
Customer: Aurora labs
Date: January, 18th, 2023

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for
Aurora Labs

Approved By Evgeniy Bezuglyi | SC Audits Department Head at Hacken OU

Type DAO Council Election and Vote Token

Platform EVM

Network Ethereum

Language Solidity

Methodology Link

Website https://aurora.dev/

Timeline 10.10.2022 - 11.01.2023

Changelog
13.10.2022 – Initial Review
14.11.2022 - Second Review
18.01.2023 - Third Review

www.hacken.io
2

https://docs.google.com/document/d/1voqoRtHZdn1mw7cEZELxPG_NqlSwZifJJlfgfT5uqK0
https://aurora.dev/

Table of contents
Introduction 4

Scope 4

Severity Definitions 6

Executive Summary 7

Checked Items 8

System Overview 11

Findings 13

Disclaimers 16

www.hacken.io
3

https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.8fxrxvs7dvhm
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.hibdc7qpvu9g
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.2yl2jym0k9iy
https://docs.google.com/document/d/125HfM8WZo_ZtoLcAAFbGpUibCb5QQ-gzzad1JZ3oUqw/edit#heading=h.e9evpg44u9v9
https://docs.google.com/document/d/1GvLYOXokoEj9LLeHm1VRk0RRlspHS7qh1oGKg66Sn2A/edit#heading=h.46cbde82d1gg

Introduction

Hacken OÜ (Consultant) was contracted by Aurora Labs (Customer) to conduct
a Smart Contract Code Review and Security Analysis. This report presents
the findings of the security assessment of the Customer's smart contracts.

Scope

The scope of the project is review and security analysis of smart contracts
in the repository:

Initial review scope
Repository:

https://github.com/aurora-is-near/aurora-voting-contracts
Commit:

98de1af2100d9b0e097105c1a466c47867a68a68

Repository:
https://github.com/aurora-is-near/aurora-election-contracts

Commit:
a46703998dff34fa76861336eb648019bb118cbf

Documentation:
Technical description
Technical description
Functional requirements

Contracts:
File: ./contracts/AuroraVoteTokenV1.sol
SHA3: 0f71b2b022a77578e63b440007b1bd348c7cce013c03dd693a501dcd39019740

File: ./contracts/ERC20VotesUpgradeable.sol
SHA3: e3915407fdb64bc520768c923f67484de509fe954fc3a346a0902a24e8fa4561

File: ./contracts/AdminControlled.sol
SHA3: 6a3bb8b4f5eef3e1e7e0a86be0f941ba19f66a8d7b3dff03bbf6f69f432f20b3

File: ./contracts/ElectionManager.sol
SHA3: 10cea2ee89ed7c901c35c50cc2916be89ce79400418e6da0369858a2ac1f927b

Second review scope
Repository:

https://github.com/aurora-is-near/aurora-voting-contracts
Commit:

9abea3884426bd23c0bb4a9a253799790356fb2b

Repository:
https://github.com/aurora-is-near/aurora-election-contracts

Commit:
a93d31ca487bbb78bb70f9cf8e0df8ae9fa5777d

Documentation:
Technical description
Technical description
Functional requirements

Contracts:
www.hacken.io

4

https://github.com/aurora-is-near/aurora-voting-contracts/blob/main/README.md
https://github.com/aurora-is-near/aurora-election-contracts/blob/main/README.md
https://forum.aurora.dev/t/dao-council-election-and-vote-token/936
https://github.com/aurora-is-near/aurora-voting-contracts/blob/main/README.md
https://github.com/aurora-is-near/aurora-election-contracts/blob/main/README.md
https://forum.aurora.dev/t/dao-council-election-and-vote-token/936

File: ./contracts/AuroraVoteTokenV1.sol
SHA3: ad4807aef0d8500bbc2818de3df13eb1a0bc28aab6ef5d1da56bbf7eebbb9c7a

File: ./contracts/ERC20VotesUpgradeable.sol
SHA3: 767697eb21c4f60a7d9023aa078ad0ebe31596687b87bd9406e6f74d6dbffd4a

File: ./contracts/AdminControlled.sol
SHA3: e540f21870f7e1e2096c47abd83295ce646aacd80c621c2f63076732648cf81f

File: ./contracts/ElectionManager.sol
SHA3: 8e8211655409baf44aa644a63b87e5aa1e6672ba07a42414e3cf982e24a1bb4e

Third review scope
Repository:

https://github.com/aurora-is-near/aurora-voting-contracts
Commit:

3c9cc04dc33edc3cd2ab0491632a79a6d4dfef49

Repository:
https://github.com/aurora-is-near/aurora-election-contracts

Commit:
b530a126aebf1220bb0da29607160ac6b23556d2

Documentation:
Technical description
Technical description
Functional requirements

Contracts:
File: ./contracts/AuroraVoteTokenV1.sol
SHA3: b18bec78a463378926e6d134136ee510d18e32d943fa051db64d7dded272337e

File: ./contracts/ERC20VotesUpgradeable.sol
SHA3: aac38beb5d4600c12b2c03093d458fc529d33bf2de26f21085f57603257e1663

File: ./contracts/AdminControlled.sol
SHA3: 8e9f3b6482242aab33735b962803e19b3daf9d900f6e2ed0ff40102abce1c10c

File: ./contracts/ElectionManager.sol
SHA3: fb92ef4e1385ea4006f7feb9103e131a41b7223af6b5663a8b4520470de71055

www.hacken.io
5

https://github.com/aurora-is-near/aurora-voting-contracts/blob/main/README.md
https://github.com/aurora-is-near/aurora-election-contracts/blob/main/README.md
https://forum.aurora.dev/t/dao-council-election-and-vote-token/936

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions.

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot have a
significant impact on execution.

www.hacken.io
6

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are good.
● Technical description is good.

Code quality
The total Code Quality score is 9 out of 10.

● The code follows best practices and style guidelines.
● The development environment is configured.
● Low severity issues reduce code quality.

Test coverage
Test coverage of the project is 100%.

● Code is fully covered by unit tests.
● Only 0x addresses that cannot be tested are omitted..

Security score
As a result of the audit, the code contains 2 low severity issues. The
security score is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.8.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

13 October 2022 5 3 3 0

10 November 2022 1 1 1 0

11 January 2023 2 0 0 0

www.hacken.io
7

https://docs.google.com/document/d/1cPKijtHoNsPX8P6UJmeQVc9Un44_FgNh0QV32F_RFCw/edit?usp=sharing

Checked Items

We have audited the Customers' smart contracts for commonly known and more
specific vulnerabilities. Here are some items considered:

Item Type Description Status

Default
Visibility

SWC-100
SWC-108

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

SWC-101
If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

SWC-102
It is recommended to use a recent
version of the Solidity compiler. Passed

Floating
Pragma SWC-103

Contracts should be deployed with the
same compiler version and flags that
they have been tested thoroughly.

Passed

Unchecked Call
Return Value SWC-104 The return value of a message call

should be checked. Passed

Access Control
&
Authorization

CWE-284

Ownership takeover should not be
possible. All crucial functions should
be protected. Users could not affect
data that belongs to other users.

Passed

SELFDESTRUCT
Instruction SWC-106

The contract should not be
self-destructible while it has funds
belonging to users.

Not Relevant

Check-Effect-
Interaction SWC-107

Check-Effect-Interaction pattern should
be followed if the code performs ANY
external call.

Passed

Assert
Violation SWC-110 Properly functioning code should never

reach a failing assert statement. Failed

Deprecated
Solidity
Functions

SWC-111
Deprecated built-in functions should
never be used. Passed

Delegatecall
to Untrusted
Callee

SWC-112
Delegatecalls should only be allowed to
trusted addresses. Passed

DoS (Denial of
Service)

SWC-113
SWC-128

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions SWC-114 Race Conditions and Transactions Order

Dependency should not be possible. Passed

www.hacken.io
8

https://swcregistry.io/docs/SWC-100
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-104
https://cwe.mitre.org/data/definitions/284.html
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-107
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-114

Authorization
through
tx.origin

SWC-115
tx.origin should not be used for
authorization. Not Relevant

Block values
as a proxy for
time

SWC-116
Block numbers should not be used for
time calculations. Passed

Signature
Unique Id

SWC-117
SWC-121
SWC-122
EIP-155

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain
identifiers should always be used. All
parameters from the signature should be
used in signer recovery

Not Relevant

Shadowing
State Variable SWC-119 State variables should not be shadowed. Passed

Weak Sources
of Randomness SWC-120 Random values should never be generated

from Chain Attributes or be predictable. Not Relevant

Incorrect
Inheritance
Order

SWC-125

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct
order.

Passed

Calls Only to
Trusted
Addresses

EEA-Lev
el-2

SWC-126

All external calls should be performed
only to trusted addresses. Passed

Presence of
unused
variables

SWC-131
The code should not contain unused
variables if this is not justified by
design.

