

Actualités de la maladie de Behçet

Benjamin Terrier

Service de Médecine Interne

Centre de Référence pour les Maladies Systémiques et Autoimmunes rares

Hôpital Cochin, Université Paris Descartes

Description initiale de la maladie

1931: Adamantiades, Grèce

1937: Huluci Behçet, Turquie

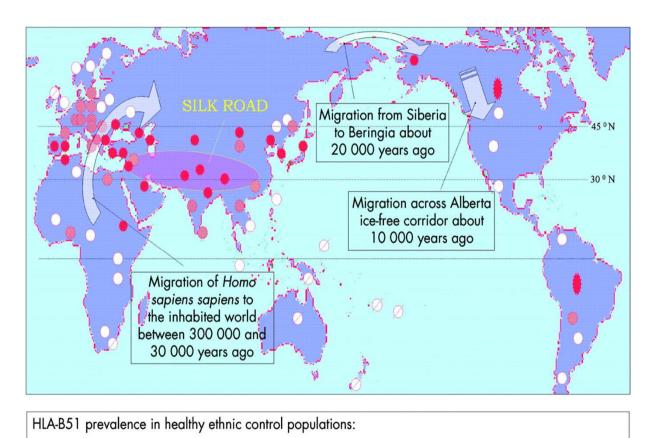
Triade:

- Hypopion
- Uvéite antérieure aigue
- Aphtose bipolaire

Maladie de Behçet

Vascularite inflammatoire multi-systémique

Touche les vaisseaux de tout calibre


Terrain

Adulte jeune: 30 ans

Homme > Femme

Forme familiale: 2-18 % des cas

Epidémiologie – Route de la soie

■ Intermediate: 11 – 15%

High: > 15%

Absent

O Low: 1 – 10%

Prévalence de la maladie

Turquie 100/100 000

Iran 16,7/100 000

Japon 13,6/100 000

Italie 2,5/100 000

UK 0,5/100 000

Critères de l'International Study Group

Critères

Aphtose buccale récidivante (≥ 3 poussées/an)

Associée à 2 autres critères parmi :

Aphtose génitale récidivante ou lésions cicatricielles

Atteinte oculaire (uvéite, hyalite, vascularite rétinienne)

Lésions cutanées (érythème noueux, pseudo-folliculite, lésions papulo-pustuleuses, nodules acnéiformes)

Pathergy test positif (lu après 24h-48h)

Nouveaux critères 2013

Critères	
Aphtose buccale	2 points
Aphtose génitale	2 points
Lésions cutanées	1 point
Atteinte oculaire	2 points
Atteinte SNC	1 point
Atteinte artérielle	1 point
Pathergy test positif	1 point
Diagnostic si ≥ 4 points	Se 94,8%, Sp 90,5%

Aphtose buccale

Inaugurale dans 25 à 75 % des cas

Causes d'aphtose buccale

Maladie de Behçet
Maladie de Crohn
Rectocolite hémorragique
Maladie coeliaque
Carence en vitamine B12, folates, fer, zinc

Neutropénique chronique Agranulocytose, hémopathie Médicaments (Nicorandil, Nifluril, MTX) Polychondrite atrophiante (MAGIC)

Manifestations cutanées

Erythème noueux : 30-40 %

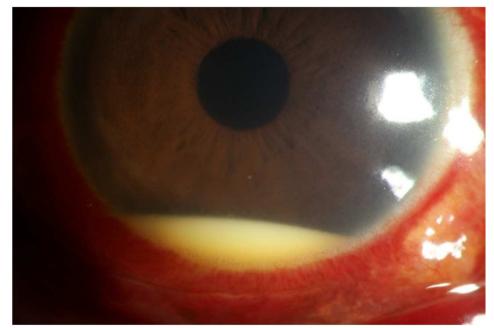
Manifestations cutanées

Erythème noueux : 30-40 %

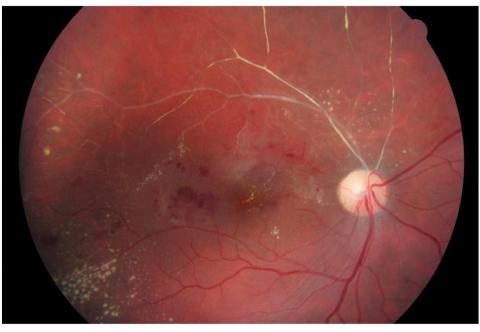
Pseudo-folliculite: 40-60%

Manifestations cutanées

Erythème noueux : 30-40 %


Pseudo-folliculite: 40-60%

Hypersensibilité aux points de piqure (pathergy test)


