EPIDEMIOLOGIE DES MALADIES SYSTEMIQUES ET AUTO-IMMUNES

Responsable de l'organisation de la séance : Alfred MAHR

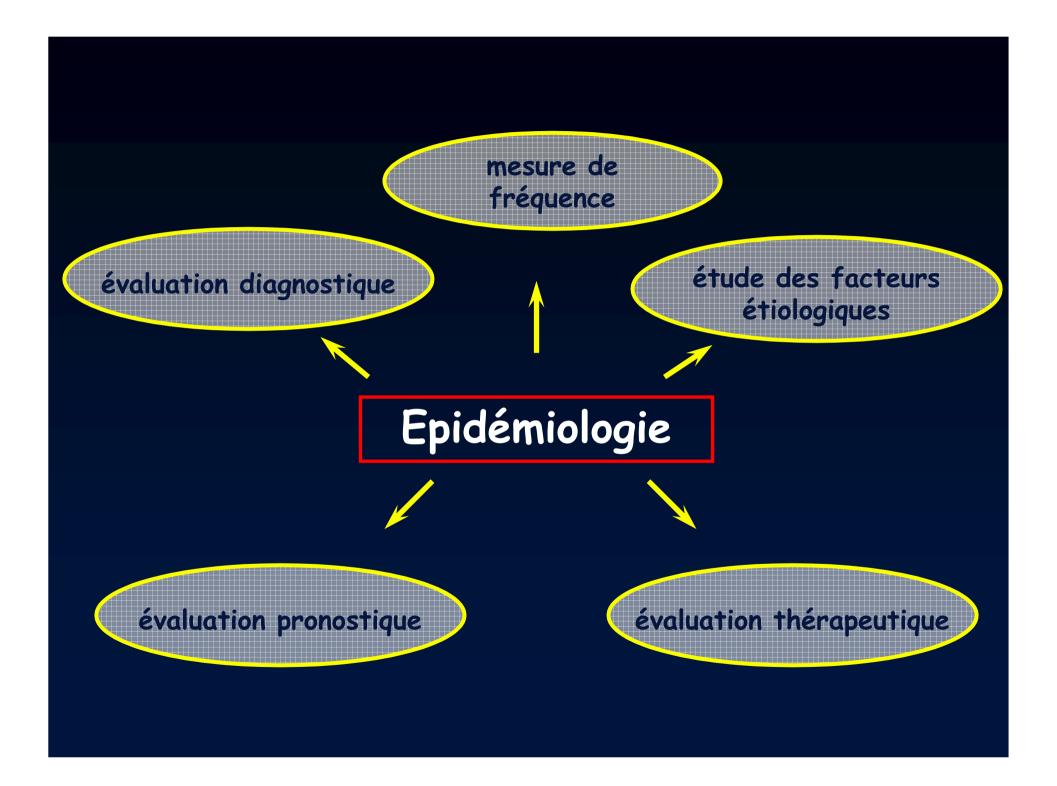
10h – 10h1	5 Introduction	Alfred Mahr (Paris)					
10h15 – 11l	n Epidémiologie descriptive	Alfred Mahr (Paris)					
11h – 11h4:	5 □ Quel rôle joue l'environnement dans le dév auto-immunes ?	reloppement des maladies systémiques et Thomas Hanslik (Boulogne)					
11h45 – 12h30 ☐ Facteurs génétiques : méthodes d'investigation et connaissances actuelles Corinne Miceli-Richard (Paris)							
Pause déjeuner (12h30 – 13h45)							
		•					
13h45 – 14l	h30 Surveillance et évaluation des facteurs de r données PGRx	,					
13h45 - 14h 14h30 - 15h	 Surveillance et évaluation des facteurs de r données PGRx 	isque médicamenteux dans la base de					

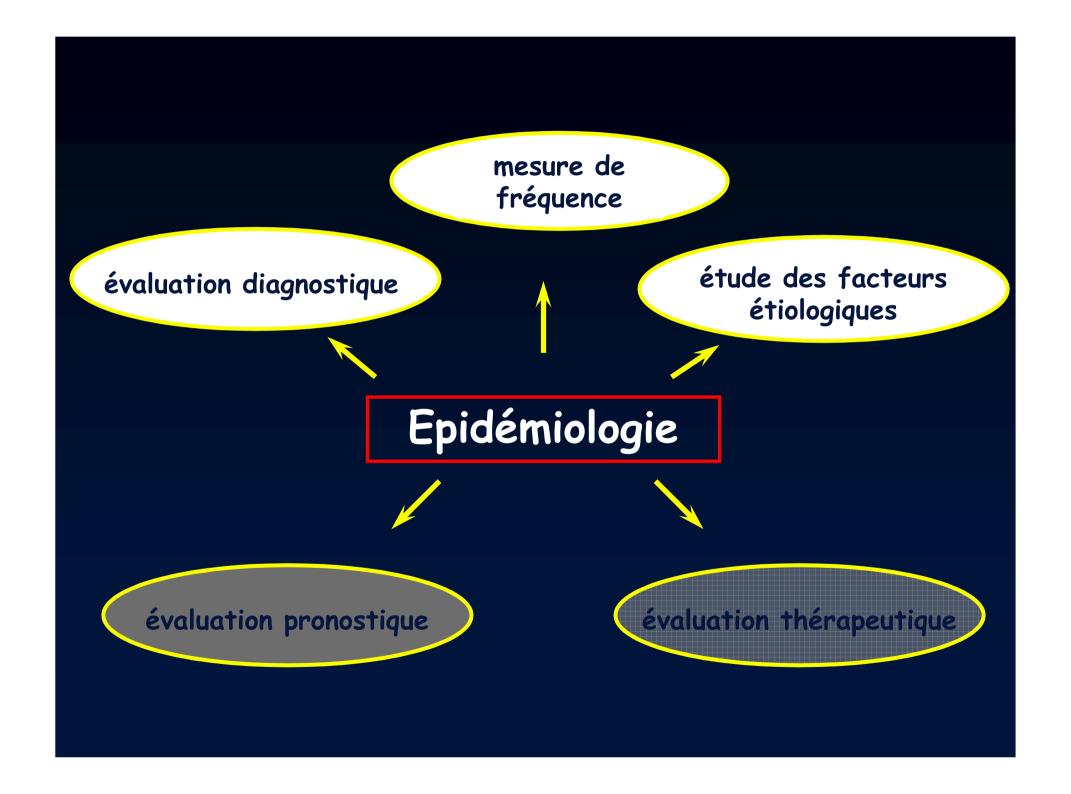
Fin de la séance (16h00)

