] macro is used, this check is

redundant.

Code Location:

Listing 9: staking-farm/src/lib.rs (Line 200)

193 #[init]

194 pub fn new(

195 owner_id: AccountId ,

196 stake_public_key: PublicKey ,

197 reward_fee_fraction: Ratio ,

198 burn_fee_fraction: Ratio ,

199) -> Self {

200 assert!(!env:: state_exists (), "Already initialized");

201 reward_fee_fraction.assert_valid ();

202 ...

Recommendation:

Consider removing that assertion to avoid redundant code.

Remediation Plan:

SOLVED: The Aurora team fixed this issue in https://github.com/referencedev/staking-

farm/pull/11.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.11 (HAL-10) HAL10 - ASSERTION
SHOULD BE REPLACED BY A MACRO -
INFORMATIONAL

Description:

In the on_stake_action function, the assert statement is used to ensure

that the function is only callable by the contract itself. However,

near_sdk already provides the #[private] macro, which can be used to do

that.

Code Location:

Listing 10: staking-farm/src/stake.rs (Line 146)

145 pub fn on_stake_action (&mut self) {

146 assert_eq!(

147 env:: current_account_id (),

148 env:: predecessor_account_id (),

149 "Can be called only as a callback"

150);

151 ...

152 }

Recommendation:

Consider adding the #[private] macro which implements the same check.

Remediation Plan:

SOLVED: The Aurora team fixed this issue in https://github.com/referencedev/staking-

farm/pull/11.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.12 (HAL-11) HAL11 - DEFAULT
IMPLEMENTATION SHOULD BE REPLACED
BY A MACRO - INFORMATIONAL

Description:

The /staking-farm/staking-farm/src/lib.rs contract contains a default im-

plementation of a contract that triggers the assertion. However, instead

of coding it yourself, there is a macro called PanicOnDefault that you

can bypass.

Code Location:

Listing 11: staking-farm/src/lib.rs

154 impl Default for StakingContract {

155 fn default () -> Self {

156 panic!("Staking contract should be initialized before

ë usage")

157 }

158 }

Recommendation:

Consider bypassing PanicOnDefault to remove that default implementation.

Remediation Plan:

SOLVED: The Aurora team fixed this issue in https://github.com/referencedev/staking-

farm/pull/11.

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

33

AUTOMATED TESTING

4.1 AUTOMATED ANALYSIS

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and vulnerabilities. Among the tools used

was cargo audit, a security scanner for vulnerabilities reported to the

RustSec Advisory Database. All vulnerabilities published in https://

crates.io are stored in a repository named The RustSec Advisory Database.

cargo audit is a human-readable version of the advisory database which

performs a scanning on Cargo.lock. Security Detections are only in

scope. All vulnerabilities shown here were already disclosed in the above

report. However, to better assist the developers maintaining this code,

the auditors are including the output with the dependencies tree, and

this is included in the cargo audit output to better know the dependencies

affected by unmaintained and vulnerable crates.

Results:

ID package Short Description

RUSTSEC-2020-0159 chrono Potential segfault in ‘localtime_r‘ invoca-

tions

RUSTSEC-2021-0067 cranelift-

codegen

Memory access due to code generation flaw

in Cranelift module

RUSTSEC-2021-0013 raw-cpuid Soundness issues in ‘raw-cpuid‘

RUSTSEC-2021-0089 raw-cpuid Optional ‘Deserialize‘ implementations

lacking validation

RUSTSEC-2022-0013 regex Regexes with large repetitions on empty sub-

expressions take a very long time to parse

RUSTSEC-2020-0071 time Potential segfault in the time crate

RUSTSEC-2021-0110 wasmtime Multiple Vulnerabilities in Wasmtime

34

AU
TO

MA
TE

D
TE

ST
IN

G

https://rustsec.org/advisories/RUSTSEC-2020-0159
https://rustsec.org/advisories/RUSTSEC-2021-0067
https://rustsec.org/advisories/RUSTSEC-2021-0013
https://rustsec.org/advisories/RUSTSEC-2021-0089
https://rustsec.org/advisories/RUSTSEC-2022-0013
https://rustsec.org/advisories/RUSTSEC-2020-0071
https://rustsec.org/advisories/RUSTSEC-2021-0110

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept:
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Recommendation
	Remediation Plan

	
	Description

	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Recommendation

	
	Description
	Code Location
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	AUTOMATED ANALYSIS
	Description
	Results

