
NEAR

NEAR Protocol
Security Assessment Report

Version: 2.1

June, 2022

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 3
Security Review Summary 4Findings Summary . 5
Detailed Findings 6

Summary of Findings 7Vulnerable Dependencies . 8Incorrect Units in Logs . 9Unchecked Addition and Subtraction Operations . 10Lack of Test Coverage . 11Free Memory Pointer Overflow . 12Borsh Decoding Does Not Call done() . 14Hardhat/Truffle Forcefully Compiles Smart Contracts Using An Unsafe Solidity Version 15
AdminControlled.sol Lacking Admin Transfer Pattern . 16Gas Supplied To transfer() Call Might Change In The Future . 17Users Can Frontrun challenge() Function . 18Incorrect Log Output . 19Requirement for NEP-145 Implementation . 20Miscellaneous General Statements . 21

A Test Suite 24

B Vulnerability Severity Classification 27

1

NEAR Protocol Introduction

Introduction

NEAR is a blockchain leveraging a proof-of-stake consensus algorithm and a sharding design to address some ofthe scalability and performance challenges faced by existing blockchain networks.
Sigma Prime performed several security reviews (in Q4 2019, Q1 2020 and Q2 2020) targeting NEARCore (theofficial reference implementation) and initial smart contracts, powered by the NEAR platform and developed inRust.
Sigma Prime was commercially engaged to perform a security asssessment of the w-near smart contract,
FungibleToken standard library and the ETH-NEAR Rainbow Bridge.

Disclaimer

Sigma Primemakes all effort but holds no responsibility for the findings of this security review. Sigma Prime doesnot provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgementson, or provides any security review regarding, the underlying business model or the individuals involved in theproject.

Document Structure

The first section provides an overview of components contained within the scope of the security review. A sum-mary followed by a detailed reviewof the discovered vulnerabilities is then given, which assigns each vulnerabilitya severity rating (see Vulnerability Severity Classification), an open/closed/resolved status and a recommendation.Additionally, findings which do not have direct security implications (but are potentially of interest) are markedas informational. Outputs of automated testing that were developed during this assessment are also included forreference (in the Appendix: Test Suite).
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitiesfound within the scope of this review.

Page | 2

NEAR Protocol Overview

Overview

The NEAR contracts can be logically separated into two parts:

• w-near contracts representing the implementation of a wrapped version of the NEAR token. Usersare able to wrap (mint) and unwrap (burn) NEAR and wNEAR tokens respectively. near_deposit and
near_withdraw methods are used enter and exit the system.

• The implementation of the FungibleToken (NEP-141) library which aims to act as a standard interfacefor fungible tokens. NEP-141 is similar to NEP-21 (comparable to Ethereum’s ERC20 standard) but with theaddition of the ft_transfer_call method. This new method allows the receiver contract to work inconcert with the token contracts, enabling a single transaction to both transfer and call a method.

The ETH-NEAR Rainbow Bridge can also be logically separated into several distinct parts:

• The EthOnNearClient implementation accepts Ethereum block headers and maintains the canonical chainwithin a NEAR contract. A finalized threshold is used to correctly track the canonical chain, preventingusers from building invalid blocks upon the canonical chain due to chain re-orgs. The client tracks thelast 7 days of finalized blocks, ensuring the contract state does not grow endlessly. As a result, users arerequired to finish their bridge transfers within 7 days, or risk losing their funds.
• The NearOnEthClient implementation accepts NEAR block headers and does not need to verify ev-ery single NEAR header as long as it verifies at least one header per NEAR epoch. As a result, the

NearOnEthClient is able to store hashes of all NEAR headers in history. NEAR light clients only acceptfinalized blocks, so therefore NearOnEthClient does not need to deal with chain re-orgs. Signature veri-fication is a costly action on Ethereum, hence NEAR has taken an optimistic approach by allowing anyoneto challenge block headers.
• Both client implementations also contain a suite of prover contracts which either verify Ethereum eventsor NEAR contract execution results.

The ETH-NEAR Rainbow Bridge enables the transfer of tokens from Ethereum to NEAR and vice-versa. Thefungible token standard plays an essential role in maintaining compatibility between varying token implementa-tions.

Page | 3

https://nomicon.io/Standards/FungibleToken/Core.html

NEAR Protocol Security Review Summary

Security Review Summary

This review was initially conducted on the following commits:

• near-protocol/w-near : Smart contracts representing the implementation of a wrapped version of the
NEAR token.

– Commit 54f8267
• near-protocol/fungible_token : Smart contracts representing the implementation for a standard inter-face for fungible tokens. Aims to be comparable to the ERC20 standard.

– Commit bac0ec7

• aurora-is-near/rainbow-bridge : The ETH-NEARRainbowBridge, implementations of light clients andprover smart contracts on each protocol.
– Commit fd7019f

• aurora-is-near/eth-connector : Smart contracts representing a twoway bridge for sending ETH to theNEAR chain as NEP-141 represented by nETH.
– Commit 872e643

• aurora-is-near/near-erc20-connector : Enables bridging of NEAR tokens to Ethereum, represented as
eNEAR tokens and adhering to the ERC-20 standard.

– Commit 49cf263
• aurora-is-near/rainbow-token-connector : A reference to a generic ERC-20/NEP-141 connectorwhich uses NEAR’s rainbow bridge implementation.

– Commit 134b3b6

The manual code-review section of the reports, focused on identifying any and all issues/vulnerabilities associ-ated with the business logic implementation of the contracts. Specifically, their internal interactions, intendedfunctionality and correct implementation with respect to the underlying functionality of the NEAR Virtual Ma-chine (for example, verifying correct storage/memory layout). Additionally, the manual review process focuseson all known Solidity anti-patterns and attack vectors. These include, but are not limited to, the following vectors:re-entrancy, front-running, integer overflow/underflow and correct visibility specifiers. For a more thorough, butnon-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team used the following automated testing tools:

• cargo audit: https://github.com/RustSec/rustsec/tree/main/cargo-audit

• cargo outdated: https://github.com/kbknapp/cargo-outdated

• cargo fuzz: https://github.com/rust-fuzz/cargo-fuzz

• cargo hfuzz: https://github.com/rust-fuzz/honggfuzz-rs

Output for these automated tools is available upon request.
Fuzzing activities leveraging libfuzzer and honggfuzz have been performed by the testing team in order to identifybugswithin the code in scope. libfuzzer and honggfuzz are coverage-guided toolswhich explore different code

Page | 4

https://github.com/near/core-contracts/tree/54f8267436058567b66efdaba3e790394f7f1529/w-near
https://github.com/near/near-sdk-rs/tree/bac0ec71395c93620b215573bbaf5a4e4a9b8e85/near-contract-standards
https://github.com/aurora-is-near/rainbow-bridge/tree/fd7019ff001968105e8bb22627f5a5097ba345a8
https://github.com/aurora-is-near/eth-connector/tree/872e643943c1c37d36f456e127c9337310bb06b8
https://github.com/aurora-is-near/near-erc20-connector/tree/49cf26393a5c4d4ed660bf5a8745f5703e7ba861
https://github.com/aurora-is-near/rainbow-token-connector/tree/134b3b6ad900d90c6f993c52f4e3edf985aec61a
https://github.com/RustSec/rustsec/tree/main/cargo-audit
https://github.com/kbknapp/cargo-outdated
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/honggfuzz-rs
https://github.com/rust-fuzz/cargo-fuzz
https://github.com/rust-fuzz/honggfuzz-rs

NEAR Protocol Findings Summary

paths by mutating input to reach as many code paths possible. The aim is to find memory leaks, overflows, indexout of bounds or any other unexpected panics. Both tools were used in conjunction as there are certain functionswhich suited one tool over the other.
Specifically, the testing team produced the following fuzzing targets shared with the development team:

• fuzz_rlp_decode_blockheader

• fuzz_rlp_encode_decode_blockheader

• fuzz_rlp_decode_receipt

• fuzz_rlp_decode_log_entry

• fuzz_rlp_encode_decode_log_entry

• fuzz_rlp_decode_blockheader_post_london

• fuzz_borsh_blockheader

• fuzz_decode_deserialize_blockheader_pre_london

• fuzz_borsh_blockheader_post_london

• eth_locked_event

• eth_unlocked_event

• token_metadata_event

• eth_transfer_event

• eth_deposit_event

These fuzzing targets have all been shared with the development team as a by-product of this security review.Execution and instrumentation can be done by following the relevant README.md file.
Additionally, the team produced a suite of python/rust-based tests. These tests verify some of the core businesslogic.
The output of these tests are provided in the Appendix (Test Suite), and the implementations have been providedto the development team alongside this report.

Findings Summary

The testing team identified a total of 13 issues during this assessment. Categorized by their severity:
• Low: 5 issues.
• Informational: 8 issues.

All vulnerabilities have been acknowledged and/or resolved by the development team.

Page | 5

NEAR Protocol Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the scope of this review. Eachvulnerability has a severity classification which is determined from the likelihood and impact of each issue bythe matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including comments not directly related to the security pos-ture of the relevant smart contracts, are also described in this section and are labelled as "informational".
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team;
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk;
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 6

Summary of Findings

ID Description Severity Status
NSS-01 Vulnerable Dependencies Informational Closed

NSS-02 Incorrect Units in Logs Informational Resolved

NSS-03 Unchecked Addition and Subtraction Operations Informational Resolved

NSS-04 Lack of Test Coverage Informational Resolved

NSS-05 Free Memory Pointer Overflow Low Resolved

NSS-06 Borsh Decoding Does Not Call done() Low Resolved

NSS-07 Hardhat/Truffle Forcefully Compiles Smart Contracts Using An UnsafeSolidity Version Low Resolved

