
Audit Report

09.05.2023

Project Description 3

01.

Table of Contents

A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3 0 1

Severity definitions 7

05.

Project and Audit 4
Information

02.

Audit Overview 8

06.

Contracts in scope 5

03.

Audit Findings 9

07.

 Disclaimer 29

08.

Executive Summary 6

04.

C
O
N
TE
N
TS

https://docs.google.com/document/d/1gEfY-dwVRHZQdzf6fj7k7vij91prtaOW/edit#heading=h.2et92p0
https://docs.google.com/document/d/1gEfY-dwVRHZQdzf6fj7k7vij91prtaOW/edit#heading=h.2et92p0
https://docs.google.com/document/d/1gEfY-dwVRHZQdzf6fj7k7vij91prtaOW/edit#heading=h.30j0zll
https://docs.google.com/document/d/1gEfY-dwVRHZQdzf6fj7k7vij91prtaOW/edit#heading=h.30j0zll
https://docs.google.com/document/d/1gEfY-dwVRHZQdzf6fj7k7vij91prtaOW/edit#heading=h.30j0zll
https://docs.google.com/document/d/1gEfY-dwVRHZQdzf6fj7k7vij91prtaOW/edit#heading=h.30j0zll
https://docs.google.com/document/d/1gEfY-dwVRHZQdzf6fj7k7vij91prtaOW/edit#heading=h.30j0zll
https://docs.google.com/document/d/1gEfY-dwVRHZQdzf6fj7k7vij91prtaOW/edit#heading=h.tyjcwt
https://docs.google.com/document/d/1gEfY-dwVRHZQdzf6fj7k7vij91prtaOW/edit#heading=h.1fob9te
https://docs.google.com/document/d/1gEfY-dwVRHZQdzf6fj7k7vij91prtaOW/edit#heading=h.3znysh7

0 2

IN
TR
O
D
U
C
TI
O
N Smart Contract Security

Analysis Report

Note: This report may contain sensitive
information on potential vulnerabilities
and exploitation methods. This must be
referred internally and should be only
made available to the public after issues
are resolved (to be confirmed prior by
the client and AuditOne).

INTRODUCTION

Csanuragjain, Defsec, Cryptoninja and
Ubermensch, who are auditors at
AuditOne, successfully audited the smart
contracts (as indicated below) of
Aurorafastbridge. The audit has been
performed using manual analysis. This
report presents all the findings regarding
the audit performed on the customer’s
smart contracts. The report outlines how
potential security risks are evaluated.
Recommendations on quality assurance
and security standards are provided in
the report.

A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

01-PROJECT DESCRIPTION

0 3

The Aurora environment consists of the Aurora Engine, a high
performance EVM—Ethereum Virtual Machine—and the
Rainbow Bridge, facilitating trustless transfer of ETH and ERC-
20 tokens between Ethereum and Aurora, within a great user
experience.

Aurora exists and is operated as an independent, self-funded
initiative, but will continue to leverage the shared team DNA
and continually evolving technology of the NEAR Protocol.

The governance of Aurora will take a hybrid form of a
Decentralized Autonomous Organization—the AuroraDAO—
complemented by a traditional entity which will hold one of
several seats in the AuroraDAO.

This audit focused on the Fast Bridge, one-way semi-
decentralized bridge created to speed up transfers from Near
to Ethereum.

A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

02-Project and Audit Information

0 4A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Term Description

Auditor
Csanuragjain, Defsec, Cryptoninja and
Ubermensch

Reviewed by Gracious

Type Bridge

Language Rust

Ecosystem NEAR and Ethereum networks

Methods Manual Review

Repository
https://github.com/aurora-is-near/fast-bridge-
protocol/

Commit hash
(at audit start)

2c372fc90706a8ac192de2709d017c6431a7f0f6

Commit hash
(after resolution)

d05f29fc8bf2bfe5eff83c47233fcc90ebb86891

Documentation
[Added once the whitepaper is published by the
project]

