
Smart Contract Code

Review And Security

Analysis Report

Customer: Aurora Labs Limited

Date: 27/01/2025



We express our gratitude to the Aurora Labs Limited team for the collaborative engagement

that enabled the execution of this Smart Contract Security Assessment.

NEAR Intents is a protocol for multichain financial products built by Aurora.

Document

Name

Smart Contract Code Review and Security Analysis Report for Aurora

Labs Limited

Audited By Stepan Chekhovskoi

Approved By Olesia Bilenka

Website https://aurora.dev

Changelog 20/01/2025 - Initial Report

27/01/2025 - Second Report

Platform NEAR

Language Rust

Tags DeX, DeFi

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/near/intents

Initial Commit 160ba5829fea636283375ec462042d51409a6e66

Second Commit 91fee5e119fd74d8de1dbb57d27060873a0ae503

2

https://aurora.dev/
https://hackenio.cc/sc_methodology
https://github.com/near/intents


Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

5 2 2 1

Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 0

Medium 4

Low 1

  

Vulnerability Severity

F-2025-8337 - Inability to Execute Swap due to Fee Calculation Mechanism Medium

F-2025-8338 - Profitable intents Interception due to Front Running Medium

F-2025-8343 - Lack of Full Access Key Verification for Fee Update Medium

F-2025-8345 - Native Balance Exhausting due to Unpaid Storage Increase Medium

F-2025-8339 - Lack of Signed Payload Versioning Low

3

https://portal.hacken.io/App/Projects/Details/5e98d2d5-1ab8-4c19-b381-5faf0bccb880/Finding/2f47c293-a4a4-4e82-aecb-72b573994ef7
https://portal.hacken.io/App/Projects/Details/5e98d2d5-1ab8-4c19-b381-5faf0bccb880/Finding/6fb65cbb-66cb-42e1-b461-a6b2634b00d3
https://portal.hacken.io/App/Projects/Details/5e98d2d5-1ab8-4c19-b381-5faf0bccb880/Finding/d7796c38-673b-4014-a245-acbda2194b49
https://portal.hacken.io/App/Projects/Details/5e98d2d5-1ab8-4c19-b381-5faf0bccb880/Finding/7573780a-d31a-4385-8a05-d0c12048e952
https://portal.hacken.io/App/Projects/Details/5e98d2d5-1ab8-4c19-b381-5faf0bccb880/Finding/e49eff2a-0b13-4761-aa57-66403b0190da


Documentation quality

Functional overview is provided.

Detailed functional requirements are missing.

Technical description is partially provided.

Code quality

Development environment is set up.

Code lacks comments essential for complex architecture understanding.

Code follows best coding practices.

Test coverage

Code coverage of the project is 22% (region coverage).

Core functionality and user interactions are tested.

Negative cases coverage is partially missed.

4



Table of Contents

System Overview 6

Privileged Roles 6

Potential Risks 7

Findings 8

Vulnerability Details 8

Disclaimers 19

Appendix 1. Definitions 20

Severities 20

Potential Risks 20

Appendix 2. Scope 21

Appendix 3. Additional Valuables 25



System Overview

NEAR Intents allows users to create and manage their crypto portfolios, provides functionality

of token swap directly connecting demand side with available liquidity provider. The protocol

is deployed on NEAR blockchain.

NEAR Intents contract operates over signed intents what simplifies onboarding, allows users

to delegate transaction execution and pay for Gas in various tokens. NEAR Intents contract

supports ERC-191 (Ethereum wallets compatible), NEP-413 (NEAR wallets compatible), Raw

Ed-25519 (Solana wallets compatible) signature types.

Onboarding Process

Sending FT, NFT, or MT directly to the NEAR Intents contract causes appropriate callback

is executed, the funds are wrapped into Multi Token Standard and are available for further

actions.

Additionally, signed intents can be attached to the deposit and are executed immediately.

This allows to deposit funds, swap, and withdraw in the same transaction.

Swap Process

The off-chain protocol part receives user request for token swap and passes it to Liquidity

Providers to get a quote.

The best quote is provided back to the user and the user signs the proposed amount.

The signed intents are passed to the smart contract by the off-chain system part.

The NEAR Intents contract validates the token balances delta over all intents is not

negative and updates the actor balances.

It need to be noted here that the off-chain system part is not privileged user in the smart

contract. The system is expected to integrate multiple request solvers and liquidity providers.

Alternative off-chain modules can be run by community to avoid transactions censorship by

the protocol administrators.

Admin functionalities

The contract is upgradeable.