NSS-08 AdminControlled.sol Lacking Admin Transfer Pattern Low Resolved

NSS-09 Gas Supplied To transfer() Call Might Change In The Future Low Resolved

NSS-10 Users Can Frontrun challenge() Function Informational Closed

NSS-11 Incorrect Log Output Informational Resolved

NSS-12 Requirement for NEP-145 Implementation Informational Closed

NSS-13 Miscellaneous General Statements Informational Resolved

7

NEAR Protocol Detailed Findings

NSS-01 Vulnerable Dependencies
Asset w-near/*

Status Closed: See Resolution
Rating Informational

Description

A range of dependencies have been flagged as containing security vulnerabilities on crates.io. These are notdirect dependencies as they do not appear in Cargo.toml but exist in the dependency tree.
The following is a list of crates which are vulnerable:

• cranelift-codegen : v0.67.0
• cranelift-codegen : v0.68.0
• generic-array : v0.12.3
• raw-cpuid : v7.0.4

Recommendations

We recommend updating these dependencies to the following versions:

• cranelift-codegen : >= v0.73.1
• generic-array : >= v0.12.4 OR >= v0.13.3
• raw-cpuid : >= v9.0.0

Consider also integrating the tool cargo audit, which identifies any vulnerable dependencies in the dependencytree, into the CI process.

Resolution

Two issues have been created to resolve this issue, the first is to update the dependencies in issue #195. Thesecond, adds cargo-audit to the CI process in issue #196. However, wNEAR has been deployed and thebytecode locked on-chain hence, these changes will not be reflected on the mainnet deployment.

Page | 8

crates.io
https://github.com/RustSec/rustsec/tree/main/cargo-audit
https://github.com/near/core-contracts/issues/195
https://github.com/near/core-contracts/issues/196

NEAR Protocol Detailed Findings

NSS-02 Incorrect Units in Logs
Asset w_near.rs

Status Resolved: See Resolution
Rating Informational

Description

The function near_withdraw() allows a user towithdraw an amount of NEAR specified in units of yoctoNEAR .
The log emitted states the units as NEAR rather than yoctoNEAR .

Recommendations

We recommend modifying the logs such that either the units are in yoctoNEAR or the amount is in NEAR .

Resolution

The issue is resolved in PR #198 to modify the units to say yoctoNEAR . However, wNEAR has been deployedand the bytecode locked on-chain hence, these changes will not be reflected on the mainnet deployment.

Page | 9

https://github.com/near/core-contracts/pull/198

NEAR Protocol Detailed Findings

NSS-03 Unchecked Addition and Subtraction Operations
Asset fungible_token/core_impl.rs

Status Resolved: See Resolution
Rating Informational

Description

The fungible token standard implementation provides a set of Rust macros. The macros perform uncheckedaddition, subtraction and multiplication operations. Unchecked mathematical operations will wrap in rust if
overflow_checks are not turned on in the cargo profile.
This issue is raised as informational as by default, NEAR smart contracts release profile will have
overflow_checks set to true . When set to true , any overflows will cause a panic, preventing maliciousattacks on the contract.

Recommendations

Consider adding overflow checks to math operations such as addition, multiplication and subtraction within themacro definitions to prevent accidental misuse by developers who wish to have overflow checks turned off fortheir specific contracts.

Resolution

Pull request #830 has been created to address these issues. It converts all uncheckedmath operations to checkedoperations.

Page | 10

https://github.com/near/near-sdk-rs/pull/830

NEAR Protocol Detailed Findings

NSS-04 Lack of Test Coverage
Asset w-near/*

Status Resolved: See Resolution
Rating Informational

Description

Full test coverage is an essential process in ensuring the codebase works as intended (outlined in NEAR’s designdocumentation). Insufficient code coverage may lead to the arisal of unexpected issues due to changes in theunderlying smart contract implementation, leading to undetected changes in functionality.

Recommendations

Consider updating the tests for wNEAR to include interactions with storage, ft_transfer_call ,
near_withdraw and other edge cases specified in the FungibleToken standard’s documentation.

Resolution

Additional testing has been added in PR #202.

Page | 11

https://github.com/near/core-contracts/pull/202

NEAR Protocol Detailed Findings

NSS-05 Free Memory Pointer Overflow
Asset Borsh.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Solidity versions prior to 0.6.5 contain a bug that may be exploited in Borsh.sol decoding.
The bug exists as an overflow of thememory pointer when allowing arbitrarily length arrays to be passed as inputto public or external functions. The bug stems from Solidity using a linear arena memory allocator. Thisallocator stores current memory pointers. When memory is to be allocated, the current memory pointer returnsthe start address of allocated memory. Then the required number of bytes is added to the current memorypointer, wrapping if there is an overflow.
The functions which take bytes memory data as input to the function allocate this data in memory throughthe following code.
function decodeArrayAt (uint arg) private returns (bytes memory) {

uint offset = read (0 x04 +0 x20*arg);
uint length = read (0 x04+ offset);
bytes memory data = malloc (length);
memcpy (data , 0x04 + offset + 0x20 , length);
return data ;

}

function malloc (uint size) private returns (bytes memory) {
bytes memory buf;
assembly {

buf := mload (0 x40)
mstore (0x40 , add(add(buf , size), 0x20))
mstore (buf , size)

}
return buf;

}

As a result it is possible to overflow the free memory pointer stored at address 0x40 by setting the length
of an array to a value slightly below 2256. This bug is fixed in future solidity versions by reverting if the memorypointer overflows.