Website https://aurora.dev/

Submission Time 01-03-2023

Finishing Time 09-05-2023

fast-bridge-protocol/near/contracts/bridge/src/lib.rs
fast-bridge-protocol/near/contracts/bridge/src/lp_relayer.rs
fast-bridge-protocol/near/contracts/bridge/src/whitelist.rs
fast-bridge-protocol/near/contracts/bridge/src/ft.rs
fast-bridge-protocol/near/contracts/bridge/src/utils.rs

03-Contracts in Scope

0 5A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

04-Executive summary

0 6

Aurorafastbridge plugin’s smart contracts were audited
between 2022-12-06 and 2023-03-14 by Csan uragjain, Defsec,
Cryptoninja and Ubermensch. Manual analysis was carried out
on the code base provided by the client. The following findings
were reported to the client. For more details, refer to the
findings section of the report.

A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Quality Assurance
47.1%

High
23.5%

Low
23.5%

Medium
5.9%

Issue Category Issues Found Resolved Acknowledged

High 4 4 0

Medium 1 1 0

Low 4 4 0

Quality Assurance 8 8 0

05-Severity Definitions

0 7A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Risk factor
matrix Low Medium High

Occasional L M H

Probable L M H

Frequent M H H

High: Funds or control of the contracts might be compromised directly. Data
could be manipulated. We recommend fixing high issues with priority as they
can lead to severe losses.

Medium: The impact of medium issues is less critical than high but still
probable with considerable damage. The protocol or its availability could be
impacted or leak value with a hypothetical attack path with stated
assumptions.

Low: Low issues impose a small risk on the project. Although the impact is not
estimated to be significant, we recommend fixing them on a long-term
horizon. Assets are not at risk: state handling, function incorrect as to spec,
issues with comments.

Quality Assurance: Informational and Optimization - Depending on the chain,
performance issues can lead to slower execution or higher gas fees. For
example, code style, clarity, syntax, versioning, off-chain monitoring (events,
etc.)

Occasional: This category might represent risks with a moderate chance of
occurring. These risks are not common but have happened in similar situations.

Probable: This category represents risks that are likely to happen. There's a high
probability based on past experiences, current conditions, or future projections.

Frequent: This category represents risks that occur regularly. In a security audit,
this might refer to common vulnerabilities or threats consistently observed in
similar systems or environments.

100%

06-Audit Overview

0 8A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Security score
Security score is a numerical value generated
based on the vulnerabilities in smart
contracts. The score indicates the contract's
security level and a higher score implies a
lower risk of vulnerability.

98%

Code quality
Code quality refers to adherence to standard
practices, guidelines, and conventions when
writing computer code. A high-quality
codebase is easy to understand, maintain,
and extend, while a low-quality codebase is
hard to read and modify.

98%

Documentation quality
Documentation quality refers to the
accuracy, completeness, and clarity of the
documentation accompanying the code.
High-quality documentation helps auditors
to understand business logic in code well,
while low-quality documentation can lead to
confusion and mistakes.

0 9A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

In the case of the Fast Bridge project, block reorgs can cause
problems if they occur during the transfer of tokens between
Ethereum and NEAR. Specifically, if a block reorg occurs after the
tokens have been locked on one chain but before they are
unlocked on the other chain, the tokens may be lost or double-
spent. This can happen because the LP-Relayer may have
already released the tokens on the other chain, assuming that
the transaction was confirmed, but the reorg means that the
transaction is no longer valid.

Description: Block reorg, also known as blockchain
reorganization, is a situation where a competing chain replaces
the main blockchain. This can happen when multiple miners
find valid blocks at the same time, and the network has to
decide which block to include in the blockchain. In some cases,
the network may choose to include a block that is not in the
main blockchain, resulting in a reorganization of the chain.

07-Findings

Finding: #1

Issue: Block Reorg Can Allow For Double Spending

Severity: High

Where: Business logic

Impact: Block reorgs can harm the protocol's logic by
invalidating previously confirmed transactions. For example, if a
transaction is included in a block that is later reorganized, the
transaction may no longer be valid. This can lead to double-
spending or other issues if the transaction was used to transfer
tokens or execute a smart contract function.

1 0A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Recommendations:
To mitigate the risk of block reorgs, the Fast Bridge project may
need to implement additional measures, such as waiting for
multiple confirmations before proceeding with token transfers
or implementing a fallback mechanism in case of a block reorg.

