
Customer: Aurora Labs
Date: June 8th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Aurora Labs

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type Staking

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://aurora.dev/

Timeline 25.04.2022 – 07.06.2022

Changelog
02.05.2022 – Initial Review
17.05.2022 – Second Review
08.06.2022 – Third Review

www.hacken.io

https://aurora.dev/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 12

Disclaimers 18

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Aurora Labs (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is smart contracts in the repository:

Initial review scope
Repository: https://github.com/aurora-is-near/aurora-staking-contracts
Commit: b59cc2926cbaf31d351c9d048b5a2dc07cbddf70
JS tests: Yes

Technical Documentation:
Type: Whitepaper (some functional requirements included)
Link: https://forum.aurora.dev/t/aurora-staking-and-the-

community-treasury/75

Type: Technical description
Link: https://github.com/aurora-is-near/aurora-staking-contracts/

blob/main/README.md

Type: Functional requirements
Link: https://github.com/aurora-is-near/aurora-staking-contracts/

blob/main/docs/README.md

Contracts:
File: ./contracts/AdminControlled.sol
SHA3: b9a609c71670f30e7885b574c9a78475bf1947d1a0f7afb200f7005a

File: ./contracts/DelegateCallGuard.sol
SHA3: f285c7562db714aaeaab6411ba836a30fab0a25f8bdd22b05bba515b

File: ./contracts/ITreasury.sol
SHA3: 09194dbef79523270261ca99fe89800597ef499b3413c53888c8a58f

File: ./contracts/JetStakingV1.sol
SHA3: c3b6f961b4283c6d08b65d3ada9eb2fe60bcf15240314b8f735719f5

File: ./contracts/Treasury.sol
SHA3: f3ac3f67dacffb90e47c197919b313a3ab81eee1fb77a0e64bf3d23d

Second review scope
Repository: https://github.com/aurora-is-near/aurora-staking-contracts
Commit: dc0a4893e8017a13e3c5a735eca1913c467acac6
JS tests: Yes

Technical Documentation:
Type: Whitepaper (some functional requirements included)
Links:

https://forum.aurora.dev/t/aurora-staking-and-the-
community-treasury/75

https://forum.aurora.dev/t/aurora-staking-v2/243
https://forum.aurora.dev/t/setting-up-the-aurora-staking/254

www.hacken.io

https://github.com/aurora-is-near/aurora-staking-contracts
https://forum.aurora.dev/t/aurora-staking-and-the-community-treasury/75
https://forum.aurora.dev/t/aurora-staking-and-the-community-treasury/75
https://github.com/aurora-is-near/aurora-staking-contracts/
https://github.com/aurora-is-near/aurora-staking-contracts/
https://github.com/aurora-is-near/aurora-staking-contracts/blob/main/docs/README.md
https://github.com/aurora-is-near/aurora-staking-contracts/blob/main/docs/README.md
https://github.com/aurora-is-near/aurora-staking-contracts
https://forum.aurora.dev/t/aurora-staking-and-the-community-treasury/75
https://forum.aurora.dev/t/aurora-staking-and-the-community-treasury/75
https://forum.aurora.dev/t/aurora-staking-v2/243
https://forum.aurora.dev/t/setting-up-the-aurora-staking/254

Type: Technical description
Link: https://github.com/aurora-is-near/aurora-staking-contracts/

blob/main/README.md

Type: Functional requirements
Link: https://github.com/aurora-is-near/aurora-staking-contracts/

blob/main/docs/README.md

Contracts:
File: ./contracts/AdminControlled.sol
SHA3: d1ea0625e760f4237f518942b18e2a425bbf0a5e3cad1e8d51872498

File: ./contracts/ITreasury.sol
SHA3: aa9e381645142126780ab317bba703f577b3c60c4b9af28bb557d655

File: ./contracts/JetStakingV1.sol
SHA3: b242d63bf4123ad0f6f8d17c7b21294ade1f72b979133777f331a41c

File: ./contracts/Treasury.sol
SHA3: 853aef9b54c385858035d85b711656fc11a48e0eb9a4a232573e3829

Third review scope
Repository: https://github.com/aurora-is-near/aurora-staking-contracts
Commit: e32dc4197bd3cb4db4178695e969f58b053821b3
JS tests: Yes

Technical Documentation:
Type: Whitepaper (some functional requirements included)
Links:

https://forum.aurora.dev/t/aurora-staking-and-the-
community-treasury/75

https://forum.aurora.dev/t/aurora-staking-v2/243
https://forum.aurora.dev/t/setting-up-the-aurora-staking/254

