
SMART CONTRACT AUDIT

October 5th 2022 / v.	1.0

Rainbow Bridge Smart Contact Audit

1info@blaize.tech

Table of

 Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied/Procedure 6

Executive summary 8

Complete​ Analysis 14

Protocol overview 9

Code coverage and test results for all files by the
Rainbow team (Solidity)

23

Code coverage and test results for all files by the
Blaize Security team (Solidty)

25

Code coverage and test results for all files by the
Rainbow team (Rust)

27

Code coverage and test results for all files by the
Rainbow team (Rust)

28

Disclaimer 29

Rainbow Bridge Smart Contact Audit

2info@blaize.tech

Rainbow Bridge
contract’s source
code was taken from
the repository
provided by the
Aurora team.

SCORE 9.6/10

audit

 rating

The scope of the project includes Rainbow Bridge set of contracts:

BridgeToken.sol1/ ResultsDecoder.sol5/
BridgeTokenFactory.sol2/ ERC20Locker.sol6/
BridgeTokenProxy.sol3/ Locker.sol7/
ProofConsumer.sol4/ ERC20MetadataLogger.sol8/

bridge-common/src/lib.rs1/ token-locker/src/token_receiver.rs4/
bridge-common/src/prover.rs2/ token-locker/src/unlock_event.rs5/
token-locker/src/lib.rs3/

Initial commit:

fd83d33ade1e5b6e79370805e328f06528f7665d

Repository:

https://github.com/aurora-is-near/rainbow-token-connector

Last-audited commit:

a40537036d12ede147753c6b2487f27fad9af28d

https://github.com/aurora-is-near/rainbow-token-connector

Rainbow Bridge Smart Contact Audit

3info@blaize.tech

Technical

 summary

Testable code

During the audit, we examined the security of smart contracts for
the Rainbow Bridge protocol. Our task was to find and describe
any security issues in the smart contracts of the platform. This
report presents the findings of the security audit of the Rainbow
Bridge smart contracts conducted during August 17th, 2022 -
October 5th, 2022.

The testable code has sufficient coverage to
correspond to the industry standard of 95%.

The scope of the audit includes the unit test coverage, which is
based on the smart contracts code, documentation, and
requirements presented by the Rainbow Bridge team. The
coverage is calculated based on the set of the Hardhat framework
tests and scripts from additional testing strategies. Also, it needs to
mentioned that in order to ensure the full security of the contract,
the Aurora team has the Immunefi bug bounty program runnning. It
encourages further active analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

Rainbow Bridge Smart Contact Audit

4info@blaize.tech

Critical

High

Medium

Low

Lowest

0

1

1

3

5

FOUND

0

1

1

3

5

FIXED/VERIFIED

The table below shows the number of the
detected issues and their severity. A total of 10
problems were found. All issues were fixed or
verified by the Rainbow Bridge team.

50%

30%

10%

10%

The graph of
vulnerabilities
distribution:

critical

high

medium

low

LOWest

Rainbow Bridge Smart Contact Audit

5info@blaize.tech

Severity Definition

The system contains several issues ranked as very
serious
and dangerous for users and the secure 
work of the
system. Requires immediate 
fixes and a further check.

Critical

The system contains a couple of serious issues, which 
lead to unreliable work of the system and might 
cause
a huge data or financial leak. Requires immediate
fixes and a further check.

High

The system contains issues that may lead to
medium financial loss or users’ private information
leak. Requires
immediate fixes and a further
check.

Medium

The system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Requires fixes.

Low

The system does not contain any issues critical to the 
secure work of the system, but best practices should
be implemented.

Lowest

Rainbow Bridge Smart Contact Audit

6info@blaize.tech

Auditing strategy and
Techniques applied/Procedure

We checked the contract for the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets the best practices in the efficient use of
gas, code readability.

We have scanned this smart contract for the commonly known
and more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several publicly available automated
analysis tools such as Mythril, Solhint, Slither and Smartdec.
Manual verification of all the issues found with these tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
We checked smart contract logic and compared it with the one
described in the documentation.