Status: Resolved. Double spending is no longer possible because
the Near side requires proof of nonexistence transfer, the Eth
side relayer passes valid_till_block_height to the transfer
function, and proof verifications and block height are done only
on finalized blocks on the Near side.

1 1A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Impact: If there is a race condition, it means that the LP-Relayer
may release the tokens before the proof of transaction has been
fully verified. This can happen if the LP-Relayer is attempting to
double spend the tokens, or if they are hacked or compromised
and someone else is trying to steal the tokens.
If the LP-Relayer releases the tokens before the proof of
transaction has been fully verified, then the sender's tokens will
be unlocked on the NEAR side, and they will be able to spend
them again. This means that there is a potential for double
spending, as the LP-Relayer can then use the same tokens to
make another transaction.

Finding: #2

Issue: Potential for Race Condition between Unlock Time and
Proof Verification leading to Double Spending

Severity: High

Where: https://github.com/aurora-is-near/fast-bridge-
service/blob/master/src/transfer.rs

Description: In the Fast Bridge project, a race condition between
unlock time and proof verification can lead to double spending.
Here's how it can happen:
When a user sends tokens from Ethereum to NEAR, the tokens
are locked on the Ethereum side, and the LP-Relayer is
responsible for releasing the tokens on the NEAR side once the
proof of transaction has been received. The LP-Relayer has a
specific time window in which to release the tokens, which is set
by the sender when they initiate the transaction.

https://github.com/aurora-is-near/fast-bridge-service/blob/master/src/transfer.rs

1 2A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Recommendations:
To prevent this from happening, it's important that the LP-
Relayer is trusted and secure, and that there are appropriate
measures in place to verify that the proof of transaction is valid
before the tokens are released. This can include using secure
verification processes, and having multiple parties involved in
verifying the proof before the tokens are released.

Status: Resolved. Double spending is no longer possible because
the Near side requires proof of non-existent transfer, the
Ethereum's side relayer passes valid_till_block_height to the
transfer function, and proof verifications are done only on
finalized blocks on the Near side

1 3A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

It is recommended to follow CEI pattern in this case.
Also decrease_balance should be moved to withdraw, above
ft_transfer.

Description: Currently withdraw function transfer tokens and
after its success, the callback function decreases user's balance.
A malicious user could call the withdraw function repeatedly
before the callback function is called, as the main call and
callback handler are independent transactions. This is because
the user's balance is not decreased until the callback function is
called, so the user can still transfer tokens.
However, the team already had ACL and whitelisting
functionality (limited to Aurora), so no users could have been
affected at that time.

Recommendations:

Status: Resolved. Project team followed CEI pattern, and moved
decrease_balance to withdraw, above ft_transfer.

Finding: #3

Issue: User can drain all funds by calling withdraw multiple times

Severity: High

Where: https://github.com/aurora-is-near/fast-bridge-
protocol/blob/master/near/contracts/bridge/src/lib.rs#L628-L668

Impact: Attacker can withdraw more than his actual balance

https://github.com/aurora-is-near/fast-bridge-protocol/blob/master/near/contracts/bridge/src/lib.rs#L628-L668

1 4A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Description: Currently unlock function checks whether pending
transfer of the nonce does exist or not, after its success, the
callback function increases balance and remove transfer.
In Near, main call and callback handler are independent
transaction, so a malicious user can call unlock repeatedly,
before callback function finished.
As pending transfer is not removed yet, user can still pass the
check in second call.
Second call of remove_transfer in callback will not panic but only
return None.
As a result, user can double-unlock his funds.
However, the team already had ACL and whitelisting
functionality (limited to Aurora), so no users could have been
affected at that time.

Recommendations: We should check if the nonce still exists in
the pending_transfers at unlock_callback.

Status: Resolved. A check was added to determine if the nonce
still exists in the pending_transfers at unlock_callback.