Epidémiologie des maladies systémiques et autoimmunes

DU Maladies systémiques et autoimmunes

Pr. Alfred Mahr


Hôpital Saint-Louis, Paris


alfred.mahr@sls.aphp.fr

Introduction

Epidémiologie:

« étude des facteurs intervenant dans la survenue et l'évolution des maladies »

1. Mesure de fréquence

- □ enquêtes de :
 - prévalence
 - incidence (densité d'incidence)
- □ pré requis :
 - population d'étude
 - critères diagnostiques/classification
 - source(s) d'information

2. Evaluation diagnostique

- 🗆 critères ou tests diagnostiques :
 - sensibilité et spécificité
 - valeur prédictive positive et négative

	M +	M -	Se = VP/(VP+FN)
T +	VP	FP	Sp = VN/(FP+VN)
T -	FN	VN	VPP = VP/(VP+FP)
			VPN = VN/(VN+FP)

3. Etudes de facteurs étiologiques

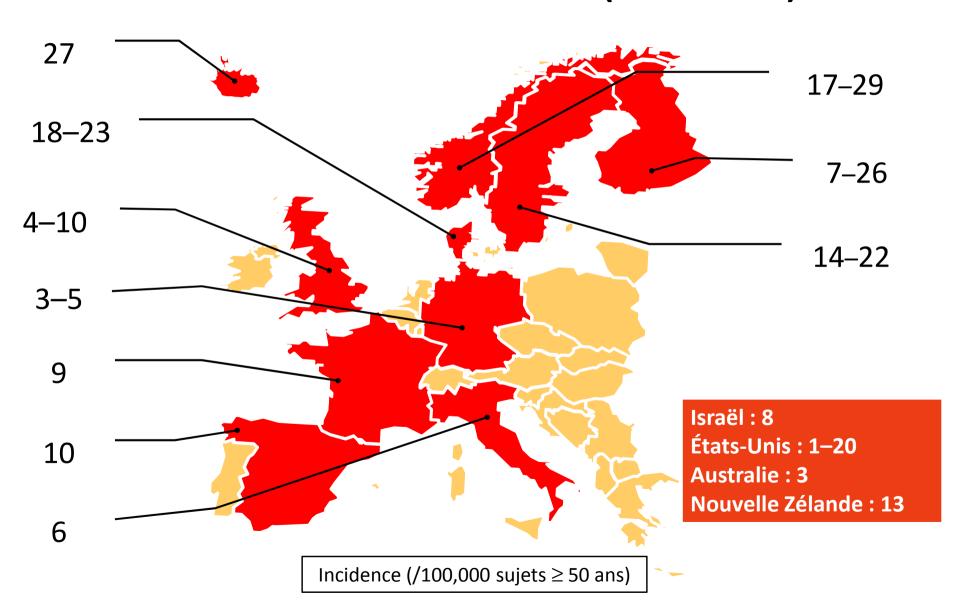
- □ facteurs étiologiques :
 - terrain génétique
 - facteurs infectieux
 - exposition environnementale
- □ études cas-témoin :
 - odds ratio (rapport de cotes)