Nodules acnéiformes

Thrombophlébites superficielles

Uvéites de la maladie de Behçet

Uvéite antérieure à hypopion

Vascularite rétinienne

Fréquence: 50 à 80%

Inaugurale dans 20 %

Cause de cécité dans 25 à 50 % des cas

Atteinte articulaire

Atteinte fréquente : >50%

Arthralgies +++

Arthrite moins fréquemment : monoarthrite, oligoarthrite ou polyarthrite

Touchant surtout les grosses articulations

Atteinte souvent récidivante et asymétrique

Atteintes articulaires destructrices possibles

Atteinte digestive

Manifestations variées
Anorexie
Nausées et vomissements
Diarrhées
Douleurs abdominales

Atteinte de la totalité du tube digestif

Endoscopie: inflammation muqueuse segmentaire et ulcérations aphtoïdes (iléon, caecum et le colon ascendant +++)

Similitudes avec MICI (Crohn +++)

Atteinte neurologique centrale

Fréquence: 5-50 %

Manifestations

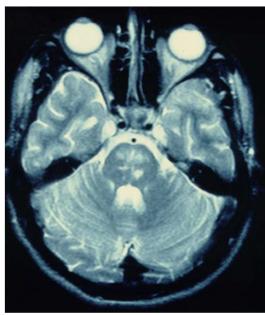
Atteintes vasculaires +++

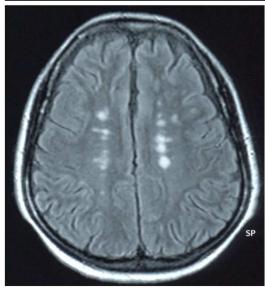
Thromboses sinusales

Atteintes artérielles (thromboses,

anévrysmes)

HIC bénigne


Méningite


Méningo-encéphalite

Myélite

Forme pseudo-tumorale

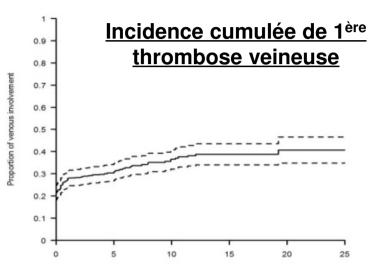
Manifestations neuro-psychiatriques

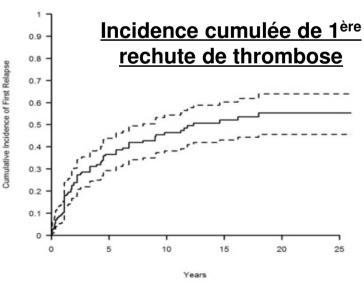
Atteinte vasculaire veineuse

Fréquence : 17 % (10-40%)

Manifestations

Thromboses veineuses superficielles


Thromboses caves inférieure/supérieure


Syndrome de Budd-Chiari

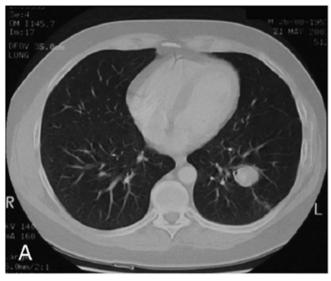
Thrombophlébite cérébrale

Embolie pulmonaire (rare)

Utilisation des immunosuppresseurs (0.27 [0.14–0.52]) et des corticoïdes (0.62 [0.40–0.97]) protectrice sur le risque de rechute de thrombose

Desbois, Arthritis Rheum, 2012

Atteinte vasculaire artérielle


Fréquence : 12,3 % (9-25%)

Atteinte inaugurale: 7,8 %

Manifestations	%
Anévrysmes (risque de rupture)	47,3%
Occlusions	36,5%
Sténoses	13,5%
Aortite	2,7%

Associée au sexe masculin et à l'atteinte veineuse

Meilleur pronostic avec IS, pas d'effet bénéfique évident des anticoagulants et de l'aspirine

Saadoun, Medicine, 2012

Anévrysmes pulmonaires

Topographie des lésions

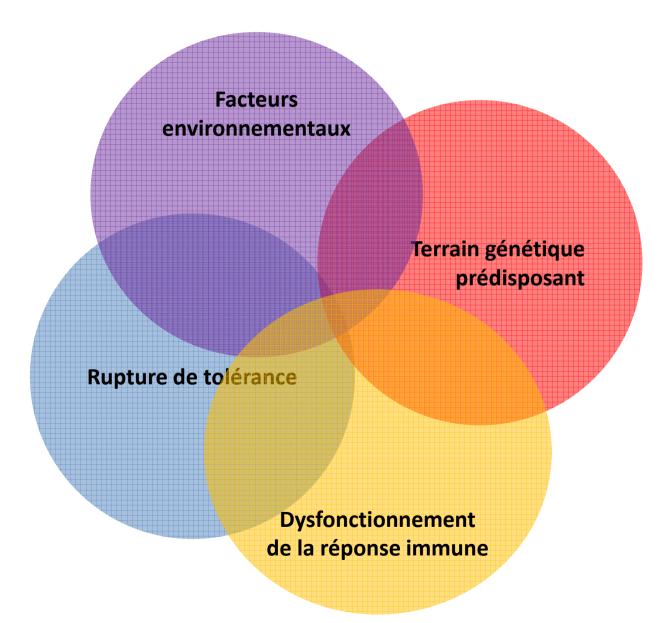
Atteinte des lobes inférieurs +++

Association des anévrysmes pulmonaires à

Atteinte veineuse profonde 77%

Thrombus intra-cardiaque 33%

Pas à l'atteinte artérielle périphérique


Evolution des anévrysmes

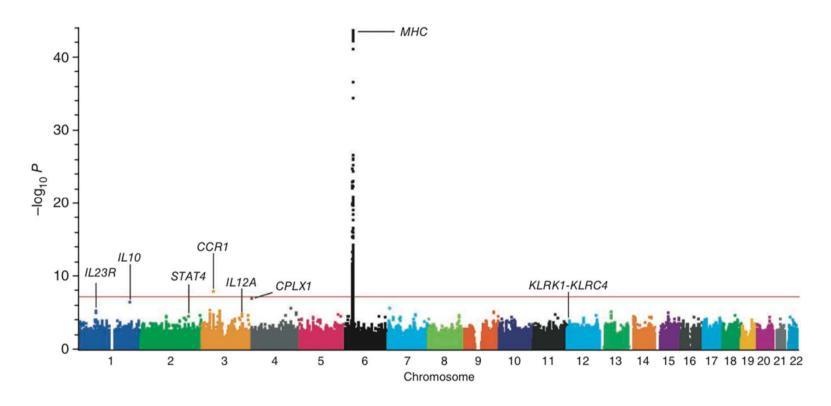
Disparition des anévrysmes dans 68% Mortalité 26% (anévrysmes > 3 cm et PAPs plus élevée à 50 mmHg)

Physiopathologie

Gènes de susceptibilité - Japon

	Risk			N	Risk allele	e frequency		OR for risk allele
Nearest gene	allele	Population	Cases	Controls	Cases	Controls	Pb	(95% CI)
IL23R-IL12RB2	G	Japanese	611	737	0.563	0.451	1.2×10^{-8}	1.56 (1.34–1.83
		Turkish	1,215	1,279	0.568	0.512	8.4×10^{-5}	1.25 (1.12-1.40
		Korean	119	140	0.560	0.486	0.094	1.35 (0.95-1.91
		Overall					1.9×10^{-11}	1.35 (1.24-1.47
IL10	Α	Japanese	611	737	0.765	0.664	9.5×10^{-9}	1.64 (1.39-1.95
		Turkish	1,215	1,279	0.384	0.315	6.1×10^{-7}	1.35 (1.20-1.52
		Korean	119	140	0.776	0.694	0.038	1 52 (1 02_2 28
		Overall					2.1×10^{-14}	1.45 (1.32 1.59
IL10	Т	Japanese	611	737	0.765	0.664	9.5×10^{-9}	1.64 (1.39–1.95
		Turkish	1,215	1,279	0.383	0.313	3.1×10^{-7}	1.36 (1.21-1.54
		Korean	119	140	0.774	0.694	0.044	1.51 (1.01–2.25
		Overall					1.0×10^{-14}	1.45 (1.32–1.60

Identification de 2 gènes de susceptibilité chez les patients Japonais atteints de maladie de Behçet comparativement aux contrôles (*IL23R-IL12RB2*, *IL10*)

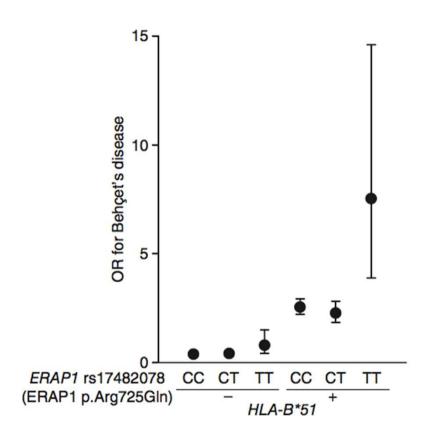

Méta-analyse de cohortes Turques et Coréennes retrouvant une association significative avec les mêmes gènes (IL23R-IL12RB2, IL10), mais au niveau de SNP différents