Rainbow Bridge Smart Contact Audit

7info@blaize.tech

Executive

 summary

 During the audit, the Blaize Security team has audited both
Solidity and Rust parts of the Rainbow Bridge protocol. The
protocol represents a bridge between Ethereum and Near
blockchains.

 The Solidity part of the protocol consists of the Bridge Factory,
Bridge tokens, and ERC20 locker contract. There is also an
additional Proof consumer contract, which validates all the proof
neccesary for bridging tokens between networks.

 There were no critical issues found during the audit. There was
one high and several low-severity issues found in the contracts.
The high-severity issue was connected with the ability of the admin
of the ERC20 locker contract to withdraw any tokens from the
contract. According to the team, such functionality is neccesary for
the contract and the role of the admin will be granted to multi-
signature wallet to ensure better safety of the funds. All other
issues were verified or fixed as well.

 The overall security of the Solidity contracts is high enough.
Contracts are well-written and tested by the Rainbow Bridge team.
Though it should be mentioned that Bridge Factory and Bridge
Token contracts are upgradable and their logic can be changed in
the future. The Blaize Security team has also prepared its own set
of unit-tests to ensure correctness of the logic of Solidity contracts.

Notes for the table: 
* Gas usage is set to 9.3 because while the code is well structured, it
still uses the obsolete SafeMath library, though it has 0.8.x compiler
version.

** Native test coverage is quite high and covers core scenarios
though it is still lower than the industry standards. Also, the
simulation tests for the Rust part detected a few missing scenarios.
Yet, the team of auditors has provided additional scenarios.

Rainbow Bridge Smart Contact Audit

8info@blaize.tech

Executive

 summary

Security

Gas usage and logic optimization*

Code quality

Test coverage**

Total

9.7

9.3

9.5

9.5

9.6

RATING

The Rust part of the report refers to the contract on the NEAR side,
which is responsible for the native tokens transfer between
blockchains. The contract can receive NEAR native tokens via any
ERC-20 (NEP-141) token and generate l̀ock ̀event for a third-party
node. Though while the audit of the 3rd party elements (the worker
that proceeds with events processing) is out of the scope, the team
of auditors has also conducted additional testing to check the
system as a whole. Thus, the team has prepared a set of simulation
tests and has conducted several runs of manual exploratory
testing over the contracts deployed on local testnets.

The Rust part of the audit contains findings connected with the
incorrect withdrawal processing, several best practices violations,
and unclear functionality.

The Rainbow bridge team has verified/resolved all of the issues.

Rainbow Bridge Smart Contact Audit

9info@blaize.tech

C r e a t i o n

BridgeTokenF
actory

User

(or anyone)

BridgeToken
(implementation)

BridgeToken
Proxycall newBridgeToken

(string nearTokenId)

create a bridge token

object (proxy,
implementation)

can get proxy via
function:

nearToEthToken (string
calldata nearTokenId)

mailto:info@blaize.tech

Rainbow Bridge Smart Contact Audit

10info@blaize.tech

B r i d g e t o k e n p r o c e s s

User

lockToken (address
ethToken, uint256

amount, string
memory accountId)

deposit (bytes memory
proofData, uint64
proofBlockHeight)

mint
(result.recipient,
result.amount)

proofData and
proofBlockHeight -
receives a backend

from the previous
lock operation, is

transmitted with the
user's call to the

deposit

nearTokenId used for
get proof data about
network instance by

borsh (binary serializer)

both arguments needed

in order to verify the
transaction on both

networks at the time of
execution

Result - struct
LockResult variable. Get

result by call
decodeLockResult with

arguments from
ProofConsumer, that
parse and consume

proof from token lock

ERC20Locker

BridgeToken
Factory

BridgeToken

g e t e t h t o k e n f r o m n e a r t o k e n

mailto:info@blaize.tech

Rainbow Bridge Smart Contact Audit

11info@blaize.tech

B r i d g e r e v e r s e p r o c e s s

User

withdraw (string
memory token, address

bridgeTokenProxy,
uint256 amount, string

memory recipient)