Recommendations

This issue may be mitigated by updating all files to use solidity verion greater than 0.6.5 , however we recom-mend updating to the most recent solidity version.

Page | 12

NEAR Protocol Detailed Findings

Resolution

Each of the libraries using solidity versions prior to 0.8.0 have now been updated as seen in the following pullrequests.

• erc20-connector has been updated in PR #91
• eNEAR has been updated in PR #14
• eth-custodian has been updated in PR #37

Page | 13

https://github.com/aurora-is-near/rainbow-token-connector/pull/91
https://github.com/aurora-is-near/near-erc20-connector/pull/14
https://github.com/aurora-is-near/eth-connector/pull/37

NEAR Protocol Detailed Findings

NSS-06 Borsh Decoding Does Not Call done()

Asset eNear.sol, ERC20Locker.sol & EthCustodian.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

Borsh is a serialization protocol that allows encoding data to bytes and decoding data to object orientated structs.
The Borsh protocol expects the exact number of bytes to be parsed when decoding an object to prevent lengthextension attacks.
In the functions EthCustodian._decodeBurnResult() , ERC20Locker._decodeBurnResult() and
eNear._decodeBridgeResult() , borsh data is decoded without performing the final length check, which en-sures we have decoded exactly the number of bytes parsed to the decoder.
The implications are that it is possible to append bytes to the data and still have a successful decoding.

Recommendations

Consider executing the function borshData.done() after decoding the objects to ensure the correct numberof bytes have been parsed.

Resolution

Additional checks have been added to ensure the Borsh decoding uses all of the bytes in the following pullrequests.

• EthCustodian in PR #30
• ERC20Locker in PR #87
• eNear in PR #11

Page | 14

https://github.com/aurora-is-near/eth-connector/pull/30
https://github.com/aurora-is-near/rainbow-token-connector/pull/87
https://github.com/aurora-is-near/near-erc20-connector/pull/11

NEAR Protocol Detailed Findings

NSS-07 Hardhat/Truffle Forcefully Compiles Smart Contracts Using An Unsafe Solidity Version
Asset hardhat-config.js and truffle-config.js

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The Hardhat config specifies a solidity version which is incompatible with certain imported and inherited con-tracts. As a result, running the command, npx hardhat compile or truffle compile , will result in a number
of contracts with Solidity version ˆ0.8 being forcefully compiled at Solidity version 0.6.12 . Consequently,any overflow/underflow protections provided by ˆ0.8 will no longer apply to the underlying smart contracts.
Currently, the testing team has not identified affected areas which are exploitable, however, future upgrades tothe impacted contracts may introduce unintended exploits.

Recommendations

Consider bumping the solidity version of the following contracts from ˆ0.6.12 to ˆ0.8 :

• EthCustodian.sol

• ProofKeeper.sol

• eNear.sol

• ERC20Locker.sol

Additionally, it is important to ensure hardhat.config.js and truffle-config.js are also updated to usethe most up-to-date Solidity version providing the latest security protections.

Resolution

Each of the libraries using solidity versions prior to 0.8.0 have now been updated as seen in the following pullrequests.

• EthCustodian.sol & ProofKeeper.sol have been updated in PR #37
• ERC20Locker.sol has been updated in PR #91
• eNear.sol has been updated in PR #14

Page | 15

https://github.com/aurora-is-near/eth-connector/pull/37
https://github.com/aurora-is-near/rainbow-token-connector/pull/91
https://github.com/aurora-is-near/near-erc20-connector/pull/14

NEAR Protocol Detailed Findings

NSS-08 AdminControlled.sol Lacking Admin Transfer Pattern
Asset rainbow-bridge/contracts/eth/nearbridge/contracts/AdminControlled.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The AdminControlled.sol contract utilises the adminSstore() function to update certain state variables
within contracts inheriting AdminControlled.sol . However, it is possible that the onlyAdmin role may beunintentionally set to the wrong account. As a result, any admin related functions will not be callable.

Recommendations

Consider implementing a two-step process when transferring the onlyAdmin role, denoted as the
nominateAdmin() and acceptAdmin() functions. It might be useful to add an explicit renounceAdmin()

function if the NEAR team decides to remove the ownership of contracts inheriting the AdminControlled.solcontract.

Resolution

A safe admin transfer pattern has been implemented in PR #705 and updated in #742.

Page | 16

https://github.com/aurora-is-near/rainbow-bridge/pull/705
https://github.com/aurora-is-near/rainbow-bridge/pull/742

NEAR Protocol Detailed Findings

NSS-09 Gas Supplied To transfer() Call Might Change In The Future
Asset rainbow-bridge/contracts/eth/nearbridge/contracts/NearBridge.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The transfer() call is used to send ETH to a target user. The call attaches only 2300 gas and will throw an errorif the recipient is unable to receive ETH. However, the gas costs are liable to change in the future. Therefore,functions utilising this opcode should assume an attacker has sufficient gas to reenter the contract and implementproper check-effects patterns.
Additionally, the challenge() function will be prone to reentrancy attacks if such a change is introduced. Thiswould allow a malicious user to add a block and frontrun themselves if anyone attempts to challenge them, withno loss of funds.