Gènes de susceptibilité - Turquie

Sample collection	n cases	n controls	Allele frequency cases	Allele frequency controls	χ^2	χ^2 <i>P</i> value	OR	95% CI
rs1518111 (<i>IL10</i>) A/G								
Discovery, Turkish	1,161	1,221	0.38	0.30	31.62	1.88×10^{-8a}	1.41	1.25-1.59
Replication, Turkish	110	224	0.30	0.31	(0.02)	0.689	0.97	0.69 - 1.38
Replication, Middle Eastern Arab	188	163	0.35	0.26	7.15	0.007	1.56	1.12-2.16
Replication, Greek	107	84	0.40	0.27	7.21	0.007	1.41	1.26-1.59
Replication, UK European descent	120	119	0.31	0.22	4.49	0.034	1.56	1.03-2.34
Replication, Korean	77	52	0.71	0.66	0.57	0.450	1.23	0.78-2.10
Replication, Japanese	611	737	0.76	0.67	20.40	5.80 × 10 ⁻⁸	1.60	1.35 1.90
CMH Meta-analysis	2,374	2,600			75.56	3.54×10^{-18a}	1.45 ^b	1.34–1.58
rs924080 (IL23R-IL12RB2) A/G								
Discovery, Turkish	1,213	1,275	0.67	0.61	20.71	5.35×10^{-6}	1.31	1.17-1.47
Replication, Turkish	110	220	0.64	0.65	(0.05)	0.818	0.96	0.69 - 1.35
Replication, Middle Eastern Arab	165	146	0.65	0.59	2.60	0.107	1.31	0.94 - 1.81
Replication, Greek	102	82	0.58	0.58	0.00	0.956	1.01	0.67 - 1.53
Replication, UK European descent	119	118	0.55	0.53	0.30	0.585	1.11	0.77 - 1.59
Replication, Korean	77	54	0.79	0.74	0.72	0.397	1.28	0.72 - 2.28
Replication Japanese	597	720	0.76	0.70	13 54	2.34×10^{-4}	1 39	1 17-1 65
CMH Meta-analysis	2,383	2,615			33.62	6.69×10^{-9a}	1.28 ^b	1.18–1.39

Méta-analyse de cohortes Turques, Européennes et d'Asie, retrouvant une association significative avec les gènes de l'IL10 et de l'IL23R-IL12RB2

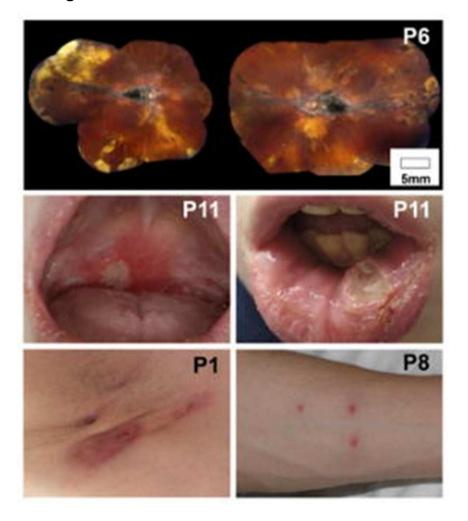
Interaction entre HLA-B*51 et ERAP1



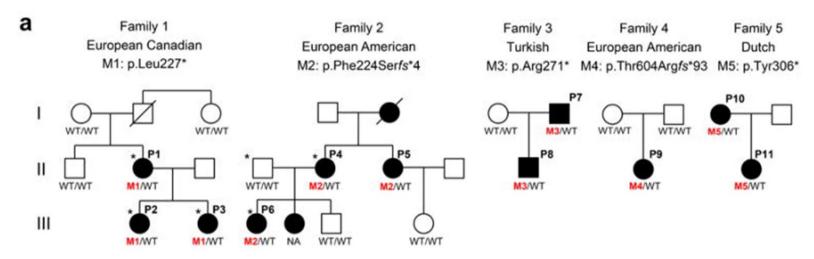
Identification de nouveaux gènes de susceptibilité chez les patients Turques atteints de maladie de Behçet comparativement aux contrôles : *CCR1*, *STAT4*, *KLRC4*, *ERAP1* Résultats répliqués dans des cohortes Turques et Japonaises

Interaction entre HLA-B*51 et ERAP1

Epistasie entre *HLA-B*51* et *ERAP1*


Associations partagées avec d'autres pathologies inflammatoires : SPA et psoriasis (région HLA de classe I, ERAP1 et IL23R) MICI (IL23R et IL10)

Haplo-insuffisance de A20


Manifestations cliniques d'apparition précoce (enfance) et similaires à une maladie de Behçet