Passed

EIP standards
violation EIP EIP standards should not be violated. Passed

Assets
integrity Custom Funds are protected and cannot be

withdrawn without proper permissions. Passed

User Balances
manipulation Custom

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency Custom Smart contract data should be consistent

all over the data flow. Passed

Flashloan
Attack Custom

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.

Not Relevant

Token Supply
manipulation Custom

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
customer.

Passed

www.hacken.io
9

https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-117
https://swcregistry.io/docs/SWC-121
https://swcregistry.io/docs/SWC-122
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-155.md
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-125
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://entethalliance.github.io/eta-registry/security-levels-spec.html#req-2-external-calls
https://swcregistry.io/docs/SWC-126
https://swcregistry.io/docs/SWC-131
https://docs.openzeppelin.com/contracts/3.x/upgradeable#storage_gaps
https://eips.ethereum.org/

Gas Limit and
Loops Custom

Transaction execution costs should not
depend dramatically on the amount of
data stored on the contract. There
should not be any cases when execution
fails due to the block Gas limit.

Passed

Style guide
violation Custom Style guides and best practices should

be followed. Passed

Requirements
Compliance Custom The code should be compliant with the

requirements provided by the Customer. Passed

Environment
Consistency Custom

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage Custom

The code should have the ability to
pause specific data feeds that it relies
on. This should be done to protect a
contract from compromised oracles.

Not Relevant

Tests Coverage Custom

The code should be covered with unit
tests. Test coverage should be 100%,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Passed

Stable Imports Custom
The code should not reference draft
contracts, that may be changed in the
future.

Passed

www.hacken.io
10

System Overview

Aurora Labs is a DAO council members election system with the following
contracts:

● AuroraVoteTokenV1 — a custom ERC-20 token that mints all initial
supply at initialization. Additional minting is not allowed. It does
not allow users to use the transfer and transferFrom functions but
instead offers them the possibility to delegate tokens using the
delegate function.

● ERC20VotesUpgradeable - a custom ERC-20 token contract inherited by
the former.

● ElectionManager — a contract that handles the election process.
● AdminControlled — a contract that sets admin privileges, inherited by

the former.

Privileged roles
● AuroraVoteTokenV1 roles:

○ DEFAULT_ADMIN_ROLE - allowed to do admin operations such as
grant roles, upgrade contract.

○ WHITELISTED_TRANSFER_ROLE - allowed to transfer tokens
○ WHITELISTED_TRANSFER_FROM_ROLE - allowed to transfer tokens

from a chosen address.
● ElectionManager roles:

○ ELECTION_MANAGER - allowed to create election,stop election,
add candidates application, remove candidates application,
update candidates application, update election application
intervals, update election intervals.

○ DEFAULT_ADMIN_ROLE - allowed to do admin operations like grant
roles, upgrade contract, change storage values.

○ PAUSE_ROLE - allowed to perform admin pause.

Risks
● The entirety of the system is controlled by an out-of-scope,

centralized off-chain system. This includes:

○ The entirety of the VOTE token supply, as well as the
distribution of VOTE token rewards

○ Most election functionalities, barring the storage of the
results

○ Burning of the remaining unstreamed VOTE tokens, and general
transfers of the VOTE token. Performed by the stream admin.

● Only addresses with privileges can use the transferFrom function of
the VOTE token. Therefore, the ElectionManager contract must be
whitelisted in the token contract in order to process the user’s
vote.

www.hacken.io
11

● Some functionality from the documentation is implemented in
out-of-scope contracts, and its validity cannot be verified.

● In ElectionManager.sol, the functions getCurrentElectionResults and
getElection loop over a dynamic array.This array size is determined
by the number of candidates in an election. If too many candidates
meet the requirements declared, this can lead to an Out-of-Gas
exception if the off-chain computation tracking does not work
properly.

www.hacken.io
12

Findings

Critical

No critical severity issues were found.

High

1. Requirements Violation

The documentation states that the contract has a burn feature, but
the code does not implement it.

According to the provided documentation, “The staking stream will be
stopped in advance before the actual election of the Council Members.
All remaining Vote Tokens will be burned.”

However, there is no mechanism to burn tokens based on the staking
stream state.

Path: ./contracts/AuroraVoteTokenV1.sol

Recommendation: align the implementation with the requirements.