The contract is pausable.

The contract may take fee from each FT or MT swap.

Privileged roles

The DAO is allowed to add or remove Full Access Key to the contract.

The DAO and Fee Managers are allowed to set fee rate and fee collector contract.

The DAO and Upgraders are allowed to upgrade the contract logic.

The DAO and Unrestricted Withdrawers are allowed to withdraw any funds from the

contract to arbitrary location.

6



Potential Risks

Continuous Increase of Contract Storage Deposit: The contract allows any user to

trigger storage allocation without paying for it. In terms of NEAR blockchain it is common

to request Storage Deposit in NEAR (native coin) prior to allocating any storage for the

user. However, the model brings difficulties in easy users onboarding, so, the

development team acknowledged the risk of spreading storage by the users. The contract

may reach DoS situation in case it has less funds than needed to cover the Contract

Storage.

Centralization over DAO Account: The DAO account is expected to be Multi-signature

wallet controlling the system. The account is given wide permissions such as funds

withdrawal to arbitrary destination and the smart contract upgrade.

Callback Failure causes Funds Lock: The asynchronous nature of NEAR blockchain

creates difficulties in error handling at third-party contracts execution. The system

accepted possibility of funds being locked in case withdrawal was not successful due to

abnormal Gas usage by the token contract. Considering simulating the transaction and

attaching enough Gas to the withdrawal transaction.

JSON Redundant Fields: The system parses signed messages payload as JSON. The

payload may contain additional fields ignored by the smart contract which may potentially

mislead the user regarding which action the message authorize.

7



Findings

Vulnerability Details

F-2025-8337 - Inability to Execute Swap due to Fee Calculation

Mechanism - Medium

Description: The contract takes fee from each Token Diff instruction delta.

Negative delta means user requests balance decrease and positive -

balance increase. The fee is not implicitly included in the balance

increase value and should be predicted off-chain based on fee rate

and balance decrease value. After all the intents are executed, the

contract verifies that sum of deltas for each token is zero.

/// core/src/intents/token_diff.rs

let amount = delta.unsigned_abs();

let fee = Self::token_fee(&token_id, amount, protocol_fee).fee_ceil(amount);

fees_collected

    .deposit(token_id, fee)

    .ok_or(DefuseError::BalanceOverflow)?;

This causes that fee is taken twice from each funds portion (first

time from balance decrease and second time from balance

increase). There might be impossible to find positive delta value for

certain negative delta and fee rate.

This happens due to pos + ceil(pos * fee) = -neg - ceil(-neg * fee)

equation is not always solvable relatively to integer pos  for given

integer neg .

This may lead to issues in resolving exact user swap requests.

System might need to propose user to swap less tokens than was

requested what might be unacceptable for tokens with little amount

of decimals or small supply.

Example for 0.12%  fee.

User negative delta is -10026  of some token.

Solver positive delta is pos  of the same token.

At first the contract takes ceil(10026 * 0.0012) = 13  fee from negative

delta and there is 10013  of token available.

8

https://portal.hacken.io/App/Projects/Details/5e98d2d5-1ab8-4c19-b381-5faf0bccb880/Finding/2f47c293-a4a4-4e82-aecb-72b573994ef7


Then for pos = 10000  plus fee ceil(10000 * 0.0012) = 12  the needed

amount is 10012  which is less than expected.

And for pos = 10001  plus fee ceil(10001 * 0.0012) = 13  the needed

amount is 10014  which is greater than expected.

So far, it is impossible to satisfy exact user request for given

conditions. However, changing negative delta to -10025  solves that

particular case.

Assets:

core/src/engine/state/deltas.rs [https://github.com/near/intents]

core/src/intents/token_diff.rs [https://github.com/near/intents]

Status: Fixed

Classification

Impact: 3/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Medium

Severity: Medium

Recommendations

Remediation: Consider weaken the “sum of deltas per token is zero” invariant to

“sum of deltas per token is not positive" and send all excessive

funds to fee collector.

The corresponding logic is located in the finalize  function of the

core/src/engine/state/deltas.rs  file.

Alternatively take fees only from negative deltas.

// let amount = delta.unsigned_abs();

// let fee = Self::token_fee(&token_id, amount, protocol_fee).fee_ceil(amount

);

// // collect fee

// fees_collected

//     .deposit(token_id, fee)

//     .ok_or(DefuseError::BalanceOverflow)?;

if delta < 0 {

    let fee = Self::token_fee(&token_id, delta.unsigned_abs(), protocol_fee)

9



        .fee_ceil(delta.unsigned_abs());

    fees_collected

        .deposit(token_id, fee)

        .ok_or(DefuseError::BalanceOverflow)?;

}

Resolution: The Finding is fixed in the commit 877cb9562afa5d11a9b9f8213235be8f8e89695d .