burn(msg.sen
der, amount)

proofData and
proofBlockHeight -

receives a backend from
the previous lock

operation, is transmitted
with the user's call to the

deposit

g e t n e a r t o k e n f r o m e t h t o k e n

BridgeToken
Factory

BridgeToken ERC20Locker

unlock (bytes memory
proofData, uint64
proofBlockHeight)

mailto:info@blaize.tech

Rainbow Bridge Smart Contact Audit

12info@blaize.tech

N E A R t o E t h e r e u m t o k e n - l o c k e r

User

Checks whether
the provided proof

is already used

Checking user
registration on the

ft-contract side

withdraw

deposit

(ft_transfer_call)

method call on
token contract

user
verification
processing

whitelist token
verification

verify proof on
third party
contract

record proof &&
finish withdraw

ft_transfer ft_transfer_call

lock tokens

emit event to
deposit

E t h e r e u m

N E A R

cross-contract call

callback to itself

cross-contract call

callback to itself

without message with message

callback to itself

Rainbow Bridge Smart Contact Audit

13info@blaize.tech

N E A R t o E t h e r e u m t o k e n - l o c k e r

Admin

remove
account from

whitelist

set token
whitelist mode

Init contract

update factory
address

add account to
whitelist

N E A R c o n t r a c t

Rainbow Bridge Smart Contact Audit

14info@blaize.tech

Complete​ Analysis (Solidity)

ERC20Locker.sol: adminTransfer().

The contract is supposed to lock tokens on one chain in order to
mint them on another one. However, the admin has rights to
withdraw any token in any quantity from the contracts.

The admin can withdraw any token.

Consider adding restrictions to ensure that the admin cannot
withdraw certain tokens that represent users’ funds. Consider using
a multisig or DAO contract as the admin.

Recommendation:

According to the Rainbow bridge team, such functionality is
neccesary in case migration of funds is required (as the contract is
not upgradable). Also, in order to provide a better safety for funds,
the admin’s role is granted to a multi-sig wallet.

From the client.

High-1 Verified

During the audit, the team has found several problems of different
severity levels. These problems include the following:�

� High severity. Unrestricted parseAndConsumeProof() function in
ProofConsumer.sol �

� Low severity. Lack of validation of the parameter in the
initialize() function in BridgeTokenFactory.sol�

� Informational. Commented code in the initialize() function in
BridgeTokenFactory.sol

These issues were resolved by the team during the code update. All
of these issues were removed from the report after reviewing the
commit f7f3fea1b8a0eb4410d62bf5eb82c93c23aa61a4 as they were
already fixed by the Rainbow bridge team. Nevertheless, the team
has provided additional checks against them.

Rainbow Bridge Smart Contact Audit

15info@blaize.tech

ERC20Locker.sol: function lockToken().

Anyone can execute lockToken() with any ERC20 token. A malicious
actor can create an ERC20 token with reentrancy to exceed the
maximum limit of locked tokens (Check in require in line 56). Such a
malicious token can also be used to flood the protocol with invalid
events, which can prevent the protocol from processing valid
events.

Usage of arbitrary ERC20 tokens.

Consider adding a whitelist of allowed tokens or a blacklist for
disabling any malicious users or tokens.

Recommendation:

Low-2 Verified

Such functionality is intended since any token can be bridged from
NEAR. It's expected to allow any token to be bridged to NEAR back
and forth. Flooding events make no harm to the protocol because
it is user's responsibility to finalize the needed event (even though
we have an event-relayer).

From the client.

ERC20Locker.sol: function lockToken(), line 56.

The set of contracts uses Solidity 0.8.x, which was built in support of
overflow and underflow warnings. Thus, SafeMath library can be
omitted for gas savings and code simplification.

SafeMath usage can be omitted.

Remove SafeMath library.