$$OR = (a/b) / (c/d)$$

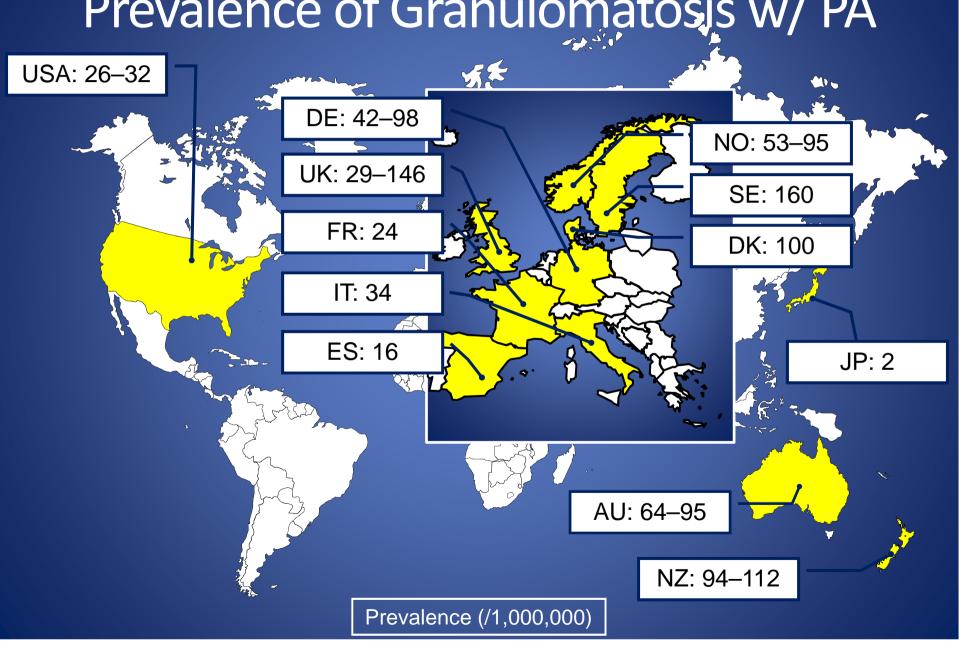
Ex.
$$OR = 2.2 [IC 95\% : 0.7 - 9.6]$$

Épidémiologie descriptive

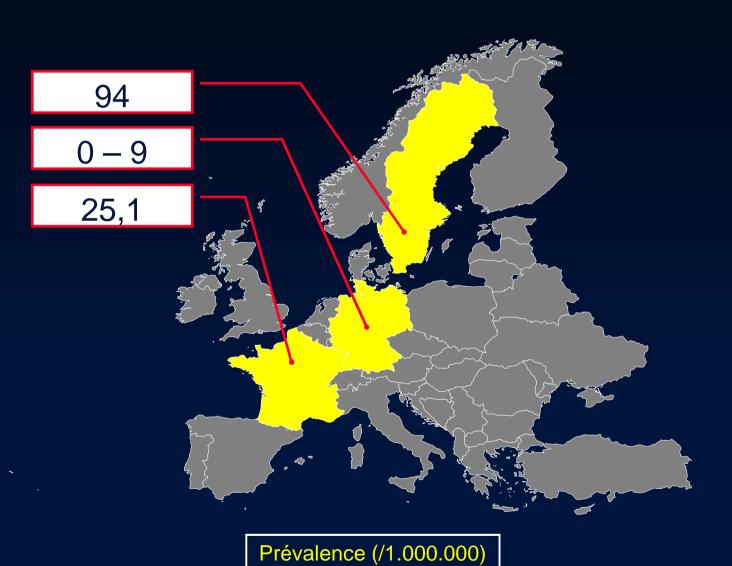
Prévalence des vascularites


Maladie	Nb. d'études	Prévalence (par 1.000.000)	
Maladie de Basedow	1	11.515	
Polyarthrite rhumatoïde	21	8.600	
Maladie de Behçet	14	3 – 4.200	
 Sclérose en plaques	64	583	500
Lupus systémique	16	238	
GPA (Wegener)	8	24 – 160	
Maladie de Horton	1	87 – 94	
Polyangéite microscopique	4	0 – 94	
Myasthénie	8	51	
Polymyosite/dermatomyosite	2	51	
Sclérodermie	6	44	
Périartérite noueuse	5	2 – 33	
EGPA (Churg-Strauss)	4	2 – 14	

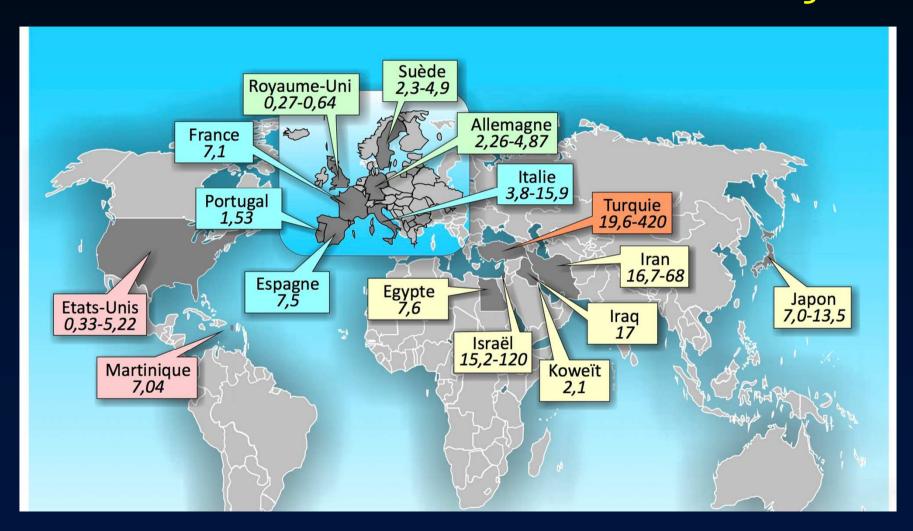
Adapté de Jacobson et al. 1997


Incidence des vascularites

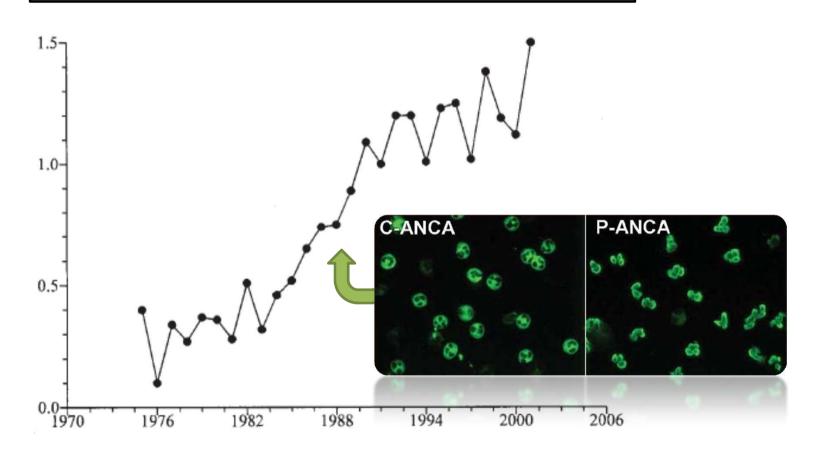
Maladie	Nb. d' études	Incidence (par 1.000.000)
Polyarthrite rhumatoïde	6	237
Maladie de Basedow	7	139
Lupus systémique	10	73
Sclérose en plaques	16	32
Polymyosite/dermatomyosite	3	18
Polyangéite microscopique	6	1,5 – 24,5
Maladie de Horton	1	9 – 17
GPA (Wegener)	8	1,3 – 14,4
Sclérodermie	3	8
Purpura rhumatoïde	2	3,4 - 14,3
Maladie de Behçet	3	2,4 – 7,5
Myasthénie	2	4
Périartérite noueuse	5	0 – 16 (77)
EGPA (Churg-Strauss)	7	0 – 4


Incidence de l'ACG (Horton)