The contract take fees only from negative delta token diffs (i.e.

token_in).

10



F-2025-8338 - Profitable intents Interception due to Front Running

- Medium

Description: According to the documentation, the off-chain request solvers might

include intents containing self-reward to the transaction. The

contract is free to process any combination of signed intents.

In case transaction contains a profitable intent, it can be intercepted

by blockchain validator. The validator is able to create similar

transaction changing the receiver of the profitable intent and put the

malformed transaction in block before the initial one.

This may lead to any profitable intents be malformed by the

validators and request solvers are not rewarded for the job done.

Assets:

core/src/intents/token_diff.rs [https://github.com/near/intents]

Status: Mitigated

Classification

Impact: 3/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: Consider implementing a mechanism of intents are dependent on

other intents.

Such mechanism requires updating the TokenDiff  intent structure with

new field containing list of intent hashes need to be executed in the

same transaction.

Resolution: The Finding is mitigated according to the functionality update in the

e697962abcf0f4d6372981faea828e47b6e89078  commit.

Referral field is added to the TokenDiff  intent. The referrers might be

rewarded by some off-chain mechanism.

11

https://portal.hacken.io/App/Projects/Details/5e98d2d5-1ab8-4c19-b381-5faf0bccb880/Finding/6fb65cbb-66cb-42e1-b461-a6b2634b00d3


While this does not prevent front running possibility, the solution

provides alternative way for solvers rewarding.

12



F-2025-8343 - Lack of Full Access Key Verification for Fee Update

- Medium

Description: The set_fee  and set_fee_collector  contract methods are restricted to

the DAO and Fee Manager roles. However, the functions do not

validate if the call is initialized by holder of Full Access or Function

Call Key.

Function Call Keys are given to various applications to simplify user

experience, however, the Function Call Key does not allow NEAR

transfer from the account. Verifying if 1 yNEAR was attached

guarantees the caller is authorized with Full Access Key.

fn set_fee(&mut self, #[allow(unused_mut)] mut fee: Pips) {

    require!(self.fees.fee != fee, "same");

    swap(&mut self.fees.fee, &mut fee);

    FeeChangedEvent {

        old_fee: fee,

        new_fee: self.fees.fee,

    }

    .emit();

}

fn set_fee_collector(&mut self, #[allow(unused_mut)] mut fee_collector: Accou

ntId) {

    require!(self.fees.fee_collector != fee_collector, "same");

    swap(&mut self.fees.fee_collector, &mut fee_collector);

    FeeCollectorChangedEvent {

        old_fee_collector: fee_collector.into(),

        new_fee_collector: Cow::Borrowed(self.fees.fee_collector.as_ref()),

    }

    .emit();

}

This may lead to unauthorized application being able to set arbitrary

fee in the contract and change the fee collector account.

Assets:

defuse/src/contract/fees.rs [https://github.com/near/intents]

Status: Fixed

Classification

Impact: 4/5

mem::

mem::

13

https://portal.hacken.io/App/Projects/Details/5e98d2d5-1ab8-4c19-b381-5faf0bccb880/Finding/d7796c38-673b-4014-a245-acbda2194b49


Likelihood: 4/5

Exploitability: Semi-Dependent

Complexity: Simple

Severity: Medium

Recommendations

Remediation: Consider validation the methods are executed with Full Access Key.

fn set_fee(&mut self, #[allow(unused_mut)] mut fee: Pips) {

    assert_one_yocto();

    ...

}

fn set_fee_collector(&mut self, #[allow(unused_mut)] mut fee_collector: Accou

ntId) {

    assert_one_yocto();

    ...

}

Resolution: The Finding is fixed in the commit 3eb11613f899dd375e2178d447e5c58a09e6a3b7 .

The missing Full Access Key validation is implemented.

14



F-2025-8345 - Native Balance Exhausting due to Unpaid Storage

Increase - Medium

Description: NEAR blockchain implements storage staking model which locks

some NEAR at contracts when additional storage space is allocated.

It is considered reasonable to request storage deposits from users to

cover the data increase costs.