Type: Technical description
Link: https://github.com/aurora-is-near/aurora-staking-contracts/

blob/main/README.md

Type: Functional requirements
Link: https://github.com/aurora-is-near/aurora-staking-contracts/

blob/main/docs/README.md

Contracts:
File: ./contracts/AdminControlled.sol
SHA3: 5c6029ac553c21db56465e2b88124ab6cf1726652643a9a1b1dc8530

File: ./contracts/ITreasury.sol
SHA3: aa9e381645142126780ab317bba703f577b3c60c4b9af28bb557d655

File: ./contracts/JetStakingV1.sol
SHA3: 901b391dcdf3a0324da90a9f61e58d0ad6a9f05f63d361bbe58cb383

File: ./contracts/Treasury.sol
SHA3: 493089a0726cf097703af2bf9cf427bba32859efd0a2e10abf9d54a8

www.hacken.io

https://github.com/aurora-is-near/aurora-staking-contracts/
https://github.com/aurora-is-near/aurora-staking-contracts/
https://github.com/aurora-is-near/aurora-staking-contracts/blob/main/docs/README.md
https://github.com/aurora-is-near/aurora-staking-contracts/blob/main/docs/README.md
https://github.com/aurora-is-near/aurora-staking-contracts
https://forum.aurora.dev/t/aurora-staking-and-the-community-treasury/75
https://forum.aurora.dev/t/aurora-staking-and-the-community-treasury/75
https://forum.aurora.dev/t/aurora-staking-v2/243
https://forum.aurora.dev/t/setting-up-the-aurora-staking/254
https://github.com/aurora-is-near/aurora-staking-contracts/
https://github.com/aurora-is-near/aurora-staking-contracts/
https://github.com/aurora-is-near/aurora-staking-contracts/blob/main/docs/README.md
https://github.com/aurora-is-near/aurora-staking-contracts/blob/main/docs/README.md

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io

Executive Summary

The score measurement details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided a good technical description and functional
requirements. The total Documentation Quality score is 10 out of 10.

Code quality
The total CodeQuality score is 8 out of 10. Code refers to the UI part that
is out of scope to be clear enough to prevent human factors.

Architecture quality
The architecture quality score is 10 out of 10. The logic is carefully
separated by files, and each part has its purpose.

Security score
As a result of the audit, the code contains 1 medium severity issues. The
security score is 9 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.1

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Checked Items

We have audited provided smart contracts for commonly known and more
specific vulnerabilities. Here are some of the items that are considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Not Relevant

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106 The contract should not be destroyed

until it has funds belonging to users. Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Uninitialized
Storage
Pointer

SWC-109
Storage type should be set explicitly if
the compiler version is < 0.5.0. Not Relevant

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Not Relevant

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless it is required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Failed

www.hacken.io

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-109
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Passed

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id.

Passed

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes. Passed

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Not Relevant

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Failed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Failed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Not Relevant

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block gas limit.

Failed

www.hacken.io

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Repository
Consistency Custom

The repository should contain a
configured development environment with
a comprehensive description of how to
compile, build and deploy the code.

Passed

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

www.hacken.io

System Overview

AURORA Staking is a system of contracts that allows to stake the Aurora
token and get other tokens as rewards. The system consists of the following
parts:

● AdminControlled - admin panel for contract owner to fix unexpected
issues (is implemented both for Treasury and JetStakingV1).

● Treasury + ITreasury - treasury for tokens, all unpaid rewards are
stored there.

● JetStakingV1 - staking contract that manages streams of rewards and
implements base staking logic for users.

Privileged roles
● Owners of DEFAULT_ADMIN_ROLE role can do:

○ any changes in contracts’ storages
○ use delegatecalls to untrusted sources
○ transfer any funds from Treasury
○ change Treasury address used in JetStakingV1
○ unpause contract

● Owners of PAUSE_ROLE role can pause contract:
○ paying rewards from Treasury
○ creating reward streams
○ releasing rewards to the stream owner
○ staking, unstaking, and withdrawing rewards to users
○ airdropping the Aurora token

● Owners of TREASURY_MANAGER_ROLE role can:
○ update list of supported tokens in Treasury

● Owners of AIRDROP_ROLE role can:
○ create stakings for other users and in such a way airdropping

the Aurora token
● Owners of CLAIM_ROLE role can:

○ force move rewards to pending for specified users and streams
● Owners of STREAM_MANAGER_ROLE role can:

○ manage staking reward streams (propose, cancel proposal,
remove)

www.hacken.io

Findings

Critical

No critical severity issues were found.