Ulcérations buccales et génitales
Inflammation oculaire
Lésions cutanées
Arthrites
Colite

Haplo-insuffisance de A20

Séquençage d'exome

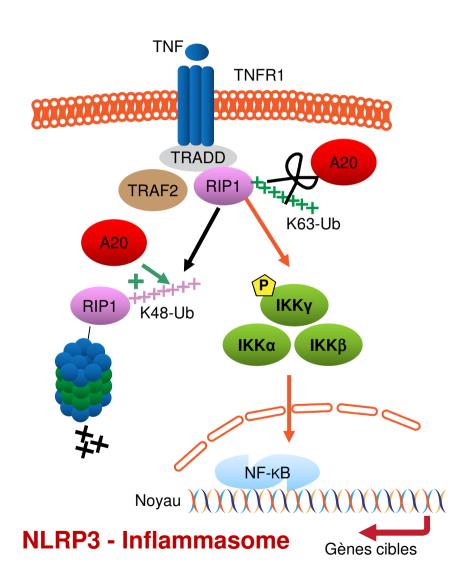
Étude de 5 familles avec un « Behçet-like »

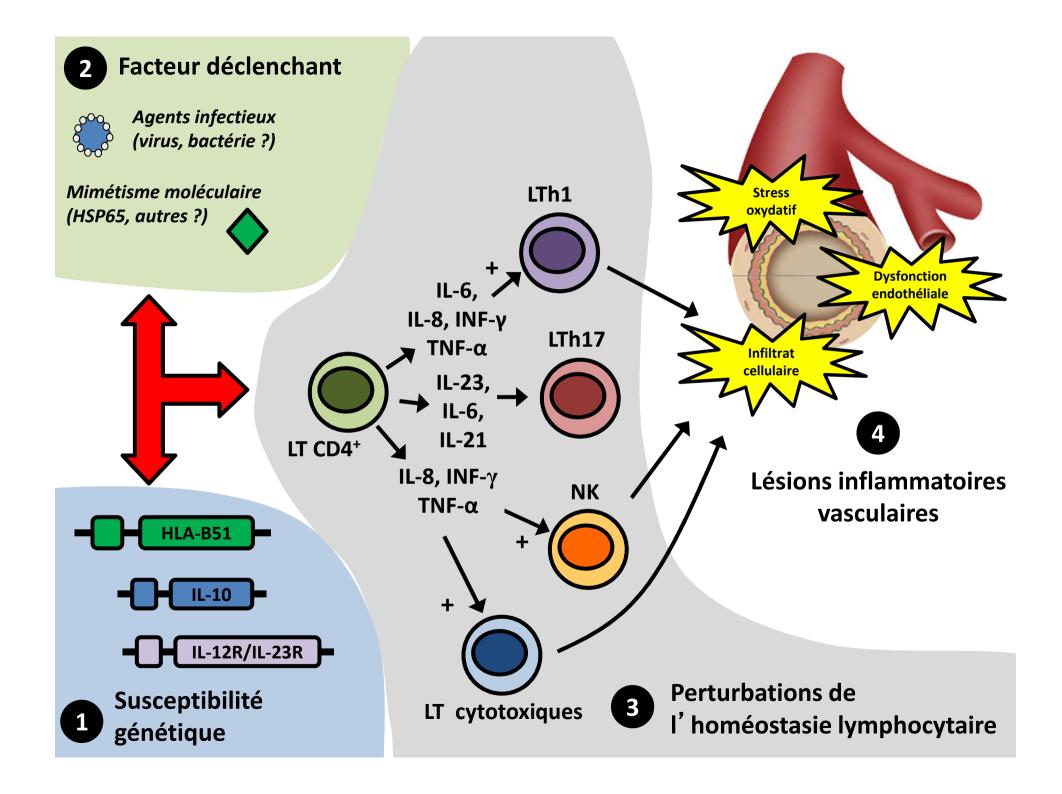
- Séquençage d'exome
- Identification de mutations de transmission autosomique dominante de TNFAIP3

Identification de 4 autres mutations de *TNFAIP3* par séquençage ciblé de 918 sujets ayant une maladie de Behçet (formes familiales)

