Immuno-intervention: perspectives thérapeutiques

Luc Mouthon

Service de Médecine Interne, hôpital Cochin,

Centre de Référence Vascularites nécrosantes et sclérodermie systémique

Assistance publique-Hôpitaux de Paris, Paris

Université Paris Descartes, Inserm U1016, Institut Cochin, Paris

Conflicts of interest

- Consultant: Actelion, CSL Behring, LFB Biotechnologies, Lilly, Pfizer, Octapharma
 - Financial support to ARMIIC
- > Investigator: Actelion, CSL Behring, Pfizer
- Financial support (grants to ARMIIC): Actelion, CSL Behring, GSK, LFB Biotechnologies, Pfizer
- Invited conference: SOBI, Roche, Actelion, CSL Behring, Octapharma, GSK, LFB Biotechnologies, Pfizer, Lilly, UCB pharma

Clinical use of therapeutic antibodies in autoimmune and inflammatory diseases

Intravenous immunoglobulin

- « Natural » therapeutic antibodies
- > Biologics
 - Rheumatoid arthritis: 2000's revolution
 - ANCA-associated vasculitis: another ongoing revolution
 - Systemic lupus erythematosus: still a lot of work to do
 - > Multiple sclerosis: efficacy but...

Intravenous immunoglobulin (IVIg)

0

Normal human IgG
Obtained from a pool of plasma of more than 1000 healthy blood donors

before 1980

Indications :

- Substitutive therapy of humoral immune deficiencies
- Treatment of systemic inflammatory and/or autoimmune diseases

EVOLUTION OF TOTAL WORLD Tons of IVIg 120 100 80 60 40 20

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Mouthon L, Hématologie 2005

EMEA guidelines for the preparation of Intravenous immunoglobulin

4th edition - 2002

Plasma : pool > 1000 donnors

Security of the preparation

Quality control

- One or more steps to inactivate infectious agents
- No transmission of infection
- Absence of secondary effects related to products used for virus inactivation
- Prekallikreine activator <35 UI/ml</p>
- anti-A & anti-B hemaglutinins: absence of agglutination at a dilution of 1/64

- Anti-complement activity \geq 50 %
- Total protein content \geq 90%
- monomere/dimere ≥ 90 %
- Polymeres/agregates < 3 %</p>
- 2 antibodies (viral & bacterial) concentration ≥ 3 times over that of the pool of plasma
- distribution of IgG sub-classes identical to that of normal human plasma
- functional Fc portion
- Anti-HBs Ag Abs : 0,5 UI/g of Ig

titer >

Note for Guidance on the clinical investigation of IVIg

Substitutive therapy	Immunomodulation		
- Primary humoral immune deficiencies with hypogammaglobulinemia or agammaglobulinemia :	- Immune thrombocytopenic purpura in children and adults with high risk of bleeding or before surgery		
 X-linked agammaglobulinemia / constitutive hypogammaglobulinemia Common variable immune deficiency 	-Guillain-Barré syndrome -Kawasaki disease		
 Severe combined immune deficiency Wiskott Aldrich syndrome 			
- Multiple myeloma and CLL with severe hypogammaglobulinemia and recurrent infections			
Bone marrow allograft			

Note for Guidance on the clinical investigation of human normal immunoglobulin for intravenous administration (IVIg). The European Agency for the Evaluation of Medicinal Products CPMP/BPWG/388/95 rev. 1

Proposed Fc fragment-dependent mechanisms of IVIg activity

Generation of mAb-producing hybridoma cells

Nomenclature of monoclonal Abs

Species	Letter	Suffix	
Humain	U	umab	
mouse	0	omab	
Rat	E		
Hamster	E		
Primate	i		
Chimeric	Xi	ximab	Rituximab
Humanized	ZU	zumab	Ocrelizumab