High

1. Wrong user shares calculation

According to documentation, the user shares value should be rounded
up, but in the code, just 1 is added. To round, the result of the
division should be checked that rounding is needed (result *
denominator < numerator).

Adding additional value to user shares may lead to wrong contract
behavior. Example (zero rewards provided for the period):

● transaction_1..2: 2 users stake 1 Aurora token
● result: users get different share values:

○ user_1 -> 1
○ user_2 -> 2

● transaction_3: trying unstake for user_1 (unstakeAll)
● result: totalAmountOfStakedAurora < totalAuroraShares =>

calculated stakeValue = 0 => unstaking 0 amount = did user lose
funds?

● transaction_4: trying unstake for user_2 (unstakeAll)
● transaction_5: trying unstake for user_1 (unstakeAll)
● result: transaction_4 and transaction_5 are successful

The success of unstaking depends on the stake status of another user.

This could lead to locking user assets (or part of them) on contract
without the ability to withdraw them.

Contract: JetStakingV1

Function: _stake, unstakeAll, unstake

Recommendation: check the logic, update unstake functions to consider
additional added value or remove the addition from stake function,
implement unit tests that cover cases of staking by multiple users,
implement documentation for the internal staking algorithm.

Status: Fixed (second review)

2. Possible broken calculations

Calculations of reward during the endIndex period use startIndex
period. If the endIndex period is bigger than the startIndex period,
more rewards would be distributed than allocated.

The function is overwhelmed with template calculations.

This could lead to wrong reward calculation and possible double
spending.

Contract: JetStakingV1
www.hacken.io

Function: rewardsSchedule

Recommendation: reduce code duplications, use the right period for
reward calculations.

Status: Fixed (second review)

3. Possible race conditions

The withdrawal amount and shares amount highly depend on the order of
transactions. Example (all happens in one block):

● transaction_1: user_1 stakes 1 Aurora
● transaction_2: user_2 stakes 10**18 Aurora
● transaction_3..4: both users unstakes all
● result: both users get a significant amount in pending as they

have mostly equal shares amount, but if transaction_1 and
transaction_2 are swapped, user_1 will receive a really small
withdrawal amount and user_2 the rest because shares amount
values are different

It is more profitable for user_1 to stake before user_2, but for
user_2 it is better to be the first too, so race conditions appear.

Contract: JetStakingV1

Functions: _stake, _unstake, _before

Recommendation: check calculating stream shares logic, implement
corresponding documentation for users to understand how many tokens
they will get on withdrawal, cover this case with unit tests.

Status: Mitigated (second review). Such a situation is not possible
with a large number of users.

4. Missing ability to pause contract

According to the documentation, owners of PAUSE_ROLE should be able
to pause contracts, but this ability is missed.

This could lead to the helplessness of owners of PAUSE_ROLE in
critical situations.

Contract: AdminControlled

Function: adminPause

Recommendation: review the functionality and fix it according to the
documentation.

Status: Fixed (third review)

5. Distributing Aurora tokens

According to documentation, the Aurora stream is compounded, so no
Aurora should be distributed from the contract.

Due to wrong shares calculation, Aurora is distributed from the
contract. Example (all happens in one block):

www.hacken.io

● transaction_1: user stakes 10**18 Aurora
● transaction_2: user unstakes all
● result: user gets more pending amount than deposited

The user may repeat the action every tau period to get Aurora tokens
from Treasury.

Contract: JetStakingV1

Functions: _before

Recommendation: reimplement calculating stream shares logic,
implement documentation to understand how assets are distributed
through users, cover this case with unit tests.

Status: Fixed (third review)

Medium

1. Missing managing roles

To prevent the significant impact of the previous admin, it is better
to revoke all actual roles on ownership transfer.

Contracts: AdminControlled, JetStakingV1, Treasury

Function: transferOwnership

Recommendation: implement transferOwnership function in mentioned
contracts, revoke all actual roles from the old admin and grant them
to the new one.

Status: Fixed (second review)

2. Missing setting admin account

To prevent sending assets to zero account, it is better to set the
admin account in the initialize function.