Recommendation:

The Rainbow team has created an issue for mitigation 
https://github.com/aurora-is-near/rainbow-token-connector/issues/161

Since the issue is not critical, it can always be fixed later.

Post-audit:

Low-1 Verified

Rainbow Bridge Smart Contact Audit

16info@blaize.tech

BridgeToken.sol: functions pause(), unpause().

The roles of the pauser and the admin are granted to Bridge Token
Factory during initialization of the token. However, there is no
interface in BridgeTokenFactory.sol to pause or unpause the Bridge
token. There is also no interface in BridgeTokenFactory.sol to grant
the pauser role to other accounts. Thus, Bridge tokens can’t be
paused at the moment.
The issue is marked as low since both
BridgeToken.sol and BridgeTokenFactory.sol are upgradeable and
this functionality can always be added later.

Bridge tokens cannot be paused/unpaused.

Add the interface to BridgeTokenFactory for pausing/unpausing
Bridge tokens.

Recommendation:

An interface for pausing/unpausing tokens was added to
BridgeTokenFactory.

Post-audit:

Low-3 Resolved

BridgeTokenFactory.sol: function newBridgeToken().

The function for creating bridge tokens is not restricted, so anyone
can call it and create bridge tokens. The issue is marked as
informational since it might be an intended functionality and
should be verified.

Anyone can create a bridge token.

Verify that function should not be restricted or use the onlyRole
modifier to restrict it.

Recommendation:

Due to the logic of the contract, the function for creating bridge
tokens should not be restricted.

From the client:

lowest-1 Verified

Rainbow Bridge Smart Contact Audit

17info@blaize.tech

Complete​ Analysis (rust)

Line. 405, token-locker/src/lib.rs, function ‘withdraw’

The contract has the withdraw functionality, the flow of which is to

check the given proof and give money to the recipient user
account.
The logic of this movement is a bit extended with new
features. The ETH side
can add additional messages to the event
(data will be a part of the
proof), and it will be contained in the
same data field where the
recipient account is stored. Normally,
these strings should be
separated with “:”, and the NEAR side
should parse it well. Yet, the
current implementation contains an
issue. The problem appears when
the proof from byte array is
parsed. It is casted to the NEAR ‘AccountId’ type
where the ‘:’
symbol is not allowed. So if the contract receives
proof with this
additional message, it will crash while
trying to make AccountId
type from this string. The actual function that should parse this
data field receives
‘String’ type and then returns two separate
pieces: user’s account
and the message itself. This case leads to a
crash on a withdraw call and
completely blocks money refund to
the user. If there is no message, the contract will call ‘ft_transfer’,
and the user will not be aware
of the money refund. But in the
current case with the message
passed, the contract will call
‘ft_transfer_call’ and it will notify the
user about the money. The
team of auditors assumes that this will be
the regular way of usage.

Crash on AccountId parse

Medium-1 Resolved

Change the type of the ‘recipient’ field in

‘EthUnlockedEvent’ struct (token-locker/src/lib.rs, line 13) to ‘String’

Recommendation:

The Rainbow team has created and resolved the issue for mitigation 
https://github.com/aurora-is-near/rainbow-token-connector/issues/163

Post-audit:

Rainbow Bridge Smart Contact Audit

18info@blaize.tech

Line. 109, token_locker/src/lib.rs, function ǹew`

Due to the code implementation, the whitelist flag is always
enabled,
and it cannot be changed in case the owner wants to
disable it. In case
it should always be on, there is no need to add
this flag and its
checks through the code.

Whitelist mode is always enabled

lowest-1 Resolved

Little note on the withdrawal flow. As we can see, when
the user on
the ETH side makes a deposit, the node creates a proof based on
the event. Then, the relayer sends that proof into the withdraw
function on the NEAR side to get user’s money on the current side.

Our minor concern is that native NEAR tokens
are transferred to the
user's account via an unknown ERC-20 token, which
is not a part of
the whitelist (or at least the code does not check it), and
there is no
proof that this token has enough funds. This case
has to be shared
with the dev team just in case.

lowest-2 Verified

Create a possibility to change the whitelist flag or remove all the
code related to its usage if the flag is always
‘true’.