Prevalence of Granulomatosis w/ PA

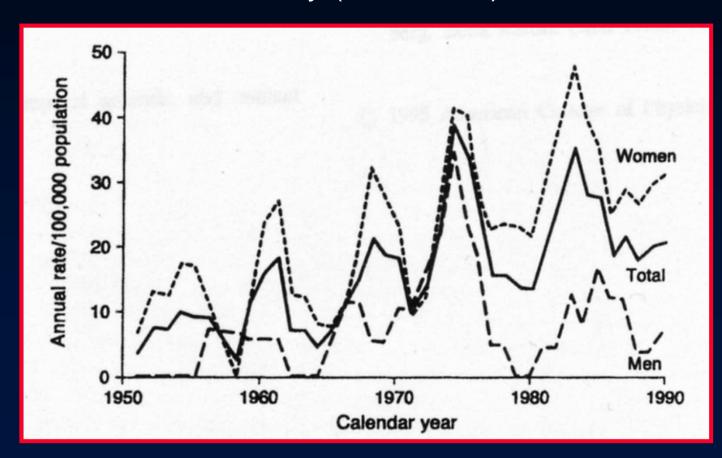

Préval. de polyangéite microscopique

Incidence des VAA : Variations géographiques


Disease spectrum and ANCA status	Japan	UK
Numbers of total AAV	86	50
Male vs female	42 vs 44	24 vs 26
Mean (median) age, years	69.7 (72)*	60.5 (61)
pANCA/MPO, n (%)	72 (84)**	15 (30)
cANCA/PR3, n (%)	6 (7)**	29 (58)
Negative, n (%)	8 (9)	6 (12)
Annual incidence/million		
Adults		
Total AAV	22.6 (19.1, 26.2)	21.8 (12.6, 30.9)
MPA	18.2 (14.3, 22.0)	6.5 (1.9, 11.2)
Granulomatosis with polyangiitis	2.1 (0.6, 3.7)	14.3 (5.8, 23.0)
CSS	2.4 (0.3, 4.4)	0.9 (0, 1.9)
Seniors		
Total AAV	57.0 (53.4, 60.6)	47.9 (25.0, 70.8)
MPA	50.7 (38.3, 63.0)	20.8 (-0.6, 42.2)
Granulomatosis with polyangiitis	2.7 (-0.8, 6.3)	25.0 (14.6, 35.4)

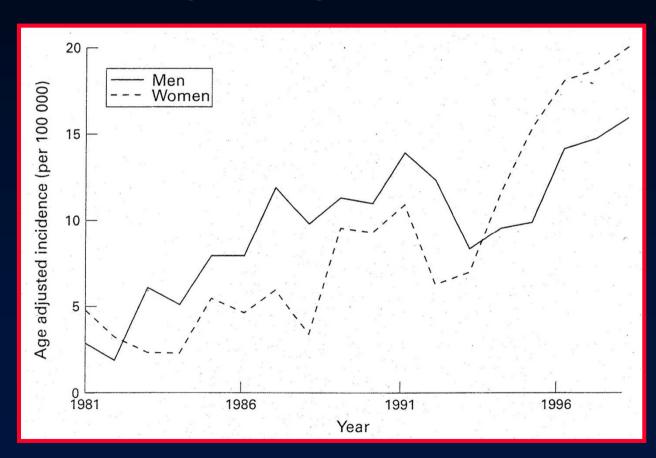
Prévalence de la maladie de Behçet

Variations d'incidence : GPA

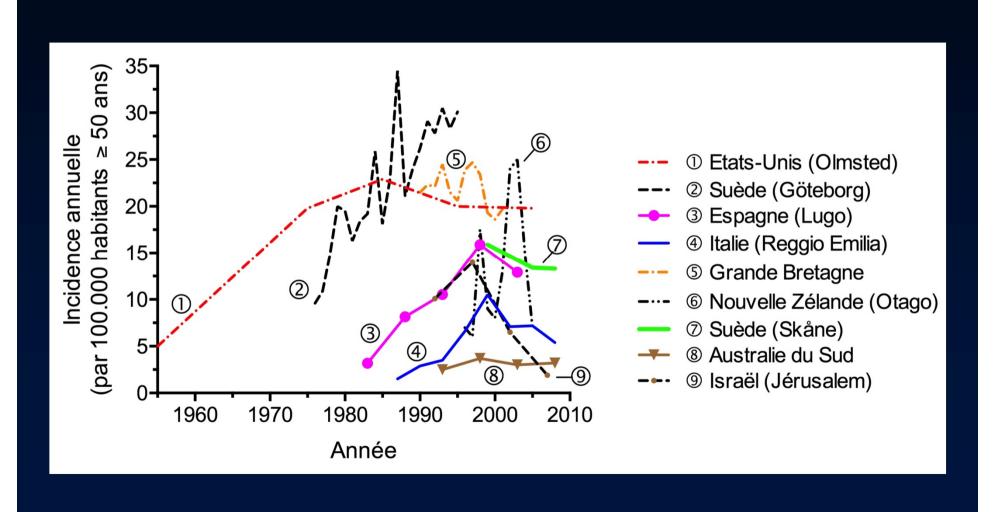

Suède 1975-2001

Knight et al. J Rheumatol 2006

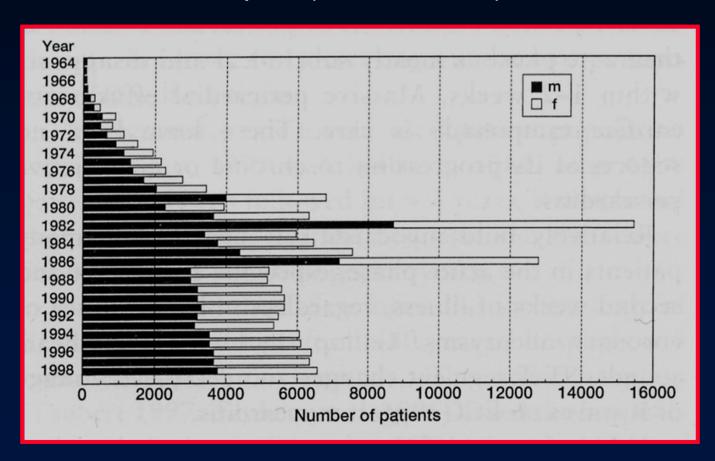
Variations d'incidence : ACG (Horton)


Olmsted County (Minnesota), 1950-91

Salvarani et al., Ann Intern Med 1995


Variations d'incidence : ACG (Horton)

Lugo (Espagne), 1981-98


Gonzales-Gay et al., Ann Rheum Dis 2001

Variations d'incidence : ACG (Horton)

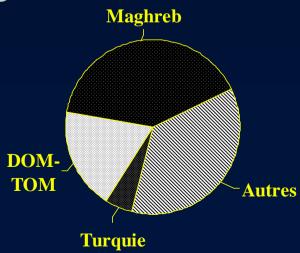
Variat. d'incidence: mal. de Kawasaki

Japon (1964 – 1998)