Recommendations

Consider utilising the call() opcode over transfer() and implement the necessary checks-effects-
interactions pattern to protect these functions from reentrancy attacks. For example, the challenge() function
should ensure that lastValidAt is set to zero before any external calls are made.

Resolution

The recommendation has been implemented in three pull requests, PR #729, PR #41 and PR #747.

Page | 17

https://github.com/aurora-is-near/rainbow-bridge/pull/729
https://github.com/aurora-is-near/eth-connector/pull/41
https://github.com/aurora-is-near/rainbow-bridge/pull/747/files

NEAR Protocol Detailed Findings

NSS-10 Users Can Frontrun challenge() Function
Asset rainbow-bridge/contracts/eth/nearbridge/contracts/NearBridge.sol

Status Closed: See Resolution
Rating Informational

Description

NEAR has taken an optimistic approach in maintaining the canonical chain on Ethereum. Watchdog services aretasked with monitoring the addition of NEAR light client blocks, performing the necessary verification off–chain.In the event a watchdog service has found a malformed block, the user will attempt to call challenge() on therelevant block, verifying the block on–chain and rewarding the challenger half of the staked ETH while burningthe rest.
However, there is no incentive for users to run awatchdog service and therefore contribute to the availability andliveness of the ETH-NEAR rainbow bridge. Any user could avoid running a watchdog service and insteadmonitorthe blockchain for MEV opportunities. Hence, anMEV searcher could frontrun all transactions to challenge()a given block.

Recommendations

Consider implementing a commit-reveal scheme when users challenge() light client blocks. A user could firstsubmit a hash of the proof in the first action before finally revealing the underlying proof in the second action.The first and second actions should be separated by a finite number of blocks. Between these two actions, theuser should have claim over the underlying hash, preventing other users from repeating the challenger’s actions.

Resolution

The issue has been closed with the following comment from the development team.
We are aware of this thing. It’s actually not that easy to solve like that as just providing a hash is not enough: it’s an
index so it’s easy to predict. Creating complex schemes might be an error-prone approach. This will be improved when
we get rid of the optimistic approach on Ethereum side for NEAR client. For now, we know that this deincentivizes
running of such relayers, though we consider this somehow as a feature too that could be beneficial for us: we can
challenge the transaction and the network is quite congested, we can ensure that our transaction will be immediately
mined exactly because of MEV.

Page | 18

NEAR Protocol Detailed Findings

NSS-11 Incorrect Log Output
Asset rainbow-token-connector/metadata-connector/contracts/ERC20MetadataLogger.sol

Status Resolved: See Resolution
Rating Informational

Description

The event Log has the field uint256 timestamp .
When the log is emitted on line [27-33], the field timestamp is set to block.number .

Recommendations

Ensure that the Log is intended to use the block height (block.number) rather than the timestamp
(block.timestamp).
If block height is desired, consider altering the name of the field Log.timestamp to Log.height .
Otherwise, if the timestamp is desired use block.timestamp instead of block.number .

Resolution

The event field has been modified to block_height to represent the block height rather than timestamp. Theupdate may be seen in PR #88.

Page | 19

https://github.com/aurora-is-near/rainbow-token-connector/pull/88

NEAR Protocol Detailed Findings

NSS-12 Requirement for NEP-145 Implementation
Asset eth-connector/evm-fungible-token/

Status Closed: See Resolution
Rating Informational

Description

NEP-145 is an enhancement proposal which allows for the charging of users for the storage they require. With-out NEP-145, the contract owner may be paying all of the storage fees for storing the balances of accounts.
As a result, there is a possible DoS attack where a contract may run out of funds. If users create transactionswhich require a large quantity of storage, the storage cost increases. The storage costs are taken from thecontract, which if it is sufficiently high may drain all available funds.
As NEP-145 is still under active development it has not yet been implemented in the contract. Thus, the contractis vulnerable to this issue.

Recommendations

We recommend implementing NEP-145 at the earliest time when it is marked as final.
Alternatively, charge users for storage fees of creating new accounts through other means.

Resolution

The files have been removed in PR #34 and thus the issue is no longer relevant.

Page | 20

https://github.com/aurora-is-near/eth-connector/pull/34/files

NEAR Protocol Detailed Findings

NSS-13 Miscellaneous General Statements
Asset Smart Contract Suite

Status Resolved: See Resolution
Rating Informational

Description

1. UNPAUSE_ALL and UNPAUSED_ALL are unused:

The files NearBridge.sol and NearProver.sol both contain the private constant variable
UNPAUSE_ALL = 0 , the files EthCustodian.sol and ECR20Locker.sol contain the variable
UNPAUSED_ALL . A private constant is not easily accessible off-chain and since it is not used on-chain itmay be safely removed.