The execute_intents  function execution causes storage increase due to

potential user balances allocation and used nonces recording. The

function lacks validation if it was attached enough NEAR to cover the

storage increase.

fn execute_intents(&mut self, signed: Vec<MultiPayload>) {

    Engine::new(self, ExecuteInspector::default())

        .execute_signed_intents(signed)

        .unwrap_or_panic()

        .as_mt_event()

        .as_ref()

        .map(MtEvent::emit);

}

In such a way, third-party may perform a dust attack on the contract

populating storage and decreasing the available amount of NEAR for

covering the allocated space. This potentially may lead to temporary

DoS situation.

Assets:

defuse/src/contract/intents/mod.rs

[https://github.com/near/intents]

Status: Accepted

Classification

Impact: 3/5

Likelihood: 4/5

Exploitability: Independent

Complexity: Simple

Severity: Medium

Recommendations

15

https://portal.hacken.io/App/Projects/Details/5e98d2d5-1ab8-4c19-b381-5faf0bccb880/Finding/7573780a-d31a-4385-8a05-d0c12048e952


Remediation: Consider checking the initial and final contract state size in the

execute_intents  function of the defuse/src/contract/intents/mod.rs  file.

Ensure that enough NEAR were attached to the call to cover the

state increase.

Resolution: The Finding is accepted by the Client team.

The risk is applicable to the mentioned execute_intents  and

on_[token]_transfer  onboarding functions.

To simplify the onboarding process, the on_[token]_transfer  function

does not require the initial storage deposit. The Unpaid Storage

Increase issue cannot be fully fixed keeping users onboarding

process easy.

16



F-2025-8339 - Lack of Signed Payload Versioning - Low

Description: The signed payload messages are not properly versioned.

pub struct DefusePayload<T> {

    pub signer_id: AccountId,

    pub verifying_contract: AccountId,

    pub deadline: Deadline,

    #[serde_as(as = "Base64")]

    #[cfg_attr(

        all(feature = "abi", not(target_arch = "wasm32")),

        schemars(example = "self::examples::nonce")

    )]

    pub nonce: Nonce,

    #[serde(flatten)]

    pub message: T,

}

The system is developed as upgradeable. For upgradeable systems

it is reasonable to implement versioning possibility from the

beginning to simplify further support of different version payloads.

Assets:

core/src/payload/mod.rs [https://github.com/near/intents]

Status: Accepted

Classification

Impact: 3/5

Likelihood: 4/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: Consider adding version  field to the default payload structure and

validate that it correspond to actual one in the execute_signed_intent

function of the core/src/engine/mod.rs  file.

17

https://portal.hacken.io/App/Projects/Details/5e98d2d5-1ab8-4c19-b381-5faf0bccb880/Finding/e49eff2a-0b13-4761-aa57-66403b0190da


pub struct DefusePayload<T> {

    pub signer_id: AccountId,

    pub verifying_contract: AccountId,

    pub deadline: Deadline,

    pub version: u64,

    ...

}

Resolution: The Finding is accepted by the Client team.

Versioning system is going to be implemented in future updates.

18



Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

19



Appendix 1. Definitions

Severities

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution.

Potential Risks

The "Potential Risks" section identifies issues that are not direct security vulnerabilities but

could still affect the project’s performance, reliability, or user trust. These risks arise from

design choices, architectural decisions, or operational practices that, while not immediately

exploitable, may lead to problems under certain conditions. Additionally, potential risks can

impact the quality of the audit itself, as they may involve external factors or components

beyond the scope of the audit, leading to incomplete assessments or oversight of key areas.

This section aims to provide a broader perspective on factors that could affect the project's

long-term security, functionality, and the comprehensiveness of the audit findings.

