

Data gathering and decision making in Life Terra

Samuel Allasia, Aroa Gregori-Montaner, Núria Borràs, Tiago de Santana, Priya Devasirvatham, Jan Albert, Petr Blažek, Koen Kramer, Robert van Schooten, Francesc Sabater, Teresa Sauras-Yera, Santi Sabaté

contact@lifeterra.eu

lifeterra.eu

@LifeTerraEurope

Aims

- Develop a framework and a database for species selection and distribution for successful, efficient and scalable forest landscape restoration (FLR)
- Develop a land suitability model that allows assessing the suitability of species for a given area, accounting for climate change scenarios
- Develop efficient large-scale monitoring technologies to estimate carbon storage through time in planted forests

Framework for species selection and spatial planning

Stakeholders' involvement: goals & purposes (what & why)

Integrate site & species information for species selection

Distribute the species

Characterise the site

- Ownership, land uses
- Physical environment layers
- Climate projections
- Current vegetation and soil condition
- Maps of habitats & natural vegetation

Assess natural vegetation suitability given the current state of the physical environment and climate change scenario projections. Include climate-resilient species.

Account for landscape heterogeneity (slope, aspect, ridge, valley).

Assess stakeholders' species suggestions, prioritizing ecosystem services, climateresilient species and biodiversity.

List of selected species.

Adjust the species selection & planting event schedule to species availability in nurseries and seasonal planting windows.

Set restoration units (RU) and map them through map algebra.

Get the numbers

Choose species shares and planting densities for each RU.

Order the seedlings

What do we need?

Tree and shrub species database

Many sources of information about flora exist, but we have identified a **need for integration and synthesis** focusing on key aspects for FLR. We are building an integrated database that includes:

Gathering specific biomass equations to estimate carbon storage by young trees and shrubs

Monitoring survival and growth is essential to FLR. Scalability demands efficient monitoring and assessment methodologies.

Basic traits, chorology & autecology of the species

- Basic description (broadleaf/conifer, habit, leaf phenology)
- Growth rate and growth rate changes
- Native range or non-native range if introduced
- Subspecies, varieties, or hybrid species and their distributions
- Environmental requirements (climate, soil, underground water, light) availability, habitat structure)

Ecological and societal relevance

- Ecosystem functions and services
- Uses (potential direct benefits for the local economy)

Relevant information for selection & spatial planning

- Co-occurrence with other tree species
- Relative abundance (density, pure/mixed stands/secondary)
- Threats (pests, diseases, abiotic stressors)
- Potential effects of climate change

Currently, satellite imagery lacks enough precision to assess tree growth over the first years after planting.

We searched for **allometric equations for young trees** but found **scarce literature**. Different methodologies across studies hinder comparison and integration.

We have selected 1 for genus and 28 species specific equations.

Genus: Pinus (5), Quercus (5), Cistus (2), Prunus (2), Abies, Acer, Betula, Carpinus, Erica, Fagus, Fraxinus, Juniperus, Picea, Pseudotsuga, Rosmarinus, Salix (generic), Sorbus, Tilia, Ulex.

What is next?

- Apply the framework for species selection across climatic and geographic gradients in Europe; learn from experience & monitoring
- Expand the species database & refine it with LT and Restor data
- Collaborate with Restor in SDM, considering climate change scenarios
- Expand & integrate knowledge about allometries in young trees

Tools for integration

Bibliography

We joined Restor, an online platform for the global restoration movement that is developing a **worldwide land suitability model**.

Restor (restor.eco)

- Lists suitable species for any given area through species distribution models (SDM)
- Opportunity to learn from monitoring & assessing different projects and generate knowledge for the species database
- SDM accuracy is yet to be improved, and it can **benefit from the** input of projects like Life Terra (LT)

Database (main sources):

San-Miguel-Ayanz et al. (2016), European Atlas of Forest Tree Species, European Commission; M. K. Dyderski et al. (2018), How much does climate change threaten European forest tree species distributions?, Global Change Biology, 24(3), 1150-1163; A. Norfalise (1987), Map of the Natural Vegetation of the Member Countries of the European Community and the Council of Europe. DBs: emplantbase.org, brc.ac.uk, inpn.mnhn.fr, arbolapp.es, biodiver.bio.ub.es, floragon.ipe.csic.es

Biomass equations:

P. Annighöfer et al., European Journal of Forest Research, 2016, 135(2), 313-329; A. Çömez, Fresenius Environmental Bulletin, 2017, 26(3), 2368-2379; O. E. Sakici et al., Environmental Monitoring and Assessment, 2018, 190(5), 1-10; A. Valdecantos & D. Fuentes, Land Degradation & Development, 2018, 29(5), 1442-1452; L. Deltell, V. M. Santana & J. Baeza, from UA (before submission).

In collaboration with:

