
Déterminants et causes du Lupus systémique

Pr. Laurent ARNAUD

Service de rhumatologie, Hôpitaux Universitaires de Strasbourg Centre National de Référence des Maladies Systémiques Autoimmunes Rares

Mes liens d'intérêt...

Laurent ARNAUD a réalisé des activités de consulting pour : Alexion, Amgen, Astra-Zeneca, GSK, Janssen-Cilag, LFB, Lilly, Menarini France, Novartis, Pfizer, Roche-Chugaï, UCB.

Un peu d'histoire...

Pourquoi "lupus"?

855

Herbernus

de Tours

(Eracle)

Hildric, dit-il, étoit affligé d'une de ces ulceres qu'on nomme des loups, à

Première trace écrite de l'utilisation du mot "lupus"

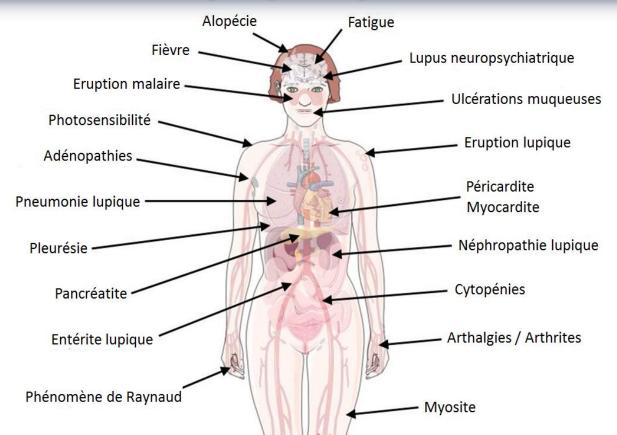
855

Herbernus

de Tours

(Eracle)

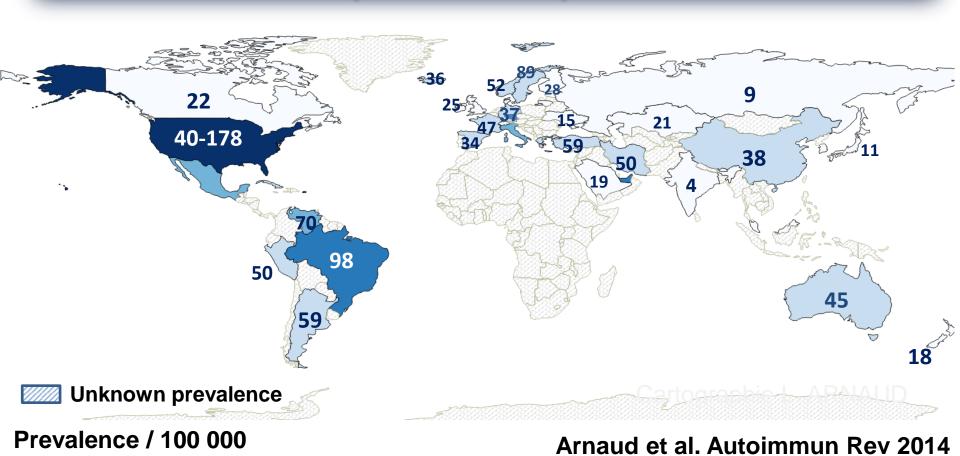
Hildrie, dit-il, étoit affligé d'une de ces ulceres qu'on nomme des loups, à cause qu'elles mangent les chairs; & celui-


Le lupus systémique

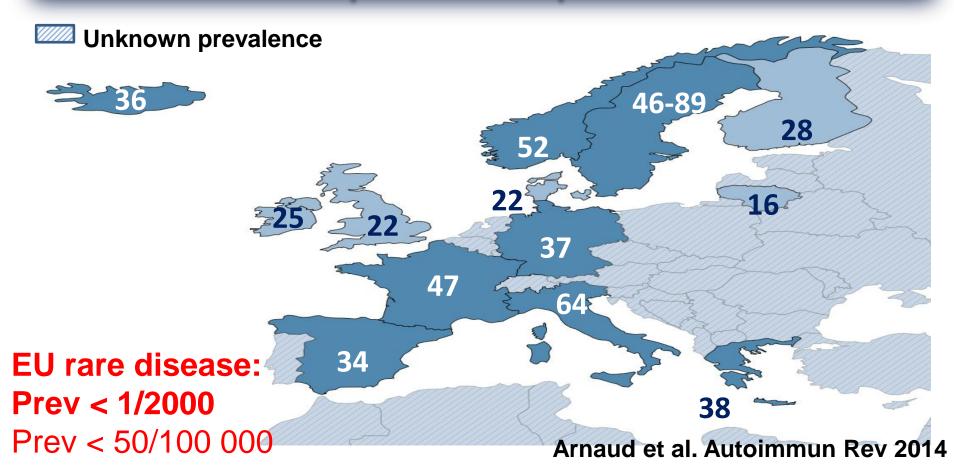
Maladie autoimmune non spécifique d'organe Caractérisée par:

- Manifestations cliniques polymorphes
- Présence d'anticorps anti-nucléaires (99%)
 - anti-ADN natif (60-80%)

Une maladie très polymorphe

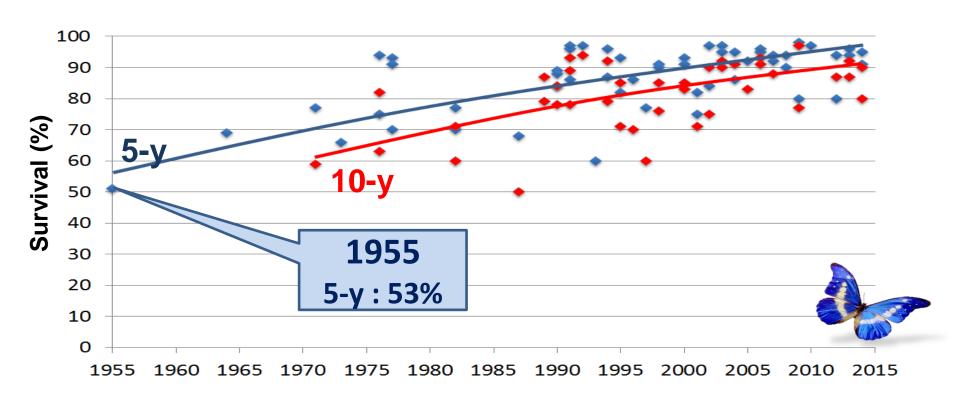

Arnaud & van Vollenhoven. Advanced Handbook of SLE. Edition Springer

Une maladie très polymorphe

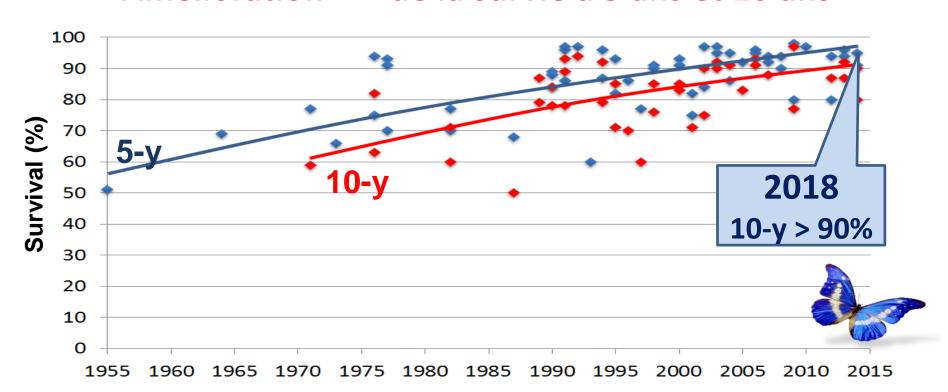

Clinical manifestations	At first visit (%)	During follow-up (%)
Arthritis	69	84
Malar rash	40	58
Fever	36	52
Photosensitivity	29	45
Nephropathy	16	39
Serositis	17	36
Neuro involvement	12	27
Oral ulcers	11	24
Thrombocytopenia	9	22
Adenomegaly	7	12
Discoid lupus	6	10
Myositis	4	9
Hemolytic anemia	4	8
Pulmonary involvement	3	3