2. Unnecessarily permissive check:
On line [206] in NearBridge.sol the number of approvals is required to be greater than or equal to the
number of producers nearBlock.approvals_after_next.length >= thisEpoch.numBPs . However, it
iterates through exactly thisEpoch.numBPs approvals when calculating the stake and setting the signa-ture set. Consider restricting the check to a strict equality check as excess approvals are not used.

3. Commented out code:
There is commented out code on line [63-34] of ProofDecoder.sol . Consider deleting these lines.

4. Missing SPDX licence identifiers:
There are a number of contracts lacking an SPDX licence identifier, generating a warning during compila-tion. Consider adding an appropriate licence to the affected files.

5. Mismatch with amount input used in Deposited and Withdrawn events and BurnResult struct:

The EthCustodian.sol contract uses uint128 for some amount inputs and uint256 in others. Con-sider updating uint128 instances of amount to uint256 to protect against overflow. Currently, the
uint128 types provide no additional gas savings and only contribute to potential security issues.

6. separator variable can be made constant :

The separator variable is used within EthCustodian.sol when generating the protocol message uponEVM deposits. This can be made constant for some small gas savings.
7. Slot packing is not optimized:

The order of state variables in NearBridge.sol isn’t optimised for efficient slot packing. Consider order-
ing the variables such that the number of slots in NearBridge.sol is reduced.

8. Unspecified uint types:
Consider adhering to Solidity’s best code practices by updating instances of uint to a specific variablesize.

9. Constructor lacking input validation:
AdminControlled.sol does not ensure that its constructor arguments are properly validated and hencecontracts inheriting AdminControlled.sol may be put into an unexpected state. Consider avoiding thisby validating the inputs of the contract’s constructor.

Page | 21

NEAR Protocol Detailed Findings

10. Gas savings by caching storage accesses:
NearBridge.addLightClientBlock() performs multiple storage accesses to the epochs array. There
are potential gas savings if epochs is cached once in memory and written into storage only where neces-sary.

11. Revert messages are lacking clarity:
There are several cases where contracts have a require() statement with no error message attached.Users interacting with these functions will be unable to determine what went wrong in their transaction.Consider adding relevant error messages to affected require() statements.

12. Unimplemented adminReceiveEth() function:

The adminReceiveEth() function has the same logic as the default receive() function except users
have to attach a function signature to their call instead of simply sending msg.value to the contract.
Consider changing adminReceiveEth() to receive() .

13. Inconsistent naming of Light vs Lite:
There are inconsistencies between the use of light and lite when referring to a light client. For example,in ProofDecoder.sol there is BlockHeaderLight block_header_lite on line [15]. We recommendusing consistent naming to avoid confusion and accidental misuse.

14. Inconsistent formatting in Solidity variable naming:
It is recommended to use the same formatting guide when naming variables to differentiate between stor-age variables, local variables and function parameters. For example, the eth-connector repository usesa trailing underscore to represent state variables, whereas the rainbow-bridge repository uses no un-derscores. We recommend using one style guide across all repositories for consistency.

15. Spelling and typos:
• eth-connector/evm-fungible-token/src/lib.rs

– line [171] "// TODO: NEP-145 Account Storage impelemtation nee" -> "fee"
– line [172] "// It spent additonal account amount fot storage" -> "for"

• Bridge.sol , ProofKeeper.sol and Locker.sol

– "Proof is from the ancient block" -> "from an ancient block"

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

1. This issue is closed with the following comment from the testing team. This is needed for visibility on usage.
2. The development team have decided not to patch this issue.
3. The commented out code is deleted in PR #706.
4. Licenses have been included in PR #92.
5. Since the uint128 values come from NEAR VMwhich has a max size of 128 bits and msg.value will not

overflow when cast down to uint128 since that is sufficient to hold the entire Ethereum total supply.

Page | 22

https://github.com/aurora-is-near/rainbow-bridge/pull/706
https://github.com/aurora-is-near/rainbow-token-connector/pull/92

NEAR Protocol Detailed Findings

6. The recommendations was added in PR #32.
7. Slot packing has been implemented in #727.
8. Closed as uint is not expected to be changed from an alias of uint256 in solidity.
9. Closed as these are superfluous checks that are not necessary at deployment time.

10. Closed as the implementation of storaging cache requires too much complexity.
11. Closed since the revert messages have already been updated except those deliberately left empty.
12. Closed as this is deliberate admin functionality.
13. Closed with the following comment from the development team.

I agree with that inconsistency. The reason why we do have as it’s like that in nearcore ’s API. I don’t think that
fixing it only on the smart-contract level will help. When this is fixed on NEAR side, this will be changed on the
smart-contract level too. However, I expect that this will be quite breaking for the NEAR RPC. Created an issue
for that anyway, so it’s trail is there.

