
SMART CONTRACT AUDIT

June 8th 2023 | v.	1.0

score

94

PASS
Zokyo Security has concluded that

this smart contract passes security

qualifications to be listed on digital

asset exchanges.

Security Audit Score

1

Aurora Smart Contract Audit

This document outlines the overall security of the Aurora smart contracts evaluated by the
Zokyo Security team.

Technical Summary

The scope of this audit was to analyze and document the Aurora smart contract codebase
for quality, security, and correctness.

There was no critical issue found during the audit. (See Complete Analysis)

Contract Status

low Risk

Testable Code

100% of the code is testable, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract but rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that can withstand the NEAR network’s fast-paced and rapidly
changing environment, we recommend that the Aurora team put in place a bug bounty
program to encourage further active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

https://docs.google.com/document/d/1bFLLhLPMI6UcNUe-48EYVB1bImA9fI8OJIzFIhYtopc/edit#heading=h.y413rcm4r1gs

2

Aurora Smart Contract Audit

6Complete Analysis

10Code Coverage and Test Results for all files written by Zokyo Security

4Executive Summary

5Structure and Organization of the Document

3Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

3

Aurora Smart Contract Audit

Within the scope of this audit, the team of auditors reviewed the following contract(s):

The source code of the smart contract was taken from the Aurora repository:  
https://github.com/aurora-is-near/rainbow-token-connector

Last commit - https://github.com/aurora-is-near/rainbow-token-connector/pull/166/files

Bridge-common

Token-locker

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most resent vulnerabilities;

Meets best practices in code readability, etc.

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Testing contract logic against common
and uncommon attack vectors.

04 Thorough manual review of the
codebase line by line.

Zokyo’s Security Team has followed best practices and industry-standard techniques to
verify the implementation of Aurora smart contracts. To do so, the code is reviewed line-by-
line by our smart contract developers, documenting any issues as they are discovered. Part
of this work includes writing a unit test suite using the near-workspace testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

https://github.com/aurora-is-near/rainbow-token-connector/commit/3643c61876c3e07200ebc4be62b1756c2698b28b
https://github.com/aurora-is-near/rainbow-token-connector/pull/166/files

4

Aurora Smart Contract Audit

Executive Summary

Throughout the audit process, there were no notable problems identified. However, we did
come across one issue of low severity and a few informational concerns. It is crucial to
highlight that these findings might only affect certain circumstances involving the contract
owner and the investors involved. For more in-depth insights, kindly refer to the "Complete
Analysis" section.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” depending on whether they
have been fixed or addressed. The issues that are tagged as “Verified” contain unclear or
suspicious functionality that either needs explanation from the Client or remains disregarded
by the Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure and Organization of the Document

5

Aurora Smart Contract Audit

Complete Analysis

Findings summary

6

Aurora Smart Contract Audit

AcknowledgedInformational

RiskTitle# Status

Acknowledged

Resolved

Low1 Calling `contains` before `insert`

Informational3

2

Unimplemented functionality

Code duplication

7

Aurora Smart Contract Audit

low Acknowledged

Calling `contains` before `insert`

File: token-locker/src/lib.rs

Function: Contract::record_proof

Details:

The `UnorderedSet::insert` function returns false if the element already exists in the set.
While the `contains` call requires less gas than `insert` itself it is still better not to use it in
this case. This way it makes a little cheaper transactions with duplicated proofs, while the
normal transactions become a little more expensive (for the excess `contains` call)

Recommendation:

try the construction below instead:

assert!(

self.used_events.insert(&proof_key),

"Event cannot be reused for withdrawing."

);

8

Aurora Smart Contract Audit

Informational Acknowledged

Code duplication

File: token-locker/src/lib.rs

Trait: ExtToken

Details:

The given trait declares the functions that are defined by the NEP141 standard +
MetadataProvider. It could be better to import those traits from the "near-contract-
standards" library instead.

Recommendation:

use the construction like "pub trait ExtToken: FungibleTokenCore +
FungibleTokenMetadataProvider {}"

Informational resolved

Unimplemented functionality

File: token-locker/src/whitelist.rs

Function: Contract::check_whitelist_token

Details:

The function checks the `is_whitelist_mode_enabled` value of the Contract, which is
always true. There is no functionality to switch it to be false.