Cervera et al. Medicine 1993

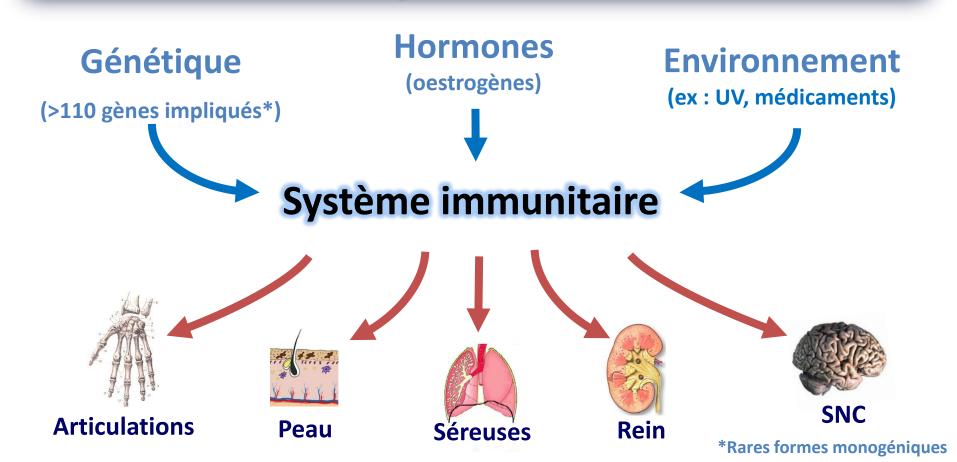
Prévalence du lupus en Europe



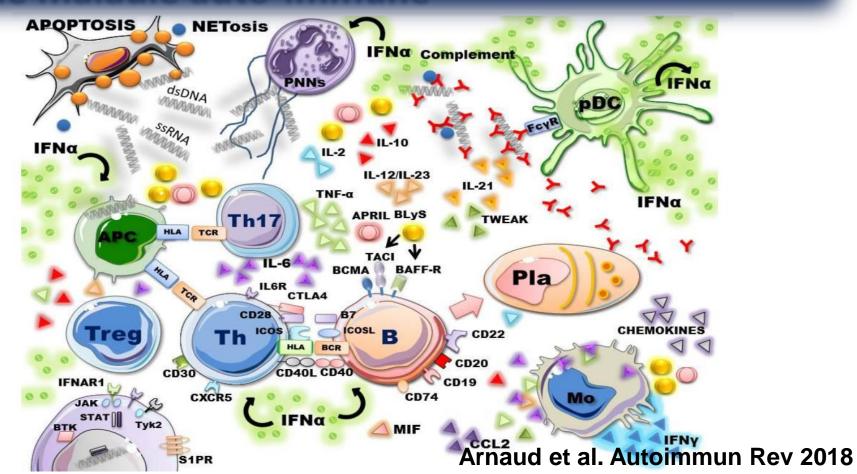
Prévalence du lupus en Europe

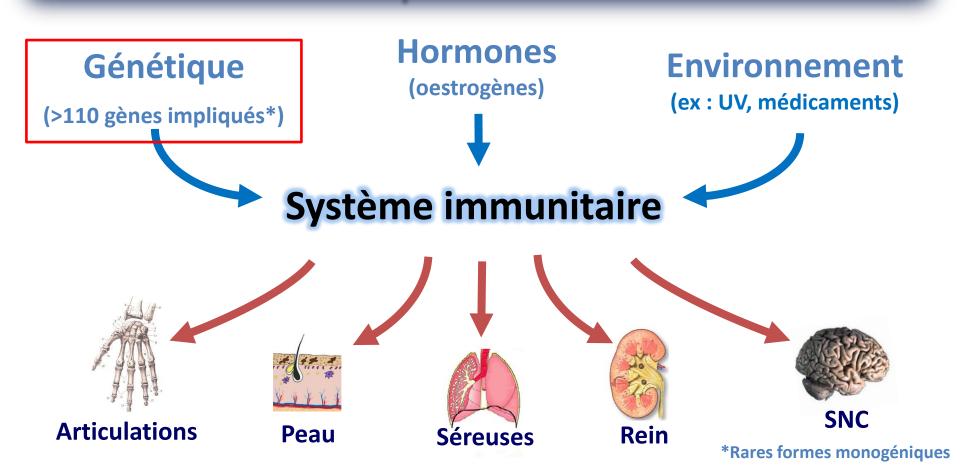

Survie et lupus

Amélioration+++ de la survie à 5 ans et 10 ans



Survie et lupus


Amélioration+++ de la survie à 5 ans et 10 ans


Les « causes » du lupus

Une maladie auto-immune

Les « causes » du lupus

Les « causes » du lupus

Concordance entre jumeaux

Jumeaux homozygotes versus dizygotes

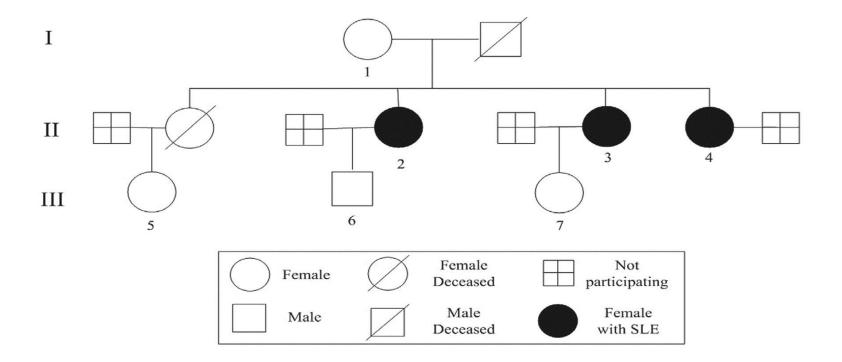
VS

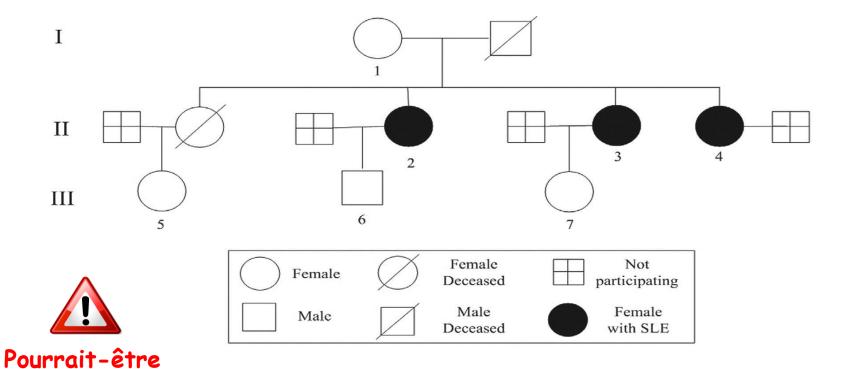
Concordance in monozygotic twins: 14 - 57%

Block et al. Am J Med 1975 Deapen et al. Arthritis Rheum 1992

Concordance entre jumeaux

Jumeaux homozygotes versus dizygotes


VS


Concordance in monozygotic twins: 14 - 57%

Block et al. Am J Med 1975 Deapen et al. Arthritis Rheum 1992

environnemental

Familial Aggregation of Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Other Autoimmune Diseases in 1,177 Lupus Patients From the GLADEL Cohort