Contract: AdminControlled

Function: __AdminControlled_init

Recommendation: initialize admin with msg.sender.

Status: Fixed (second review)

3. Main stream could be canceled

Aurora stream is set to be proposed on contract creation, it could be
canceled, and assets needed for other proposed streams could be
withdrawn from the staking contract.

This could lead to possible double spending.

Contract: JetStakingV1

Functions: initialize, cancelStreamProposal

www.hacken.io

Recommendation: set Aurora stream to be not proposed or check this
case in the cancellation function.

Status: Fixed (second review)

4. Missing validations

According to the documentation, before running the initialize
function of JetStakingV1, the Aurora token should be added to the
list of supported tokens, and the balance of Treasury should be big
enough.

According to the documentation, updateTreasury function should be run
only when the contract is paused.

Mentioned validation should be implemented to prevent human factors.

Contract: JetStakingV1

Functions: initialize, updateTreasury, stake, unstake, unstakeAll,
stakeOnBehalfOfOtherUsers, stakeOnBehalfOfAnotherUser

Recommendation: implement these checks.

Status: Fixed (second review)

5. Mixing role purposes

DEFAULT_ADMIN_ROLE is used in AdminControlled contract for dangerous
low-level operations and in Treasury contract for dangerous manual
reward paying, but it is used in JetStakingV1 contract for managing
streams. It is a lighter task and could be assigned to a limited
liability account, so it is better to have another role managing it.

Contract: JetStakingV1

Recommendation: implement a role for managing reward streams.

Status: Fixed (second review)

6. Locking tokens in Treasury

Creating stream proposals does not add selected tokens to the list of
supported in the Treasury contract. Rewards may not be accessible
after stream creation.

Contract: JetStakingV1

Function: proposeStream

Recommendation: check if the proposed stream token is included in the
list of supported tokens or add it automatically.

Status: Fixed (second review)

7. Transfer can fail

Transfer can fail if the destination address is a contract with a
fallback function.

www.hacken.io

Contract: AdminControlled

Function: adminSendEth

Recommendation: send Ether via call and pass Gas limit via function
parameter.

Status: Fixed (second review)

8. Missing emitting events

TokenAdded event should be emitted on adding token contract address
to list of supported, but it is missed in on contract creation.

Contract: Treasury

Function: initialize

Recommendation: emit an event every time the mapping is updated.

Status: Fixed (third review)

9. Code with no effects

According to documentation, Aurora main stream is not needed anymore,
so logic (including checks, additional structure fields etc.) linked
with it should be removed from the contract code. Unneeded code takes
additional Gas and makes development harder.

Contract: JetStakingV1

Recommendation: remove initializing of the stream and corresponding
checks.

Status: Mitigated (second review). The code is required if a new
instance of the contract is deployed.

10. Missing functionality

According to the documentation, stake, unstake, unstakeAll,
stakeOnBehalfOfOtherUsers, stakeOnBehalfOfAnotherUser functions
should claim rewards if the selected user has actual staking.

Mentioned functionality should be implemented to prevent human
factors.

Contract: JetStakingV1

Functions: initialize, updateTreasury, stake, unstake, unstakeAll,
stakeOnBehalfOfOtherUsers, stakeOnBehalfOfAnotherUser

Recommendation: implement the declared functionality.

Status: Reported

11. Possible gas exceeding

The amount of streams only increases and in such a way functions that
cycling each stream may fail according to the block Gas limit. Most
of all, it affects the functions which do not have alternatives
without a cycle.

www.hacken.io

Contract: JetStakingV1

Function: _stake, _before

Recommendation: implement an ability to remove old streams and keep
their quantity under the provided number for which Gas limit is not
exceeded.

Status: Mitigated. The Customer confirmed that number of streams will
not grow too much.

Low

1. Wrong constant value

According to the documentation, the constant FOUR_YEARS should
contain 4 years in seconds value. According to the Gregorian
calendar, the value is calculated as 60 seconds * 60 minutes * 24
hours * 365.2425 days * 4 years = 126227808 seconds, but it is set to
126227704 in the code.

Contract: JetStakingV1

Recommendation: set the constant to the right calculated value or
provide comments about the purpose of making the value different.

Status: Fixed (second review)

2. Public function that could be declared external

To save Gas, public functions that are never called by the contract
should be declared external.

Contract: JetStakingV1

Function: getStreamSchedule

Recommendation: use the external attribute for functions never called
from the contract.

Status: Fixed (second review)

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