Recommendation:

The Rainbow team has created and resolved the issue for mitigation 
https://github.com/aurora-is-near/rainbow-token-connector/issues/160

Post-audit:

Rainbow Bridge Smart Contact Audit

19info@blaize.tech

The team of auditors has manually tested the entire users flow on
the Token
locker contract (deposit and withdraw functionality)
since initial tests
from the client’s dev team remain on the unit level,
which unfortunately
doesn't cover all NEAR callbacks that appear
to be in each user
flow. There might have been critical issues with
gas consumption, but
after manual testing, all callbacks were
proven to work well. This is just for the information purposes as a
reminder about a few uncovered callbacks in the original test suite.

lowest-3 Verified

Withdraw attached deposit does not return change

Line. 181, token_locker/src/lib.rs, function ẁithdraw

When the user calls ẁithdraw,̀ they will attach deposit as payment
for the storage of their proof record. However, if the user sends too
much along with the call, there is no way to get the change back.

Resolvedlowest-4

The tokens are expected to use the withdraw functionality only
if
they were previously bridged from NEAR to Ethereum and
back. So
we always have the needed supply available on Ethereum
(unless
the contract was exploited in some unknown way or has been
migrated to some other contract).

Post audit.

Verify the behavior or provide the validation for the change for
extensive amount passed.

Recommendation:

The team has verified that all the interaction (deposit/withdrawal)
with the storage balance happens in the token contract using the
NEP-145 standard.

Post-audit:

Rainbow Bridge Smart Contact Audit

20info@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/Parameter Attack

Race Conditions/Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

BridgeToken.sol BridgeToken

Factory.sol

BridgeToken

Proxy.sol

Rainbow Bridge Smart Contact Audit

21info@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Pass Pass Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/Parameter Attack

Race Conditions/Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

Proof

Consumer.sol

Results

Decoder.sol

ERC20Locker.sol

Rainbow Bridge Smart Contact Audit

22info@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/Parameter Attack

Race Conditions/Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

Locker.sol ERC20Metadata

Logger.sol

23info@blaize.tech

Code coverage and test results
for all files

by the Rainbow team (Solidity)

BridgeToken

can create an empty token (91ms)
cant create a token if the token already exists (68ms)
can update metadata (132ms)
cannot update metadata with old block height (138ms)
cannot update metadata of a nonexistent token (74ms)
cannot update metadata when paused (93ms)
user cannot update metadata (68ms)
deposit token (120ms)
can’t deposit if the contract is paused (93ms)
withdraw token (133ms)
can’t withdraw a token when paused (129ms)
can deposit and withdraw after unpausing (170ms)
upgrade the token contract (239ms)
user can’t upgrade the token contract (208ms)

Rainbow Bridge Smart Contact Audit

FILE

BridgeToken.sol

BridgeTokenFactory.sol

BridgeTokenProxy.sol

ProofConsumer.sol

ResultsDecoder.sol

89.47

93.88

100

64.71

0

% STMTS

100

62.5

100

25

100

% BRANCH

80

84.62

100

100

0

% FUNCS

All files 76 43.75 79.31

test coverage results

24info@blaize.tech

Contract: TokenLocker

lock to NEAR (413ms)
unlock from NEAR (603ms)
should not exceed max token limit (5366ms)
cannot unlock, the proof is from the ancient block (5821ms)
admin functions (1156ms)

Pausability

Lock method (6142ms)
Unlock method (7429ms)

Contract: UpdateProver
updateContract (612ms)

 8 passing (1m)

test coverage results

test coverage results

Contract: ERC20MetadataLogger

Should log erc20 metadata (383ms)
 1 passing (385ms)