Finding: #4

Issue: Malicious user can double-unlock his locked funds

Severity: High

Where: https://github.com/aurora-is-near/fast-bridge-
protocol/blob/master/near/contracts/bridge/src/lib.rs#L352-L396

Impact: Loss of funds. Wrong deductions of
pending_transfers_balances.

https://github.com/aurora-is-near/fast-bridge-protocol/blob/master/near/contracts/bridge/src/lib.rs#L352-L396

A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

The subscribe function will stop if there is any error while
sending the pubsub_msg.
Restarting the subscribe function may take time
Within that time all published events would get lost and
wont be processed.

Use Redis streams instead of basic Pub/Sub;
Just scan events for a given block range to ensure no events
are lost.

Description:

Recommendations:
Probably an offchain component can keep track of all lost event
messages and Admin could send those lost event messages so
that they could be processed

Status: This was resolved using one of the following approaches:

1 5

Finding: #5

Issue: Subscribed message may get lost

Severity: Medium

Where: https://github.com/aurora-is-near/fast-bridge-
service/blob/master/src/async_redis_wrapper.rs#L148-L150

Impact: If an error occurs while sending the received event
message, then this event would get lost and would not be
processed

https://github.com/aurora-is-near/fast-bridge-service/blob/master/src/async_redis_wrapper.rs#L148-L150

Impact: With the correct validation in place, FastBridge Service can
ensure that transactions are executed within the specified
valid_till_block_height, reducing delays and enhancing efficiency.

Description: The FastBridge Service, which is responsible for
managing transfers between the NEAR and Ethereum networks,
does not validate the valid_till_block_height parameter. This
parameter is used to set an expiration block height for the transfer,
and if not validated properly, it could result in transfers being
processed after they have expired.

Recommendations: To address this issue, it is recommended that
the FastBridge Service implement proper validation for the
valid_till_block_height parameter. This could include checks to
ensure that the current block height is not greater than the
valid_till_block_height value.

Status: This was resolved by implementing proper validation for the
valid_till_block_height parameter.

1 6A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #6

Issue: Lack of Validation for valid_till_block_height on FastBridge
Service

Severity: Low

Where: https://github.com/aurora-is-near/fast-bridge-
service/blob/5ed18302ae675e849e0f34b955f0646028946406/src/
event_processor.rs

https://github.com/aurora-is-near/fast-bridge-service/blob/5ed18302ae675e849e0f34b955f0646028946406/src/event_processor.rs

User A uses fast bridge to get token on ETH
Relayer executes the transaction on ETH but due to redis
issue, the PENDING_TRANSACTIONS entry could not be
made in Redis
This causes Relayer to be unaware about this issue and
Relayer now wont issue lp_unlock on near side
After bridge request expire user can unlock the token. This
means user gets both token on eth and near side

Description:

Recommendations: Revert if redis connection issue is present

Status: Resolved. This won't happen anymore, as state proofs are
being utilized for unlock(). This means the user will need to
provide proof of the non-existence of the transfer on the
Ethereum side. Thus, he would be able to unlock it only if the
transfer on Ethereum didn't happen.

1 7A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #7

Issue: Redis db connection issue - Relayer fund loss

Severity: Low

Where: https://github.com/aurora-is-near/fast-bridge-
service/blob/master/src/event_processor.rs#L71

Impact: If transaction was executed on ethereum meaning
token were transferred but due to connection issue redis db was
not updated then user can unlock near token as well

https://github.com/aurora-is-near/fast-bridge-service/blob/master/src/event_processor.rs#L71

Impact: Without checking the relationship between
lock_time_min and lock_time_max, the code might allow an
invalid configuration state that could lead to unexpected
behavior or runtime errors in other parts of the application that
rely on the lock duration.

Description: In the set_lock_time function, the lock_time_min
and lock_time_max values are not compared before setting the
lock_duration. This might lead to a situation where
lock_time_min is greater than lock_time_max, which could be
an invalid state for the intended logic of the application.

Recommendation: To prevent potential issues with invalid lock
duration configurations, we recommend adding a comparison
between lock_time_min and lock_time_max before updating
the lock_duration. If lock_time_min is greater than
lock_time_max, the function should return an error or panic to
indicate that the provided values are invalid.

Status: This was resolved by adding a comparison between
lock_time_min and lock_time_max before updating the
lock_duration.