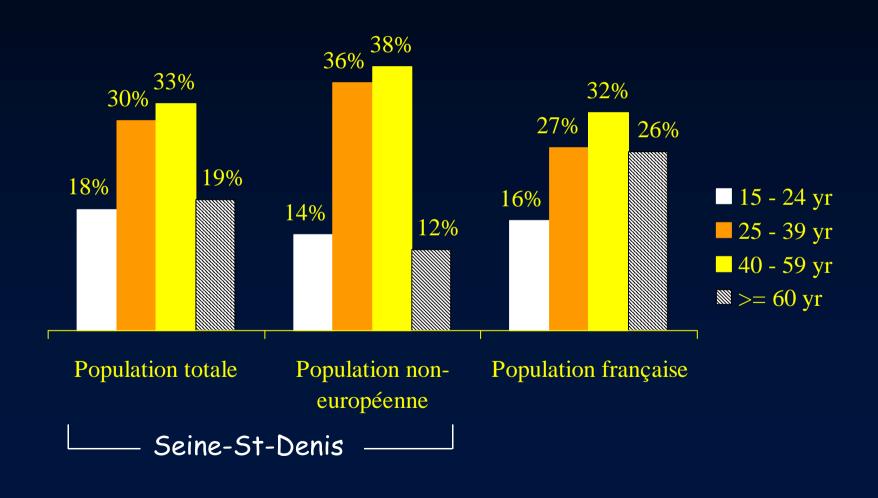
Yanagawa et al., Pediatrics 2001

Prévalence de la périartérite noueuse, la polyangéite microscopique, la maladie de Wegener et du syndrome de Churg et Strauss en Seine-Saint-Denis

A. Mahr, L. Guillevin, M. Poissonnet, S. Aymé
INSERM SC 11, Paris
Hôpital Avicenne, Bobigny
Caisse Primaire d'Assurance-Maladie, Bobigny


Objectif de l'étude

- -> estimer la prévalence
- → de la PAN, de la PM, de la MW et du SCS
- dans une population urbaine et multiethnique
- par la méthode de capture-recapture

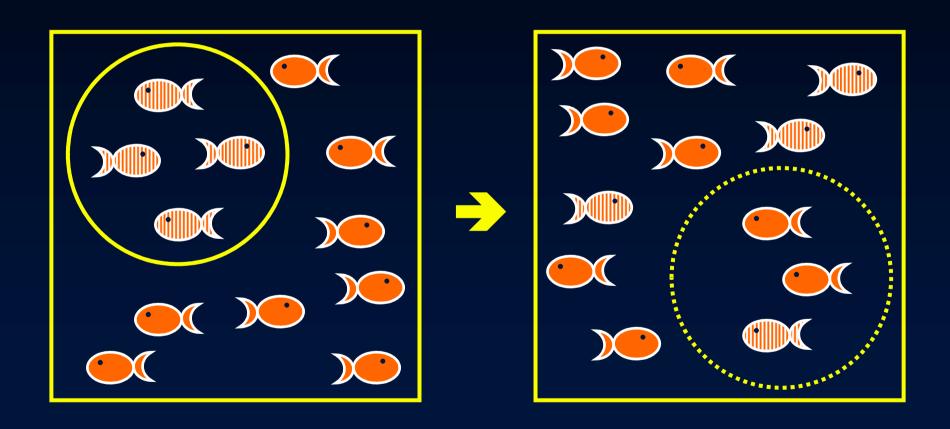

Méthode: population d'étude

- □ département de la Seine-St-Denis :
 - 1.382.928 habitants dont 1.093.515 adultes (≥ 15 ans)
 - population stable (+ 0,1%)

□ 301.102 (28%) « non-européens »

Méthode: population d'étude

Méthode: sources d'information


- □ 3 sources d'information :
 - médecins généralistes (n = 1119)
 - services hospitaliers (n = 20)
 - Caisse Primaire d'Assurance Maladie
- □ notification de cas :
 - de PAN, PM, MW, SCS
 - habitant en Seine-St-Denis
 - entre 1/1/2000 et 31/12/2000

Méthode : définition des cas

- critères nosologiques internationaux :
 - MW et SCS: critères de l'ACR
 - PM: conférence de consensus (Chapel Hill, 1994)
- 🗆 critères diagnostiques de PAN :
 - clinique, biologie, angiographie
- □ preuve histologique

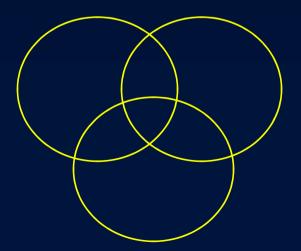
Méthode de capture-recapture (CR)

Méthode: méthode de CR

Petersen CGJ Rep Dan Biol Stn 1896

Méthode: méthode de CR

- □ application en épidémiologie :
 - identification de cas par des sources distinctes
 - « croisement » des sources → « cas communs »



> estimation du nombre total de cas

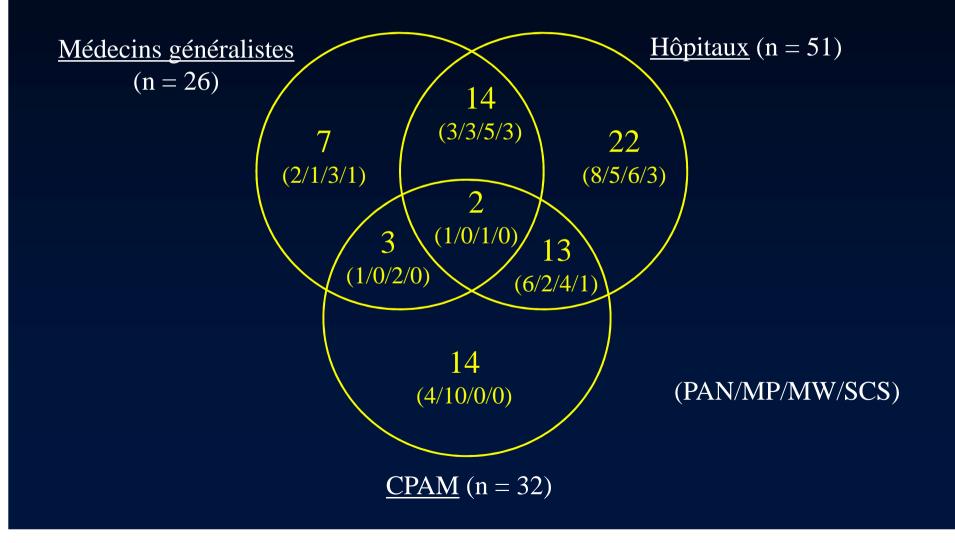
Méthode: méthode de CR

- □ conditions d'application :
 - population close
 - identification des cas communs
 - indépendance des sources
 - homogénéité de la capture