14. The variable naming has been updated in the following PRs #93 and #39.
15. Spelling and typos have been fixed.

Page | 23

https://github.com/aurora-is-near/eth-connector/pull/32/files
https://github.com/aurora-is-near/rainbow-bridge/pull/727/files
https://github.com/near/near-jsonrpc-client-rs/issues/45
https://github.com/aurora-is-near/rainbow-token-connector/pull/93/files
https://github.com/aurora-is-near/eth-connector/pull/39/files

NEAR Protocol Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are provided alongside thisdocument. The pytest framework was used to perform these tests and the output is given below.
t e s t _ i n t i a l i s a t i o n PASSED [3%]tes t _nea r _depos i t PASSED [6%]test_near_depos i t_zero_amount PASSED [9%]t e s t _nea r _depo s i t _ i n su f f i c i en t _ s t o r age _ba l an ce PASSED [12%]test_near_withdraw PASSED [15%]test_near_wi thdraw_ incorrect_at tachment PASSED [18%]tes t_near_wi thdraw_not_ reg i s te red PASSED [21%]te s t _nea r _w i thd raw_ in su f f i c i en t _ba l ance PASSED [25%]t e s t _ f t _ t r a n s f e r PASSED [28%]tes t _ f t _ t r ans fe r _w i thout_yoc to_a t tachment PASSED [31%]t e s t _ f t _ t r a n s f e r _ no t _ r e g i s t e r e d PASSED [34%]tes t _ f t _ t r ans fe r _ze ro_amount PASSED [37%]t e s t _ f t _ t r an s f e r _ s ame_ re ce i ve r PASSED [40%]tes t_ f t_ t rans fe r_ log_memo PASSED [43%]t e s t _ f t _ t r a n s f e r _ i n s u f f i c i e n t _ b a l a n c e PASSED [46%]t e s t _ f t _ t r a n s f e r _ c a l l _ r e f u n d PASSED [50%]t e s t _ f t _ t r a n s f e r _ c a l l _ p r om i s e _ f a i l s PASSED [53%]t e s t _ f t _ t r a n s f e r _ c a l l _ r e t u r n s _ i n v a l i d _ amoun t PASSED [56%]te s t _ f t _ t r an s fe r _ ca l l _ send_ tokens_back_ to_ sende r PASSED [59%]t e s t _ f t _ t r a n s f e r _ c a l l _ u n r e g i s t e r _ s e nde r PASSED [62%]t e s t _ f t _ t r a n s f e r _ c a l l _ u n r e g i s t e r _ r e c e i v e r PASSED [65%]te s t _ f t _ t r an s f e r _ ca l l _w i t hou t _yoc to_a t t a chmen t PASSED [68%]te s t _ s to rage_depos i t PASSED [71%]t e s t _ s t o r a ge _depo s i t _ i n s u f f i c i e n t _ b a l a n ce PASSED [75%]test_storage_withdraw PASSED [78%]test_s torage_wi thdraw_more_than_ava i l ab le_ba lance PASSED [81%]tes t_s to rage_wi thdraw_not_ reg i s te red PASSED [84%]tes t_s torage_wi thdraw_ incor rect_a t tachment PASSED [87%]t e s t _ s t o r age_un reg i s t e r PASSED [90%]t e s t _ s t o r age_un reg i s t e r _ f o r ce PASSED [93%]t e s t _ s t o r age_un reg i s t e r _no t _ r eg i s t e r ed PASSED [96%]te s t _ s to rage_un reg i s t e r _w i th_ba l ance PASSED [100%]