1 8A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #8

Issue: Missing comparison between lock_time_min and
lock_time_max in set_lock_time function

Severity: Low

Where: https://github.com/aurora-is-near/fast-bridge-
protocol/blob/master/near/contracts/bridge/src/lib.rs

https://github.com/aurora-is-near/fast-bridge-protocol/blob/master/near/contracts/bridge/src/lib.rs

Description: In the provided code snippet, a JSON object is
created, containing the details for a transfer, including the
token_eth and recipient fields. However, there is no check to
ensure that the token_eth and recipient fields are not the same.
Allowing the same value for both fields could lead to potential
issues in the contract's execution, as it might not be the
intended behavior for a valid transfer.

Recommendations: To address this issue, it is recommended
that the NEAR contract includes a check to ensure that the
token_eth and recipient fields are not the same.

Status: This was resolved by adding a check to ensure that the
token_eth and recipient fields are different.

1 9A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #9

Issue: Lack of Check for Same token_eth and recipient in the
NEAR Contract

Severity: Low

Where: https://github.com/aurora-is-near/fast-bridge-
protocol/blob/master/near/contracts/bridge/src/lib.rs

Impact: If the token_eth and recipient fields are the same, the
contract might execute transfers that are not intended or
logically incorrect, leading to unexpected outcomes and
inaccurate records.

https://github.com/aurora-is-near/fast-bridge-protocol/blob/master/near/contracts/bridge/src/lib.rs

Recommendations: Recommended to add comments on all
contract functions.

Status: Resolved. Comments were added to all necessary
functions.

2 0A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #10

Issue: Missing comments on Code

Severity: Quality Assurance

Where: Almost all contracts

Impact: Lack of comments make it harder to understand what a
specific function is doing.

Description: Most of the contract functions are missing
comments.

As per docs, max of valid_till or valid_till_block_height is
always taken to derive the unlock time:
"valid_till_block_height: Option<u64> — the same as
valid_till, but in block height, not in nanoseconds. If both
values are provided, tokens will be locked on the max of the
two values. (In that stage for User only None value makes
sense)".
But seems like valid_till_block_height is not actually used
while checking valid time validity
As we can see in below function unlock time validation is only
performed on valid_till parameter and valid_till_block_height
param is not used.

Description:

Recommendations: valid_till_block_height should also be used
to derive the unlock time.

Status: This issue was resolved by using valid_till_block_height to
derive the unlock time.

2 1A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #11

Issue: Unexpected token unlock could happen

Severity: Quality Assurance

Where: https://github.com/aurora-is-near/fast-bridge-
service/blob/master/src/transfer.rs#L115-L124

Impact: Token will get unlocked before User expectation causing
transfer to not work. User will need to again start the transfer
using only valid_till argument, wasting gas and time of user.

https://github.com/aurora-is-near/fast-bridge-service/blob/master/src/transfer.rs#L115-L124

Impact: The current implementation with an empty block might
lead to confusion for developers who are reading or maintaining
the code. They might not understand the purpose of the
CheckToken variant and why there is no action associated with
it. This could potentially lead to future bugs or unnecessary code
modifications.

Description: In the check_whitelist_token_and_account
function, the CheckToken variant of the WhitelistMode enum
has an empty block, which might be unclear to readers of the
code. This variant is intended to indicate that only the token
needs to be checked against the whitelist, and no action is
required for the associated account. However, the current
implementation with an empty block might not effectively
communicate this intent.

Recommendations: To improve the clarity and maintainability of
the code, we recommend using the _ => {} pattern in the match
statement for the CheckToken variant. This pattern makes it
explicit that no action is needed for this case. Alternatively, you
can add a comment within the empty block to explain why no
action is required.

Status: Resolved by using the _ => {} pattern in the match
statement for the CheckToken variant.

2 2A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #12

Issue: Improve handling of CheckToken case in
check_whitelist_token_and_account function

Severity: Quality Assurance

Where: https://github.com/aurora-is-near/fast-bridge-
protocol/blob/master/near/contracts/bridge/src/whitelist.rs

https://github.com/aurora-is-near/fast-bridge-protocol/blob/master/near/contracts/bridge/src/whitelist.rs

Description: The require! statement in the new function is used
to check if the contract has already been initialized before.
However, the function also uses the init macro which is
responsible for initializing the contract. Since the init macro can
only be called once per contract, there is no need for an
additional check using require! to verify whether the contract
has been initialized before.