régression log-linéaire

CR à 3 sources

Résultats : nombre de cas


- □ 121 cas signalés
- □ 68 cas « confirmés »:
 - PAN, n = 23; PM, n = 16; MW, n = 21; SCS, n = 8
 - 11 sujets « non-européens »
- □ source CPAM:
 - 16 dossiers non étudiés
 - VPP de 0,46
 - 7 cas supplémentaires (PAN, n = 2; PM, n = 5)
 - 1 cas « non-européen »

Résultats : caractéristiques des cas

	Nb	Age (ans ± ET)	Durée (ans ± ET)	Sex ratio (H/F)	ANCA positivité (%)	Infection à HBV (%)	Origine non-européenne (%)
PAN	23	47,7 ± 14,7	8,2 ± 6,1	15/8	0	30	4
PM	16	60,2 ± 14,3	6,0 ± 5,8	5/11	62	0	25
MW	21	50,6 ± 17,9	7,2 ± 6,6	12/9	85	0	14
SCS	8	43,5 ± 16,8	9,8 ± 8,6	5/3	71	0	38
Tous	68	50,3 ± 17,6	7,5 ± 6,5	37/31	44	10	16

Résultats : distribution des cas

Résultats: régression log-linéaire

Modèle log-linéaire		G²	p	AIC	BIC	M	N	IC95%
	0	0	1.0	0	0	7.0	92.0	<i>65</i> 101
MG*HOP, MG*CPAM, HOP*CPAM	U	0	1,0	0	0	7,9	82,9	65 - 101
MG*CPAM, HOP*CPAM	1	0,11	0,74	- 1,89	- 4,66	11,0	86,0	74 – 98
MG*HOP, HOP*CPAM	1	3,55	0,06	1,55	- 1,22	32,7	107,0	59 – 156
MG*HOP, MG*CPAM	1	1,18	0,28	- 0,82	- 3,59	23,7	98,7	74 - 124
MG, HOP*CPAM	2	4,83	0,09	0,83	- 4,71	18,1	93,1	75 – 111
MG*CPAM, HOP	2	2,14	0,34	- 1,86	- 7,40	18,2	93,2	78 - 108
MG*HOP, CPAM	2	3,56	0,17	- 0,44	- 5,98	33,4	108,4	82 - 135
MG, HOP, CPAM	3	5,56	0,14	- 0,44	- 8,75	23,8	98,8	81 – 116

Résultats : régression log-linéaire

Modèle log-linéaire	ddl	G ²	p	AIC	BIC	M	N	IC95%
MG, HOP, CPAM	3	5,56	0,14	- 0,44	- 8,75	23,8	98,8	81 – 116
Diagnostic: PAN PM MW SCS						6,5 4,9	27,5 25,9	23 - 44 $18 - 37$ $16 - 34$ $5 - 19$
Origine géographique : européenne non-européenne								67 – 99 9 – 23

Résultats : estimations de prévalence

	Prévalence (/1,000,000 adultes)	IC95%
Population générale:		
PAN	30,7	21 - 40
PM	25,1	16 - 34
MW	23,7	16 - 31
SCS	10,7	5 - 17
ensemble	90,3	74 – 106
Origine géographique :		
européenne	104,7*	85 - 125
non-européenne	52,5*	30 – 76