Fonction de A20

A20

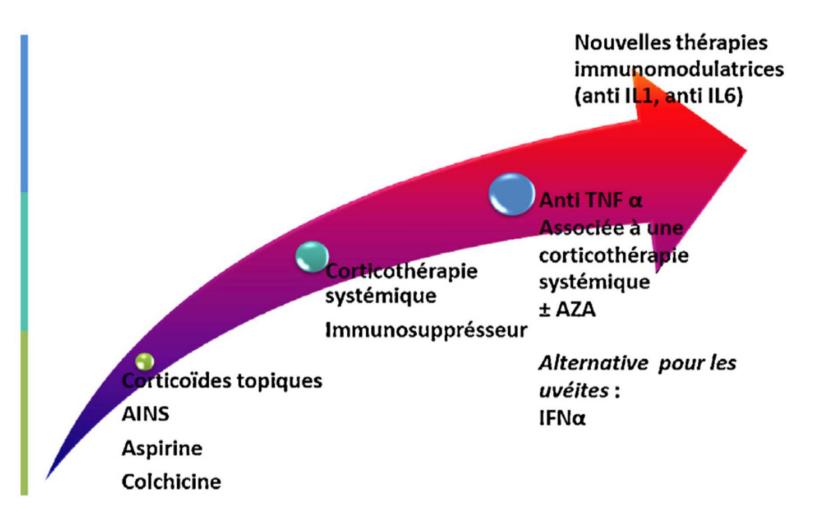

Coupe les chaînes K63-Ub (dissociation de RIP1 du complexe TRAF2/TRADD)


Agit comme ligase en K48-Ub (orientation de RIP1 vers le protéasome et dégradation)

A20 inhibe ainsi l'activation de la voie NF-κΒ

Inhibition de gènes cibles comme NLRP3 qui est un complexe protéique impliqué dans la synthèse de cytokines pro-inflammatoires (inflammasome)

Intérêt de l'inhibition de l'IL-1ß



Stratégies thérapeutiques

MB sévère ou réfractaire

Uvéite postérieure/ Atteinte Digestive/ Neurologique/ Vasculaire

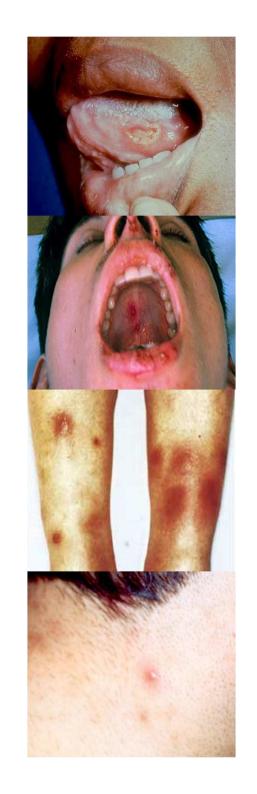
Atteinte cutanéomuqueuse/ Articulaire

Atteinte cutanéo-muqueuse

Aphtes rares et peu gênants
Stéroïdes locaux
Suspension de sucralfate

<u>Aphtose récidivante</u>

Colchicine 1 mg/j (voire 1,5 ou 2 mg/j)


Aphtose résistante à la colchicine

Corticothérapie courte durée (15 mg/j)

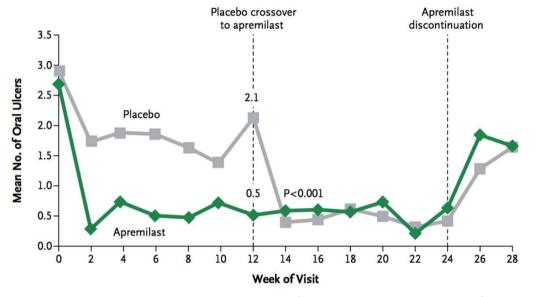
Thalidomide (100 mg/j)

Azathioprine
Interferon-α

Anti-TNF-α en dernier recours

Apremilast au cours de l'aphtose

Inhibiteur de PDE4 Immunomodulateur de la réponse cytokinique


Augmentation de l'IL-10 Effet de régulation négative sur les cytokines pro-inflammatoires (TNF- α , IL-6, IL-10, IFN- γ et IL-17)

En développement au cours de la maladie de Behçet

Apremilast au cours de l'aphtose

Etude de phase II : efficacité sur atteinte muqueuse

	Placebo (N = 56)	Apremilast (N = 55)
Age — yr		
Mean	34.7	34.3
Median	34.0	34.0
Sex — no. (%)		
Male	18 (32)	16 (29)
Female	38 (68)	39 (71)
Race — no. (%)†		
White	55 (98)	53 (96)
Black	0	2 (4)
Other	1 (2)	0
Region — no. (%)		
Turkey	53 (95)	50 (91)
United States	3 (5)	5 (9)
Duration of Behçet's disease — yr		
Mean	5.72	4.92
Median	2.97	4.44
Oral ulcers — no./patient	3.1±1.3	3.2±2.0
Pain of oral ulcers on 100-mm visual-analogue scale	51.7±22.6	54.3±26.2