Recommendations: It is recommended to remove the
unnecessary require! statement to ensure a cleaner and more
efficient codebase.

Status: Resolved. Unnecessary require! statement was removed.

2 3A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #13

Issue: Unnecessary Initialization verification

Severity: Quality Assurance

Where:
fast-bridge-protocol\near\contracts\bridge\src\lib.rs

Impact: This redundancy in the code can lead to gas wastage
and possibly cause confusion for future developers who may not
understand the reason for the additional check.

Impact: The impact of this issue could result in frustration and
inconvenience for users, who may have to retry transactions or
experience delays in the confirmation process. Additionally, the
lack of configurability may make it difficult for the Fast Bridge
project to adapt to changing transaction conditions or network
congestion, which could lead to reduced adoption and usage of
the system.

Description: The Fast Bridge project has a lack of configurability
for timeouts related to transactions. In the code snippet
provided, there is a hardcoded timeout of 60 seconds, which
may not be sufficient for all transactions. This lack of
configurability could result in delays or even failures of
transactions, especially in cases where longer confirmation times
are required.

Recommendations: To address this issue, it is recommended
that the Fast Bridge project implement a more configurable
approach for timeouts related to transactions.

Status: Resolved. This is configured only for smoke tests.

2 4A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #14

Issue: Lack of Configurability for Timeouts in Fast Bridge Service

Severity: Quality Assurance

Where: https://github.com/aurora-is-near/fast-bridge-
service/blob/5ed18302ae675e849e0f34b955f0646028946406/src/
event_processor.rs
https://github.com/aurora-is-near/fast-bridge-
service/blob/5ed18302ae675e849e0f34b955f0646028946406/src/
near_events_tracker.rs

https://github.com/aurora-is-near/fast-bridge-service/blob/5ed18302ae675e849e0f34b955f0646028946406/src/event_processor.rs
https://github.com/aurora-is-near/fast-bridge-service/blob/5ed18302ae675e849e0f34b955f0646028946406/src/near_events_tracker.rs

Description: From Relayer, it passes { nonce, proof } as param to
lp_unlock call. However, actual near implementation has just
one param proof.

Recommendations: As proof includes nonce and everything
looks good at Near side, we should keep consistency and remove
nonce from lp_unlock call from Relayer.

Status: This was resolved by removing nonce from lp_unlock call
from Relayer.

2 5A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #15

Issue: Wrong parameter on lp_unlock near call at unlock_tokens
in Relayer

Severity: Quality Assurance

Where: https://github.com/aurora-is-near/fast-bridge-
service/blob/master/src/unlock_tokens.rs#L24-L27

Impact: Bad Code readability

https://github.com/aurora-is-near/fast-bridge-service/blob/master/src/unlock_tokens.rs#L24-L27

2 6A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #16

Issue: Limitations and Risks for Users in the Fast Bridge Project

Severity: Quality Assurance

Where: Documentation

Impact: These limitations and risks can impact the user
experience and adoption of the Fast Bridge project. Users may
be discouraged from using the bridge due to the higher price
and limitations on the tokens that can be transferred.
Additionally, the need to contact support to unlock stuck tokens
can cause inconvenience and delays.

Description: The Fast Bridge project provides a means for
transferring tokens between the NEAR Protocol and Ethereum
networks, but it comes with various limitations and risks for
users and LP-Relayers. Users may encounter issues such as
token lock-up if no relayer is available, requiring them to seek
support for unlocking their stuck tokens on NEAR. The
transaction size is constrained by relayer liquidity, and only
whitelisted tokens can be transferred, albeit at a significantly
higher price than the original bridge.

On the other hand, LP-Relayers play a critical role in holding
locked tokens on the Ethereum side and facilitating their release
on the NEAR side. However, they face their own set of risks and
limitations. For instance, there is a potential for double unlock if
the relayer already transferred tokens on the Ethereum side and
temporarily goes offline. Relayers also require additional
maintenance, including liquidity management and key
protection. Connectivity issues or server uptime problems can
further compound their challenges.