20

https://github.com/hknio/severity-formula/blob/main/README.md


Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/near/intents

Initial Commit 160ba5829fea636283375ec462042d51409a6e66

Second Commit 91fee5e119fd74d8de1dbb57d27060873a0ae503

Whitepaper N/A

Requirements https://docs.near-intents.org

Technical Requirements README.md

Asset Type

bitmap/src/lib.rs [https://github.com/near/intents]
Smart

Contract

core/src/accounts.rs [https://github.com/near/intents]
Smart

Contract

core/src/deadline.rs [https://github.com/near/intents]
Smart

Contract

core/src/engine/inspector.rs [https://github.com/near/intents]
Smart

Contract

core/src/engine/mod.rs [https://github.com/near/intents]
Smart

Contract

core/src/engine/state/cached.rs [https://github.com/near/intents]
Smart

Contract

core/src/engine/state/deltas.rs [https://github.com/near/intents]
Smart

Contract

core/src/engine/state/mod.rs [https://github.com/near/intents]
Smart

Contract

core/src/error.rs [https://github.com/near/intents]
Smart

Contract

core/src/events.rs [https://github.com/near/intents]
Smart

Contract

core/src/fees.rs [https://github.com/near/intents]
Smart

Contract

core/src/intents/account.rs [https://github.com/near/intents]
Smart

Contract

core/src/intents/mod.rs [https://github.com/near/intents]
Smart

Contract

core/src/intents/token_diff.rs [https://github.com/near/intents]
Smart

Contract

21

https://github.com/near/intents
https://docs.near-intents.org/


Asset Type

core/src/intents/tokens.rs [https://github.com/near/intents]
Smart

Contract

core/src/lib.rs [https://github.com/near/intents]
Smart

Contract

core/src/nonce.rs [https://github.com/near/intents]
Smart

Contract

core/src/payload/erc191.rs [https://github.com/near/intents]
Smart

Contract

core/src/payload/mod.rs [https://github.com/near/intents]
Smart

Contract

core/src/payload/multi.rs [https://github.com/near/intents]
Smart

Contract

core/src/payload/nep413.rs [https://github.com/near/intents]
Smart

Contract

core/src/payload/raw.rs [https://github.com/near/intents]
Smart

Contract

core/src/tokens.rs [https://github.com/near/intents]
Smart

Contract

crypto/src/curve/ed25519.rs [https://github.com/near/intents]
Smart

Contract

crypto/src/curve/mod.rs [https://github.com/near/intents]
Smart

Contract

crypto/src/curve/secp256k1.rs [https://github.com/near/intents]
Smart

Contract

crypto/src/lib.rs [https://github.com/near/intents]
Smart

Contract

crypto/src/payload.rs [https://github.com/near/intents]
Smart

Contract

crypto/src/public_key.rs [https://github.com/near/intents]
Smart

Contract

crypto/src/serde/curve.rs [https://github.com/near/intents]
Smart

Contract

crypto/src/serde/mod.rs [https://github.com/near/intents]
Smart

Contract

crypto/src/signature.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/accounts.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/abi.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/accounts/account.rs [https://github.com/near/intents]
Smart

Contract

22



Asset Type

defuse/src/contract/accounts/mod.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/accounts/state.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/admin.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/config.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/events.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/fees.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/intents/execute.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/intents/mod.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/intents/relayer.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/intents/simulate.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/intents/state.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/mod.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/state.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/tokens/mod.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/tokens/nep141/deposit.rs

[https://github.com/near/intents]

Smart

Contract

defuse/src/contract/tokens/nep141/mod.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/tokens/nep141/native.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/tokens/nep141/withdraw.rs

[https://github.com/near/intents]

Smart

Contract

defuse/src/contract/tokens/nep171/deposit.rs

[https://github.com/near/intents]

Smart

Contract

defuse/src/contract/tokens/nep171/mod.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/tokens/nep171/withdraw.rs

[https://github.com/near/intents]

Smart

Contract

23



Asset Type

defuse/src/contract/tokens/nep245/core.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/tokens/nep245/deposit.rs

[https://github.com/near/intents]

Smart

Contract

defuse/src/contract/tokens/nep245/mod.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/contract/tokens/nep245/resolver.rs

[https://github.com/near/intents]

Smart

Contract

defuse/src/contract/tokens/nep245/withdraw.rs

[https://github.com/near/intents]

Smart

Contract

defuse/src/contract/upgrade.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/fees.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/intents.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/lib.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/tokens/mod.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/tokens/nep141.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/tokens/nep171.rs [https://github.com/near/intents]
Smart

Contract

defuse/src/tokens/nep245.rs [https://github.com/near/intents]
Smart

Contract

erc191/src/lib.rs [https://github.com/near/intents]
Smart

Contract

nep413/src/lib.rs [https://github.com/near/intents]
Smart

Contract

24



Appendix 3. Additional Valuables

Additional Recommendations

The smart contracts in the scope of this audit could benefit from the introduction of automatic

emergency actions for critical activities, such as unauthorized operations like ownership

changes or proxy upgrades, as well as unexpected fund manipulations, including large

withdrawals or minting events. Adding such mechanisms would enable the protocol to react

automatically to unusual activity, ensuring that the contract remains secure and functions as

intended.

To improve functionality, these emergency actions could be designed to trigger under specific

conditions, such as:

Detecting changes to ownership or critical permissions.

Monitoring large or unexpected transactions and minting events.

Pausing operations when irregularities are identified.

These enhancements would provide an added layer of security, making the contract more

robust and better equipped to handle unexpected situations while maintaining smooth

operations.

25