Diminution du nombre d'aphtes buccaux à S12 dans le groupe apremilast $(0.5\pm1.0 \text{ vs.} 2.1\pm2.6, P<0.001).$

Diminution de la douleur liée aux aphtes à S12 dans le groupe apremilast (-44.7 ± 24.3 mm vs. -16.0 ± 32.5 mm, P<0.001)

Apremilast au cours de l'aphtose

Event	Placebo-Controlled Phase		Active Treatment Phase		
	Weeks 0–12		Weeks 13-24	Weeks 0-24	
	Placebo (N = 56)	Apremilast (N = 55)	Placebo (N = 45)	Apremilast (N = 55)	
		number	(percent)		
Type and number					
≥l Event	45 (80)	47 (85)	32 (71)	50 (91)	
≥1 Severe event	2 (4)	3 (6)	0	4 (7)	
≥1 Serious event	1 (2)	2 (4)	0	3 (5)	
≥1 Event leading to drug discontinuation†	0	4 (7)	0	6 (11)	
≥1 Event leading to death	0	0	0	0	
Reported by ≥10% of patients in any treatment group‡					
Headache	25 (45)	26 (47)	11 (24)	30 (55)	
Nausea	10 (18)	22 (40)	13 (29)	23 (42)	
Diarrhea	2 (4)	12 (22)	3 (7)	17 (31)	
Vomiting	1 (2)	9 (16)	2 (4)	10 (18)	
Abdominal pain	7 (13)	8 (15)	1 (2)	10 (18)	

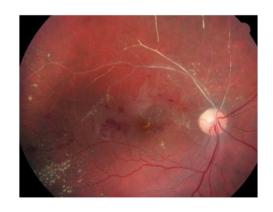
Traitement des uvéites

<u>Uvéite antérieure</u>Corticoïdes locaux+ mydriatique

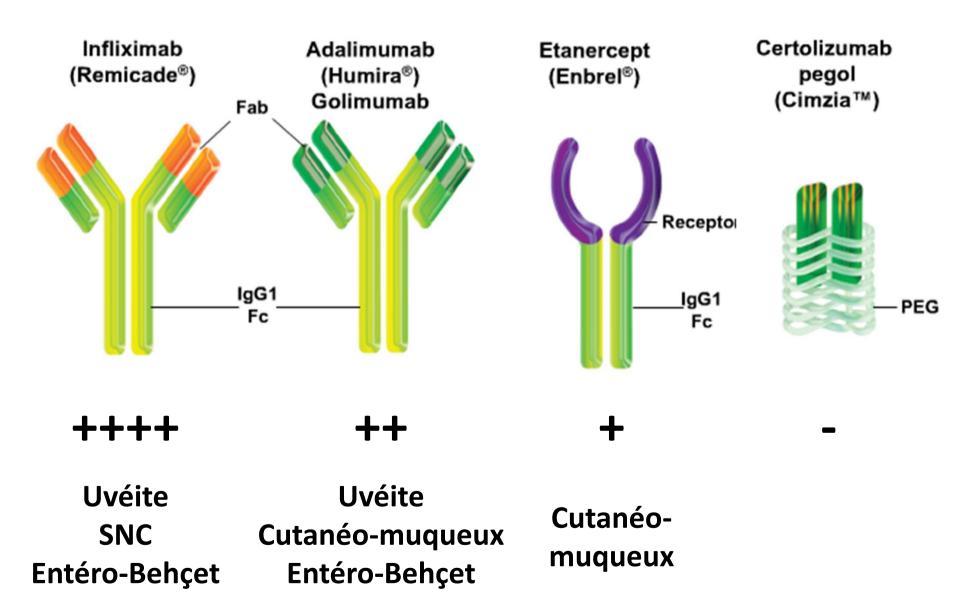
<u>Uvéite postérieure</u>
<u>± vascularite rétinienne</u>

Corticothérapie
+ immunosuppresseur +++

AZA (2,5 mg/kg/j)

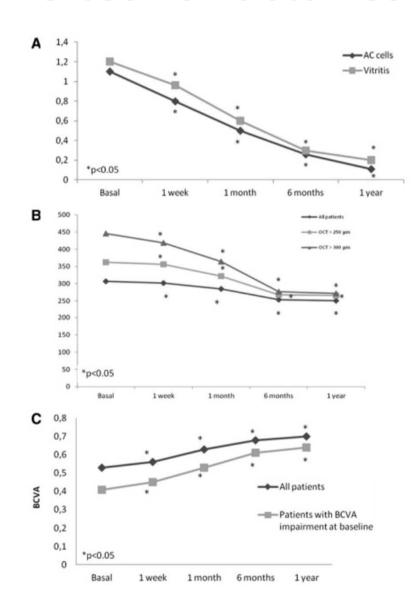

Anti-TNF-α

Ciclosporine (2-5 mg/kg/j)