2 7A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

 There won't be a direct loss to the users as they would be
able to redeem their tokens on the NEAR side once the lock
time is expired.
Relayer doesn't have any admin access on NEAR side.
Delayed token release is a part of the decentralized approach
by design: there could be multiple relayers that satisfy the
requirements of the users. If the relayer doesn't process the
transfer for some period of time or is down at all, users can
claim their tokens back just by having a delay on it. It's
expected that relayers attract users based on their uptime
and liquidity; relayers earn a reputation within the process.
There's also a plan to have a separate relayer/keys for each of
the tokens, or depending on the size of the portfolio.

Moreover, if the LP-Relayer is hacked or compromised, several
adverse scenarios can unfold. Token theft becomes a possibility,
with attackers absconding with locked tokens, leaving users
unable to redeem them on NEAR.
Token manipulation is another concern, as a compromised
relayer could manipulate token releases for their benefit,
potentially exceeding authorized amounts or sending them to
unauthorized addresses.
In case of a security breach, the LP-Relayer may need to pause
operations, resulting in delayed token releases and causing
inconvenience to users.
Lastly, a hack or compromise of the LP-Relayer could harm the
reputation of the Fast Bridge project, eroding trust, and
impeding its overall adoption and usage.

Recommendation: To mitigate these risks, it is recommended
that the Fast Bridge project implement a more decentralized
approach that reduces reliance on the relayer and provides
greater flexibility and scalability for users.

Status: This issue was resolved in the following ways:

2 8A U D I T O N E | A U R O R A F A S T B R I D G E A U D I T R E P O R T 2 0 2 3

Finding: #17

Issue: Out-of-date Rust Crate Detected with Cargo Audit

Severity: Quality Assurance

Where: https://github.com/aurora-is-near/fast-bridge-
service/blob/master/Cargo.toml

Security Vulnerabilities: Outdated crates can contain known
security vulnerabilities that have been fixed in the newer
versions. Using these outdated dependencies can expose the
project to potential attacks, compromising the application's
security and integrity.
Missing Features and Bug Fixes: Outdated crates may lack
new features, optimizations, or bug fixes introduced in the
newer versions. This can lead to suboptimal performance,
unexpected behavior, or application crashes.

Impact:

Description: A recent cargo audit has detected an out-of-date
Rust crate within the project. Cargo audit is a tool that analyzes
the Rust project's dependency tree and reports any known
security vulnerabilities or outdated dependencies. Using
outdated crates can introduce potential risks and negatively
affect the performance, stability, and security of the application.

Recommendations: To address this issue, it is recommended to
update the out-of-date crate to its latest version, ensuring that
any security vulnerabilities, bug fixes, or new features are
incorporated into the project.

Status: Resolved. Out-of-date crate was updated to its latest
version.

https://github.com/aurora-is-near/fast-bridge-service/blob/master/Cargo.toml

08 - Disclaimer
The smart contracts provided to AuditOne have been analyzed by the best industry practices at the
date of this report, with cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source Code compilation, deployment,
and functionality (performing the intended functions). The ethical nature of the project is not
guaranteed by a technical audit of the smart contract. Any owner-controlled functions should be
carried out by the responsible owner. Before participating in the project, all investors/users are
recommended to conduct due research.

The focus of our assessment was limited to the code parts associated with the items defined in the
scope. We draw attention to the fact that due to inherent limitations in any software development
process and product, an inherent risk exists that even major failures or malfunctions can remain
undetected. Further uncertainties exist in any software product or application used during the
development, which cannot be free from any errors or failures. These preconditions can impact the
system's code and/or functions and/or operation. We did not assess the underlying third-party
infrastructure, which adds further inherent risks as we rely on correctly executing the included third-
party technology stack itself. Report readers should also consider that over the life cycle of any
software product, changes to the product itself or the environment in which it is operated can have
an impact leading to operational behaviors other than initially determined in the business
specification.

Contact

A trust layer of our
multi-stakeholder world.

auditone.io

hello@auditone.io

@auditone_team