Status: Mitigated (the stream admin gets the remaining un-streamed
VOTE then burns them manually)

2. Highly Permissive Role Access

The default admin of the election contract can update storage values
at any time.

Any storage data can be changed.

Path: ./contracts/AdminControlled.sol : function adminSstore(),
adminSstoreWithMask()

Recommendation: remove the mentioned functionality from the contract.

Status: Fixed (a93d31ca487bbb78bb70f9cf8e0df8ae9fa5777d)

Medium

1. Missing Events Emit on Changing Important Values

It is recommended to emit events after changing important values.
This will make it easy for everyone to notice such changes.

Paths: ./contracts/ElectionManager.sol : function stopElection(),
updateElectionApplicationIntervals(), updateElectionIntervals(),
vote()

./contracts/AdminControlled.sol : adminPause(), adminSstore(),
adminSstoreWithMask()

Recommendation: implement event emits after changing contract values.

Status: Fixed (a93d31ca487bbb78bb70f9cf8e0df8ae9fa5777d)

www.hacken.io
13

2. Potential Out-of-Gas Exception

In ElectionManager.sol, the functions getCurrentElectionResults and
getElection loop over a dynamic array.

This array size is determined by the number of candidates in an
election. If too many candidates meet the requirements declared, this
can lead to an Out-of-as exception.

Path: ./contracts/ElectionManager.sol : function
getCurrentElectionResults(), getElection

Recommendation: limit the number of candidates that can participate
in the election or make sure these functions are only called
off-chain, where Gas limits are not an issue.

Status: Mitigated (The limit here is unnecessary as the election
result will rely on off-chain computation by tracking the events.)

Low

1. Misleading Function

The delegate function executes the exact same code as the transfer
function. The function name contradicts its functionality.

Path: ./contracts/AuroraVoteTokenV1.sol

Recommendation: use transfer function only to override the ERC20
transfer function and remove the delegate function.

Status: Mitigated (It is part of the business requirements, but it
was verbally communicated. The intention is to provide both
interfaces (transfer and delegate). The transfer is only for
whitelisted addresses, however anyone can call the delegate
function.)

2. Floating Pragma

The project uses floating pragmas ^0.8.0.

Path: ./contracts/ERC20VotesUpgradeable.sol

Recommendation: consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment.

Status: Fixed (9abea3884426bd23c0bb4a9a253799790356fb2b)

3. Functions that Can Be Declared External

In order to save Gas, public functions that are never called in the
contract should be declared as external.

Path: ./contracts/AuroraVoteTokenV1.sol : function delegate()

Recommendation: use the external attribute for functions never called
from the contract.

www.hacken.io
14

Status: Fixed (9abea3884426bd23c0bb4a9a253799790356fb2b)

4. Style Guide Violation

Within the external functions, the view should be last.

Path: ./contracts/ElectionManager.sol

Recommendation: follow the official Solidity guidelines.

Status: Fixed (a93d31ca487bbb78bb70f9cf8e0df8ae9fa5777d)

5. Variable Shadowing

Function parameters _name, _symbol shadows existing variables from
ERC20VotesUpgradeable inherited contract.

Path: ./contracts/AuroraVoteTokenV1.sol

Recommendation: rename related arguments.

Status: Fixed (9abea3884426bd23c0bb4a9a253799790356fb2b)

6. Assert Violation

Properly functioning code should never reach a failing assert
statement.

Path: ./contracts/ ElectionManager.sol : function
getElectionCandidateUserVoteCount(), getCandidateByIndex()

Remediation: this has been fixed for the following functions:
getTotalElectionVotes(), getCandidateByAddress(), getElection()

Recommendation: if the exception is indeed caused by unexpected
behavior of the code, fix the underlying bugs that allow the
assertion to be violated.

Status: Reported

7. Missing Zero Address Validation

Address parameters are being used without checking against the
possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/ElectionManager.sol : function initialize(),
_validateAndInitializeElection(), addCandidateApplication()

./contracts/AdminControlled.sol : function adminDelegatecall()

Recommendation: implement zero address checks.

Status: New

www.hacken.io
15

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on the best
industry practices at the time of this report, with cybersecurity
vulnerabilities and issues in smart contract source code, the details of
which are disclosed in this report (Source Code); the Source Code
compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted to and reviewed, so it may not be relevant after any
modifications. Do not consider this report as a final and sufficient
assessment regarding the utility and safety of the code, bug-free status,
or any other contract statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, Consultant
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io
16