L Mouthon. Livre de l'interne en Médecine Interne. 2007

Polyarthrite rhumatoïde

*Hème oxygénase-1

Choy EH and Panayi GS. N Engl J Med, 2001

Biologicals in rheumatoid arthritis

TNF-α inhibitors

- Adalimumab: humanised monoclonal antibody against TNF-α
- Certolizumab: Fab fragment of a humanised TNF-α inhibitor monoclonal antibody
- Etanercept: humanised soluble recombinant TNF-α type II receptor-IgG1 fusion protein
- Golimumab: human monoclonal antibody against TNF-α (awaiting NICE appraisal for use in rheumatoid arthritis)
- Infliximab: a chimeric mouse-human monoclonal antibody against TNF-α
- Others
 - Anakinra: human recombinant interleukin 1 receptor antagonist
 - Abatacept: an immunoglobulin and extracellular CTLA4 domain fusion protein that selectively inhibits T cell co-stimulation
 - Rituximab: chimeric monoclonal anti-CD20 antibody that depletes B cells
 - Tocilizumab: humanised monoclonal anti-interleukin 6 receptor antibody

*currently licensed for the treatment of RA

Klarenbeek NB et al. BMJ 2010

Anti-TNF-a Protein-Engineered Antibodies And Fusion Proteins

Overall results of biologics versus control

Outcome	Effect estimate, OR (95% CI)	
Serious adverse effects	1.11 (0.94, 1.31)	
Serious infections	1.19 (0.94, 1.52)	
Total adverse events	1.19 (1.09, 1.30)	
Withdrawals due to adverse events	1.32 (1.06, 1.64)	
TB reactivation	4.68 (1.18, 18.60)	
Lymphoma	0.53 (0.17, 1.66)	
Congestive heart failure	0.69 (0.18, 2.69)	

Singh JA The Cochrane Library 2011, Issue 2

JAK inhibitors

JAK inhibitors in rheumatoid arthritis

Vascularites ANCA-positives

B-cell targeting therapies

B-cell targeting therapies

Randomized controlled trials Anti-CD20 and rheumatoid arthritis Anti-CD20 and ANCA-associated vasculitis Anti-CD20 and ITP Anti-CD20 and cryoglobulinemia vasculitis Anti-BAFF and systemic lupus

Other studies Anti-CD20 and systemic lupus Anti-CD20 and Sjögren's syndrome Anti-CD22 and systemic lupus

Effects of B-cell targeting therapies

Induce total B-cell depletion Anti-CD20

Decrease B-cell activation and proliferation Anti-BAFF (belimumab) Anti-CD22 (épratuzumab)

Anti-CD20 - Rituximab

Variables regions from murine anti-CD20 Ab: IDEC-2B8 Constant regions: human IgG1k First monoclonal antibody approved by the FDA (1997)

Rituximab: ADCC

ADCC: Antibody-dependant cellular cytotoxicity

Anderson et al. Biochem Soc Trans 1997;25:705-8. Clynes et al. Nat Med 2000; 6:443-6.

Smith. Oncogene 2003; 22 : 735.

Smith. Oncogene 2003; 22 : 7359.

Conclusions

- Rituximab was as efficient as IV CYC (RITUXVAS) or oral CYC (RAVE) in the induction of remission in ANCA-associated vasculitis.
- Adverse events were more frequent than expected under rituximab (as frequent as observed in patients reveiving oral CYC in RAVE).
- In RITUXVAS 6/33 patients died in the rituximab arm vs 2/11 in the control group
- The results of long term follow up in RAVE should inform us on the duration of remission in patients who received rituximab as an induction treatment and no maintenance therapy.

MAINRITSAN

Guillevin L et al. NEJM 2014

Lupus systémique

Classification criteria for SLE (ARA 1982)*

 Malar rash Discoid lupus Photosensitivity Oral or nasal ulcers •Non erosive arthritis ≥ 2 peripheral joints •Pericarditis, pleuresis Protéinuria ≥ 0,5 g/d Seizure or psychosis Hemolytic anemia or Leucopenia < 4000/µl on two occasions or Lymphopenia < 1500/µl on two occasions or Thrombocytopenia < 100000/µl •I F cells or anti-native, double strand DNA or Anti-Sm or Positive VDRL (negative TPHA) on two occasions at six months intervals Abnormal ANA titer in the absence of drug

*4 criteria simultaneous/successive to assess the diagnosis of SLE (sensitivity and specificity of 96%).