Cyclophosphamide

Interferon-α

Anti-TNFα


Anti-TNFa dans les uvéites réfractaires

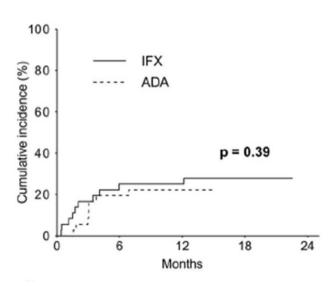
Etude rétrospective de 124 patients

Uvéite réfractaire à corticoïdes et IS conventionnels

IFX dans 62%, ADA dans 38%

Anti-TNFα en association avec IS dans 75%

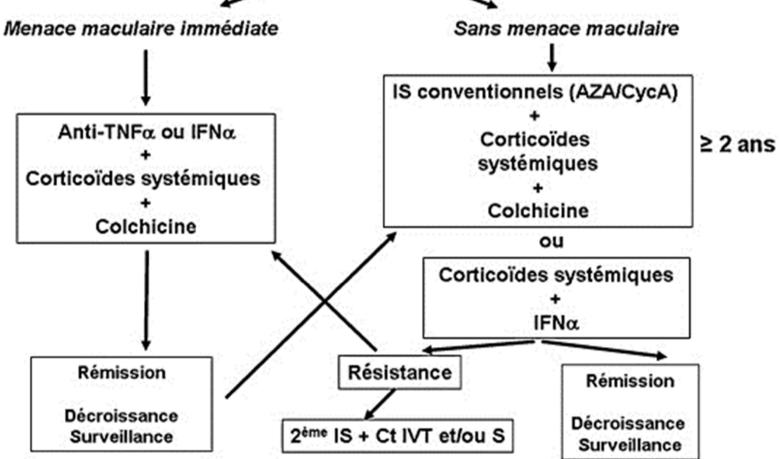

Calvo-Rio, Rheumatology, 2014


Anti-TNFα dans les uvéites réfractaires

Etude rétrospective de 160 patients avec uvéites inflammatoires Behcet : 36% des causes

Behcet associé à une bonne réponse en multivariée

EI 28%, EIG 13%



Vallet, Arthritis Rheumatol, 2016

Traitement des uvéites

Maladie de Behçet avec uvéite postérieure Sans menace maculaire

Atteinte neurologique centrale

Atteinte méningo-encéphalitique

Corticoïdes (bolus puis 1 mg/kg/j)

- + immunosuppresseurs > 2 ans (CYC IV, azathioprine, methotrexate, anti-TNF- α , interferon- α)
- + colchicine
- + anti-agrégant plaquettaire

Après 2 ans : colchicine + AAP + CT 5 mg/j

Pas de ciclosporine +++

Thrombophlébite cérébrale

Corticoïdes

± anticoagulants (éliminer anévrysme pulmonaire associé, bénéfice non démontré +++)

Atteinte vasculaire

Thrombose veineuse profonde

Corticoïdes

± immunosuppresseur (AZA, CYC, ciclosporine)

AZA pour TVP des extrémités

CYC pour thrombose VCS et Budd-Chiari

IS pour diminuer l'inflammation des vaisseaux

Anticoagulation : bénéfice non démontré

Anévrysmes artériels

Corticoïdes

+ immunosuppresseur (cyclophosphamide)

± chirurgie sous IS (anévrysme périphérique)

± embolisation (anévrysme pulmonaire)

Anticoagulation : bénéfice non démontré

Contre-indication théorique anticoagulation et chirurgie pour anévrysme pulmonaire

Molécules en cours d'évaluation

Molécule	Cible	Type d'atteinte
Secukinumab	Anti-IL-17A	Uvéite
Gevocizumab	Anti-IL1β	Uvéite
Apremilast	Inhibiteur PDE4	Aphtose
Tocilizumab	Anti-IL-6R	Aphtose
Abatacept	CTLA-Ig	Aphtose
Ustekinumab	IL-12/IL-23	Aphtose, uvéite

Conclusion

Nouveaux critères diagnostiques de la maladie de Behçet

Avancées sur la physiopathologie (gènes de susceptibilité +++, voies Th1/Th17): innovations thérapeutiques

Efficacité remarquable des anti-TNFα

Nombreuses molécules en cours d'évaluation : apremilast, anti-IL-1\beta, anti-IL-6R, ...

www.maladiesautoimmunes-cochin.org

www.vascularites.org