Recommendation:

Either remove the check with the flag or add a mode switching function

PassPassAccess Management Hierarchy

PassArithmetic Over/Under Flows Pass

Bridge-common Token-locker

PassPassDelegatecall

Pass PassHidden Malicious Code

PassPassUnchecked CALL
Return Values

PassPassExternal Contract Referencing

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

PassPass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassPassRe-entrancy

PassPassUnexpected Ether

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of Randomness)

PassPassShort Address/ Parameter Attack

PassPassRace Conditions / Front Running

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication

9

Aurora Smart Contract Audit

Unit test for: bridge-common

 Finished test [unoptimized + debuginfo] target(s) in 0.17s

 Running unittests src/lib.rs (target/debug/deps/bridge_common-66864974c31ad55f)

running 9 tests
✓ test prover_test::test_ ... ok
✓ test prover_test::test_validate_eth_address ... ok
✓ test lib_test::test_parse_recipient ... ok
✓ test result_types_test::initialized_test ... ok
✓ test prover_test::test_proof_get_key ... ok
✓ test result_types::generate_result_prefixs ... ok
✓ test result_types_test::generate_result_prefixs ... ok
✓ test prover_test::test_validate_eth_address_panic_invalid_bytes - should panic ... ok
✓ test prover_test::test_validate_eth_address_panic_invalid_hex - should panic ... ok

test result: ok. 9 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s

Unit test for: token-locker

 Finished test [unoptimized + debuginfo] target(s) in 45.69s

 Running unittests src/lib.rs (target/debug/deps/rainbow_bridge_near_token_locker-
b8e92c556e09f966)

running 31 tests
✓ test lib_test::test_update_factory_address ... ok
✓ test lib_test::test_log_metadata ... ok
✓ test tests::test_account_in_whitelist ... ok
✓ test lib_test::test_is_used_proof ... ok
✓ test lib_test::test_lock_unlock_token ... ok
✓ test lib_test::test_only_admin_can_pause ... ok

As a part of our work assisting Aurora in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the near-workspace testing
framework.

The tests were based on the functionality of the code, as well as a review of the Aurora
contract requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security

Code Coverage and Test Results for all files

10

Aurora Smart Contract Audit

✓ test tests::test_lock_unlock_token ... ok
✓ test tests::test_only_admin_can_pause ... ok
✓ test tests::test_account_not_in_whitelist - should panic ... ok
✓ test lib_test::test_finish_withdraw_exist_event - should panic ... ok
✓ test token_receiver_test::test_lock_unlock_token ... ok
✓ test unlock_event_test::test_fmt ... ok
✓ test tests::test_tokens_in_whitelist ... ok
✓ test whitelist_test::test_add_account_to_whitelist ... ok
✓ test tests::test_remove_account_from_whitelist - should panic ... ok
✓ test tests::test_accounts_in_whitelist ... ok
✓ test lib_test::test_withdraw - should panic ... ok
✓ test tests::test_token_not_in_whitelist - should panic ... ok
✓ test whitelist_test::test_check_whitelist_token_mode ... ok
✓ test whitelist_test::test_add_account_to_whitelist_not_set - should panic ... ok
✓ test whitelist_test::test_check_whitelist_token ... ok
✓ test tests::test_blocked_token - should panic ... ok
✓ test whitelist_test::test_get_token_account_key ... ok
✓ test whitelist_test::test_check_whitelist_token_panic_block - should panic ... ok
✓ test whitelist_test::test_remove_account_from_whitelist ... ok
✓ test whitelist_test::test_check_whitelist_token_panic_account - should panic ... ok
✓ test whitelist_test::test_set_token_whitelist_mode ... ok
✓ test lib_test::test_finish_withdraw_unused_some ... ok
✓ test whitelist_test::test_add_account_to_whitelist_panic - should panic ... ok
✓ test unlock_event_test::fuzzing_eth_unlocked ... ok
✓ test unlock_event::tests::fuzzing_eth_unlocked ... ok

test result: ok. 31 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.22s

11

Aurora Smart Contract Audit

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

All Files

FILE % STMTS % BRANCH % FUNCS % FUNCS Uncovered Lines

100

100

100

100

100

100

23.63

20.30

98.35

71.71

16.98 45.07Bridge-common

Token-locker

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug bounty
program to encourage further analysis of the smart contract by third
parties.

Aurora

Aurora