Adapt treatment to disease severity

Skin and joint involvement

- hydroxychloroquine
- NSAID
- topical corticosteroids
 low dose oral CS
- Never use
- immunosuppressants

Pleuritis, pericarditis

hydroxychloroquine
 (Plaquénil)
 NSAID
 CS 0,5 mg/kg
 No immunosuppressants

Visceral involvement

hydroxychloroquine
(prevention of relapses)
High dose CS (1 mg/kg)
Eventually pulse MP
Immunosuppressants
anti-CD20, plasma exchanges...

Potential future targets and relevant drugs in connection with B-cells and T-cells in the management of SLE

Haubitz M. Biologics: Target & therapy 2010

Benlysta (belimumab): anti-BAFF in SLE

- Seropositive SLE patients (ie, antinuclear antibody positive and/or anti-DNA positive) without active nephritis or active central nervous system disease were enrolled in two phase II/III studies (BLISS-52 and BLISS-76) and treated with placebo, 1 mg/kg of anti-BAFF, or 10 mg/kg of anti-BAFF.
- Primary endpoint: SRI (SLE Responder Index),
- Both studies showed superiority of the 10 mg/kg dose to placebo at 12 months (56.7% of patients have shown improvement when treated with a 10 mg/kg dose of belimumab in addition to standard treatment as opposed to 43.6% improvement under standard treatment and placebo).
- Benlysta (belimumab): agreement US FDA (july 2011).

Wallace DJ et al. Arthritis Care Res (Hoboken) 2009 ; 62 : 580 – 1 . Petri M et al. Arthritis Rheum 2010;62:S190 (abstract). Only three drugs were FDA-approved for the treatment of SLE: Prednisone Aspirin Hydroxychloroquine

Belimumab efficacy is 'mild' but market potential still great: anticipating us approval of the first lupus drug since 1957. Weintraub B. BioDrugs. 2011 Jun 1;25(3):203-5.

There is a need for cost-benefit studies

« Biologics »

« Old drugs »

The exemple for systemic lupus erythematosus......

Sclérose en plaques et Natalizumab

Progressive Multifocal Leukoencephalopathy Complicating Treatment with Natalizumab and Interferon Beta-1a for Multiple Sclerosis

Kleinschmidt-DeMasters BK & Tyler KL. N Engl J Med 2005;353:369-74.

A 46-year-old woman with relapsingremitting multiple sclerosis died from progressive multifocal leukoencephalopathy (PML) after having received 37 doses of natalizumab (300 mg every four weeks) as part of a clinical trial of natalizumab and interferon beta-1a.

Table 1. Doses and Timing of Treatments for Multiple Sclerosis.

Treatment*

Interferon beta-1a, 30 µg IM

Methylprednisolone, 500 mg IV twice daily

Natalizumab, 300 mg IV every 4 weeks

Treatment Interval

February 2000–January 2005 March 16–20, 2001 December 15–19, 2004 January 5–9, 2005

April 12, 2002–January 18, 2005

Discovery and development of natalizumab

Ocrelizumab (anti-CD20)

- Ocrelizumab had reached Phase III clinical trials for rheumatoid arthritis and systemic lupus erythematosus, and Phase II for multiple sclerosis and hematological cancer.
- In March 2010, Roche announced the suspension of clinical trials in rheumatoid arthritis and lupus erythematosus. This step followed excess deaths due to opportunistic infections.
- Development for multiple sclerosis continues

Conclusions

Large number of biologics available, new generations coming up

Biologics: revolution in the treatment of rheumatoid arthritis
 Cost-benefit studies are necessary
 Improve efficacy: increase immunosuppression
 From the use of biologics we learn from the pathophysiology of autoimmune diseases
 New treatments: new risks

Hôpital Cochin Paris

www.vascularite.org Luc.mouthon@cch.aphp.fr