Rainbow Bridge Smart Contact Audit

FILE

ERC20Locker.sol

Locker.sol

100

100

% STMTS

75

56.25

% BRANCH

83.33

100

% FUNCS

All files 100 65.62 91.66

FILE

ERC20MetadataLogger.sol 100

% STMTS

100

% BRANCH

100

% FUNCS

All files 100 100 100

25info@blaize.tech

Code coverage and test results  
for all files

by the blaize.security team (solidity)

Contract: BridgeToken

Should return true if the provided address is
bridge token and false otherwise (107ms)
Should return near token for eth token (47ms)
Should revert returning near token for eth token if
provided token is not registered (45ms)
Should revert returning eth token for near token if
provided near token is not registered
Should revert depositing if token is not registered
(58ms)
Should revert withdrawing if token is not registered
Should revert updating implementation of token if
token is not registered

Should revert creating proof consumer if
nearTokenFactory is empty

Should decode lock result

Should revert creating proof consumer if prover is
zero address
Should revert if proof is not valid (57ms)

Should revert if proof is from the ancient block
(68ms)
Should revert if proof is used more than once
(96ms)
Should revert if proof produced from wrong near
factory (61ms)

Contract: ProofConsumer

Contract: ResultsDecoder

Rainbow Bridge Smart Contact Audit

26info@blaize.tech

Rainbow Bridge Smart Contact Audit

FILE

BridgeToken.sol

BridgeTokenFactory.sol

BridgeTokenProxy.sol

ProofConsumer.sol

ResultsDecoder.sol

89.47

100

100

100

100

% STMTS

100

100

100

87.5

100

% BRANCH

80

100

100

100

100

% FUNCS

All files 97.9 97.5 96

Should not create ERC20Locker if prover address =
zero address (1007ms)
Should not create ERC20Locker if token factory
address is invalid (1073ms)
Should not unlock token if flag != 0 (2303ms)

.tokenFallback() function - always passing
(1398ms)
Should not reused burn event proof (2652ms)

Contract: ERC20Locker

FILE

ERC20Locker.sol

Locker.sol

100

100

% STMTS

100

75

% BRANCH

100

100

% FUNCS

All files 100 87.5 100

test coverage results

test coverage results

27info@blaize.tech

test_lock_unlock_token
test_only_admin_can_pause
test_blocked_token - should panic
test_account_not_in_whitelist - should panic
test_token_not_in_whitelist - should panic
test_account_in_whitelist
test_remove_account_from_whitelist - should panic
test_tokens_in_whitelist
test_accounts_in_whitelist

fuzzing_eth_unlocked

Code coverage and test results  
for all files

by the Rainbow team (rust)

Rainbow Bridge Smart Contact Audit

bridge-common/src/result_types.rs

generate_result_prefixs

token-locker/src/lib.rs

token-locker/src/unlock_event.rs

28info@blaize.tech

test_add_empty_token_to_whitelist - should panic
test_whitelist_mode_disabled
test_log_metadata
test_withdraw_wrong_address - should panic
test_account_not_registered- should panic
test_withdraw_event_reusing - should panic
test_used_proof
test_update_factory_address
test_eth_account_message
test_deposit_simulation - simulation test
test_withdraw_simulation - simulation test

Rainbow Bridge Smart Contact Audit

token-locker/src/lib.rs

Code coverage and test results
for all files

by the blaize.security team (rust)

test_validate_eth_address
test_validate_eth_address_wrong_address - should panic
test_get_key
test_from_log_entry_data
test_to_log_entry_data

test_parse_recipient_without_colon

test_constructors

bridge-common/src/lib.rs

test_parse_recipient_with_colon

bridge-common/src/prover.rs

bridge-common/src/result_types.rs

Rainbow Bridge Smart Contact Audit

29info@blaize.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer, including all the presented documentation, code
databases, labels, titles, ways of usage, as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim that the
investigated product can meet your or anyone else’s requirements
and be fully secure, complete, accurate, and free of any errors and
code inconsistency.

We are not responsible for all subsequent changes, deletions, and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool that helps investigate
and detect the weaknesses and vulnerable parts that may
accelerate the technology improvements and faster error
elimination.