Page | 24

NEAR Protocol Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are provided alongside thisdocument. The brownie framework was used to perform these tests and the output is given below.
test_on ly_admin PASSED [1%]test_admin_send_eth PASSED [2%]test_paused PASSED [4%]t e s t _ d e l e g a t e c a l l PASSED [5%]tes t_dep loy PASSED [6%]t e s t _ f i n a l i z e _ n e a r _ t o _ e t h _ t r a n s f e r PASSED [8%]t e s t _ f i n a l i z e _nea r _ t o _e t h _ t r an s f e r _w i t hd r aw_ f l a g PASSED [9%]t e s t _ f i n a l i z e _nea r _ t o _e th _ t r an s f e r _bad_p roo f PASSED [10%]t e s t _ f i n a l i z e _ n e a r _ t o _ e t h _ t r a n s f e r _ h e i g h t PASSED [12%]t e s t _ f i n a l i z e _ n e a r _ t o _ e t h _ t r a n s f e r _ r e c e i p t _ r e p l a y PASSED [13%]t e s t _ f i n a l i z e _ nea r _ t o _ e t h _ t r a n s f e r _ e xe cu t o r _ i d PASSED [14%]t e s t _ f i n a l i z e _ n e a r _ t o _ e t h _ t r a n s f e r _ s t a t u s _ f a i l e d PASSED [16%]te s t _ f i na l i z e _nea r _ to_e th_ t r ans fe r _ s t a tu s _unknown PASSED [17%]t e s t _ t r an s f e r _ t o _nea r PASSED [18%]test_sha512 PASSED [20%]t e s t _ check _va l i d _ s i gna tu r e s PASSED [21%]tes t_check_s ignature_curve_group_order PASSED [22%]t e s t _ check _ i n v a l i d _ s i g n a t u r e s PASSED [24%]tes t_dep loy PASSED [25%]tes t _ lock_ token PASSED [27%]t e s t _ l o c k _ t o ken _ l im i t PASSED [28%]tes t _ l ock_ token_sa fe_ t r ans fe r _ f rom PASSED [29%]test_un lock_token PASSED [31%]tes t_un lock_token_wi thdraw_f lag PASSED [32%]tes t_un lock_ token_borsh_burn_ resu l t PASSED [33%]test_un lock_token_min_b lock_he ight PASSED [35%]test_un lock_token_bad_proof PASSED [36%]t e s t _un l o ck _ token_ s t a tu s _ f a i l ed PASSED [37%]test_unlock_token_status_uknown PASSED [39%]tes t_un lock_ token_executor_ id PASSED [40%]t e s t _ t oken_ f a l l b a ck PASSED [41%]tes t _admin_ t r ans fe r PASSED [43%]test_admin_t ransfer_not_admin PASSED [44%]tes t_dep loy PASSED [45%]test_deploy_bad_near_account PASSED [47%]test_depoist_to_evm PASSED [48%]te s t _depo i s t _ to _evm_ in su f f i c i en t _va l ue PASSED [50%]tes t _depo i s t _ to_nea r PASSED [51%]t e s t _ depo i s t _ t o _nea r _ i n s u f f i c i e n t _ v a l u e PASSED [52%]test_withdraw PASSED [54%]tes t _w i thdraw_ inva l i d_executo r PASSED [55%]tes t _w i thd raw_ inva l i d _e th_cus tod i an PASSED [56%]tes t_wi thdraw_reuse_rece ip t PASSED [58%]test_withdraw_min_b lock_he ight PASSED [59%]te s t _w i thd r aw_s t a tu s _ f a i l ed PASSED [60%]test_withdraw_status_unknown PASSED [62%]tes t _w i thd raw_ inva l i d _p roo f PASSED [63%]tes t_dep loy PASSED [64%]te s t _depos i t PASSED [66%]tes t _depos i t _ inva l i d_amount PASSED [67%]t e s t _depos i t _ e x i s t i n g _ba l ance PASSED [68%]test_withdraw PASSED [70%]test_withdraw_no_balance PASSED [71%]

Page | 25

NEAR Protocol Test Suite

tes t _w i thd raw_ la s t _ submi t te r PASSED [72%]t e s t _ i n i t PASSED [74%]tes t _ i n i t _wrong_o rde r PASSED [75%]t e s t _ i n i t _wh e n _ i n i t i a l i z e d PASSED [77%]tes t _ in i tWi thVa l i da to r s_wrong_s tage PASSED [78%]te s t _addL i gh tC l i en tB lock PASSED [79%]te s t _addL i gh tC l i en tB lock_ i nva l i d _epoch PASSED [81%]t e s t _ addL i gh tC l i e n tB l o c k _ i n su f f i c i e n t _ba l a n ce PASSED [82%]te s t _addL i gh tC l i en tB lock_ rep l a ce_du ra t i on PASSED [83%]test_addL ightC l ientB lock_t imestamp_over f low PASSED [85%]te s t _addL i gh tC l i en tB lock_cu r ren t _he i gh t PASSED [86%]te s t _addL i gh tC l i en tB lock_ i n su f f i c i en t _num_app rova l s PASSED [87%]t e s t _ addL i gh tC l i e n tB l o c k _ i n su f f i c i e n t _ s t a ke _ app rova l s PASSED [89%]test_addLightCl ientBlock_new_epoch_without_next_bps PASSED [90%]tes t _addL i gh tC l i en tB lock_d i f f e ren t _nex t _bps_hash PASSED [91%]t e s t _ a dd L i g h tC l i e n tB l o c k _ no t _ i n i t i a l i z e d PASSED [93%]te s t _ cha l l enge PASSED [94%]t e s t _ c h a l l e n ge _ v a l i d _ s i g n a t u r e PASSED [95%]tes t _cha l l enge_no_s i gna tu re PASSED [97%]t e s t _ c h a l l e n g e _ l a s t _ v a l i d _ a t PASSED [98%]tes t _paus ing PASSED [100%]

Page | 26

NEAR Protocol Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. Thetotal severity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.
html. [Accessed 2018].

[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 27

https://blog.sigmaprime.io/solidity-security.html
https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Review Summary
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Vulnerable Dependencies
	Incorrect Units in Logs
	Unchecked Addition and Subtraction Operations
	Lack of Test Coverage
	Free Memory Pointer Overflow
	Borsh Decoding Does Not Call done()
	Hardhat/Truffle Forcefully Compiles Smart Contracts Using An Unsafe Solidity Version
	AdminControlled.sol Lacking Admin Transfer Pattern
	Gas Supplied To transfer() Call Might Change In The Future
	Users Can Frontrun challenge() Function
	Incorrect Log Output
	Requirement for NEP-145 Implementation
	Miscellaneous General Statements

	Test Suite
	Vulnerability Severity Classification