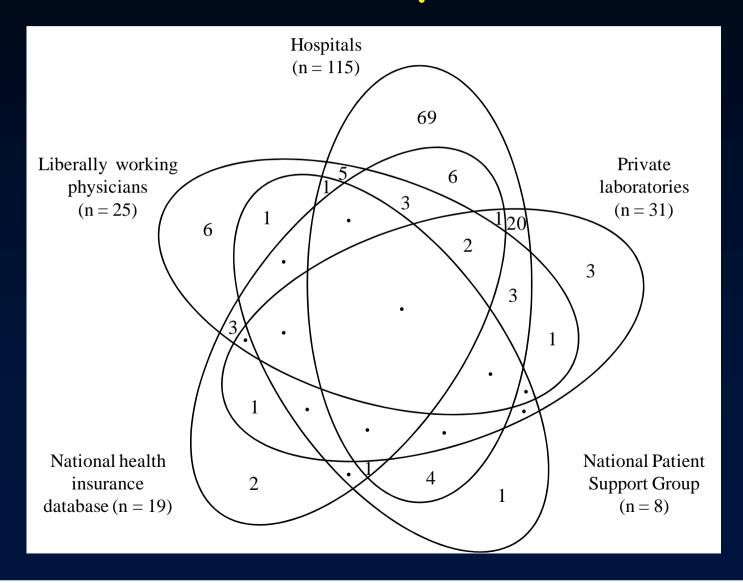
p = 0.01

Discussion

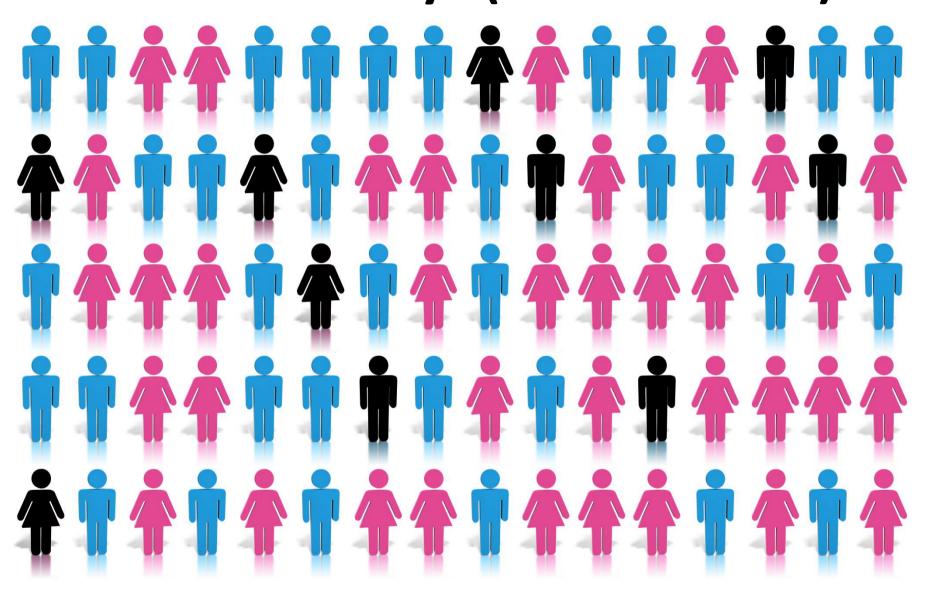
- □ critères diagnostiques :
 - manque de spécificité (ACR)
 - manque de sensibilité (CHCC)
 - grande hétérogénéité dans la littérature
 - → comparabilité des études limitée
- □ <u>exhaustivité du recensement</u> :
 - 3 sources d'information
 - méthode de CR (24 cas « manquants »)

Discussion

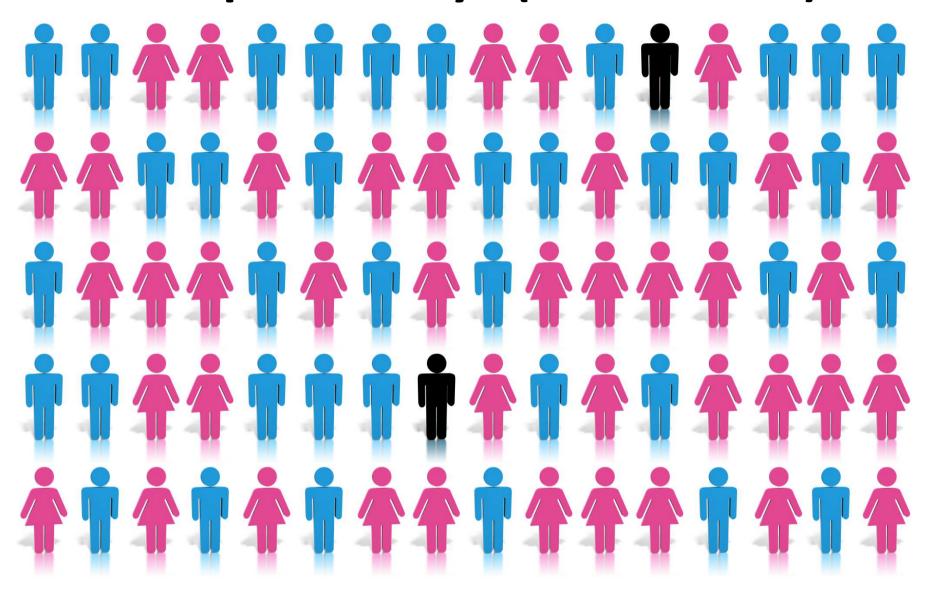
- □ critères de classification :
 - manque de spécificité (ACR)
 - manque de sensibilité (CHCC)
 - grande hétérogénéité dans la littérature
 - → comparabilité des études limitée
- □ exhaustivité du recensement :
 - 3 sources d'information
 - méthode de CR (24 cas « manquants »)


Discussion

- □ facteurs génétiques :
 - prévalence 2,0 fois supérieure chez européens
 - prédisposition génétique des sujets blancs?
- □ facteurs environnementaux :
 - différences zones urbaines rurales?
 - PAN et PM? MW?


Prévalence en Seine-Saint-Denis

Maladies	Année	Prév	Prévalence (par million)		
		Total	Européens	Non-europ.	
Vascularites	2000	90,3	104,7	52,5	
Périartérite noueuse		30,7			
Polyangéite microscopique		25,1			
Maladie de Wegener		23,7			
Sd. de Churg-Strauss		10,7			
Sclérodermie systémique	2001	158,3	140,2	210,8	
Maladie de Behçet	2004	71	24	51-346	
Sd. de Gougerot-Sjögren primitif	2008	102-153	71-110	164-234	


Prévalence du SGS primitif en SSD

Census Surveys (recensement)

Sample Surveys (échantillon)

Approche « multi-phase »

First step Random selection of households' telephone numbers (n = 15 219)

 $\hat{\mathbb{I}}$

Second step Exclusion of secondary residences and places of work

Random selection of adults in households by next birthday method (n = 9395)

Case detection by patient-interviewers using a validated questionnaire (screening 1)

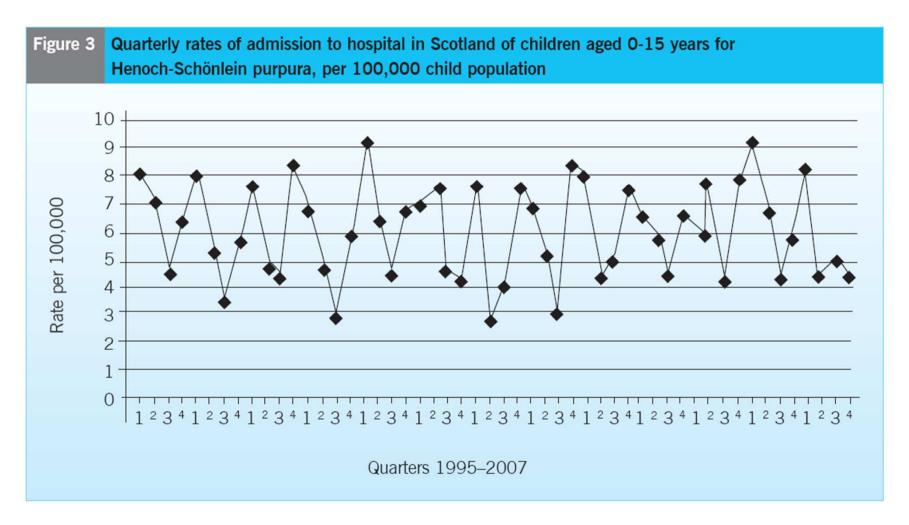
 \int

Third step Patients with suspected SpA were called by rheumatologists (screening 2) (n = 85)

 \bigcup

Fourth step Patient's rheumatologist contacted (confirmation 1) (n = 34)

Patients with no rheumatologist were invited to investigation centre (confirmation 2) (n = 5)

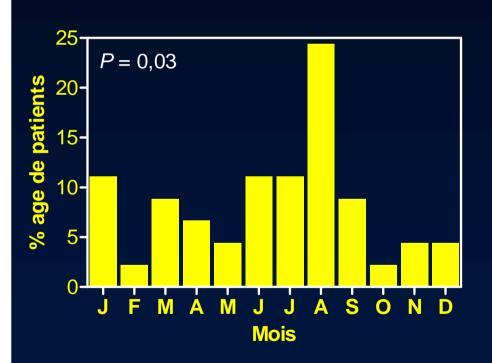

 \prod

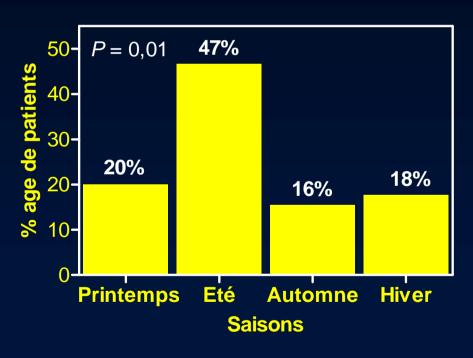
SpA confirmed (n = 29)

Prevalence of Primary Sjögren's Sd.

First author (year)	Country	Population Size	No. of cases	Prev	alence (/10,	000)
Census surveys						
Miyasaka (1995)	Japan	~120,000,000	~17,000		2	
Alamanos (2006)	Greece	~500,000	Not stated		8.6	
Goransson (2011)	Norway	852,342	424		5	
Yu (2013)	China (Taiwan)	1,000,000	154		1.6	
Maldini (2013)	France	1,172,482	133		1.0	
			204		1.5	
Sample surveys						
Zhang (1995)	China	2,066	7		33	
			16		77	
Thomas (1998)	United Kingdom	341	13		180/330	
Tomsic (1999)	Slovenia	332	2		60	
Birlik (2008)	Turkey	2,835	6		21	
			10		35	
Trontzas (2005)	Greece	8,740	13		15	

Variations saisonnières : Purpura rhumatoïde




Variat. saisonnières : GPA (Wegener)

Auteur	Nombre	Saison			
		Décfév.	Marmai	Juin-août	Septnov.
Carruthers	21	43%	24%	33%	0%
Tidman	19	37%	37%	11%	16%
Raynaulds	84	30%	35%	14%	21%
Falk	70	38%	28%	11%	23%
Blockmans	50	62% (Od	ctmars)	38% (Av	/ril-sept.)
Duna	101	22%	19%	29%	31%
Koldingsnes	55	24%	29%	24%	24%

Variat. saisonnières : GPA (Wegener)

45 patients en France (2001 – 2004)

GFEV. J Rheumatol 2006

Variations villes-régions rurales

Prévalence (par 1.000.000 habitants)

	Allemagn	e du Nord	Allemagn	e du Sud
	Villes	Rég. rurales	Villes	Rég. rurales
GCA	138 (89–188)	39 (13–64)	121 (72–169)	70 (36–105)
WG	55 (24–46)	60 (29–92)	50 (19–82)	35 (11–59)
PAN	5 (0–14)	13 (0–27)	5 (0–15)	0
MPA	18 (0–36)	0	0	0
CSS	14 (0–29)	0	5 (0–15)	0

Reinhold-Keller et al. Rheumatology 2000

Variations ethniques : Mal. de Behçet

Origin ethnique	Cas, n	Population, n	Prévalence (IC 95%)
Europe	19	814.091	2,4 (0,6–7,2)
Afrique du Nord	43	120.590	35,0 (24,4–48,7)
Asie (Turquie incluse)	11	51.511	17,9 (10,7–27,2)
Afrique sub-Saharienne	3	51.532	5,4 (2,2–11,7)
France non métropolitaine	3	48.524	7,0 (2,8–14,4)
Toutes	79	1.094.412	7,2 (3,5–14,4)

Prévalence (par 100.000) selon l'âge d'arrivée en France (pour population d'Afrique du Nord et d'Asie) :

Nés en France : 28.7 (IC 95% : 19,4–40,5)
Age de migration 0–14 ans: 19.8 (IC 95% : 12,2–29,7)
Age de migration 15–34 ans: 19.2 (IC 95% : 12,2–29,7)

Mahr et al. A&R 2008

Vascularites et variations ethniques

o Incid. de mal. de Kawasaki (par 100,000 enf.)

Ethnie	Washington DC	W. Midlands, UK
Origine asiatique	333	146
Noirs	234	59
Blancs	127	46

Davis et al. Arch Pediatr Adolesc Med 1995

o Incid. de purpura rhumatoïde (par 100,000 enf.)

Ethnie	W. Midlands, UK		
Origine asiatique	146		
Noirs	59		
Blancs	46		

Gardner-Medwin et al. Lancet 2002

"Méta-Epidémiologie" de la MB

Estimations "poolées" de prévalence (par 100.000 habitants)

	No. of studies	Prevalence (95% CI)
Toutes les études	31	46 (26–80)
Par zone géographique		
Turquie	7	162 (78–336)
Afrique du Nord/Moyen Orient	8	32 (14–72)
Asie	2	9 (4–20)
Europe du Sud	5	7 (3–12)
Europe du Nord	7	2 (1–4)
Amerique/Iles Caraïbes	2	7 (5–9)
Par critères classification		
International Study Group	18	46 (23–92)
Autres critères	13	45 (18–114)
Par méthode d'étude		
Etudes de recensement	19	5 (4–8)
Etudes d'échantillonnage	12	117 (65–209)
Par année de publication		
1974–1993	9	49 (14–72)
1994–2006	11	66 (27–165)
2007–2013	11	18 (9–36)

Conclusion

- □ études descriptives
- □ 1ère étape avant approche analytique
- □ nécessité d'une :
 - population bien définie
 - critères diagnostiques/classification
 - recensement exhaustif
- □ intérêt:
 - génération d'hypothèses physiopathologiques
 - surveillance