$$\lambda = \frac{\text{Prevalence in relatives}}{\text{Prevalence in general population}}$$

Table 4. Familial aggregation (λ) of systemic lupus erythematosus as calculated using 3 different putative prevalences in the general population (K)

Relationship	K			
	0.0005	0.001	0.005	
Parents/offspring	54	27	5.4	
Siblings	58	29	5.8	
Aunts/uncles/ nieces/nephews	39	19.5	3.9	
Cousins	22	11	2.2	

Alarcon-Segovia et al. Arthritis Rheum 2005

Familial Aggregation of Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Other Autoimmune Diseases in 1,177 Lupus Patients From the GLADEL Cohort

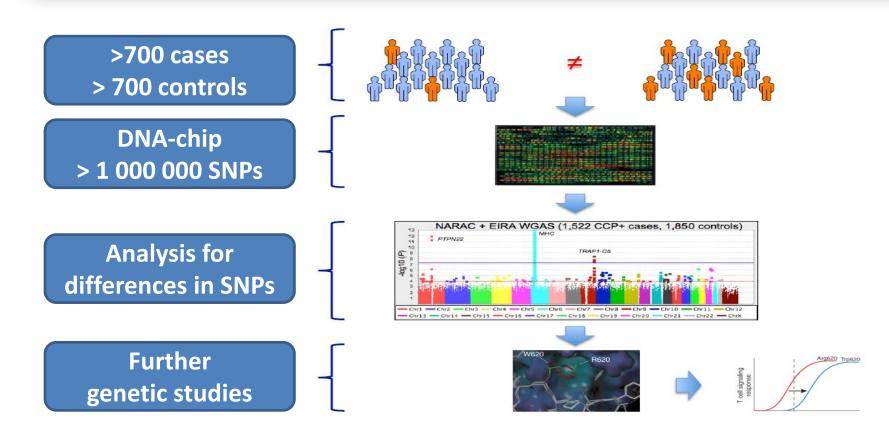
Table 3. Prevalence of SLE in first-, second-, and third-degree relatives of SLE patients in the GLADEL cohort, and comparison with recorded prevalence of SLE in populations*

SLE relatives
First-degree
Parents/offspring
Siblings
Second-degree (aunts/uncles/nieces/nephews)
Third-degree (cousins)
Populations
European
Prevalence, %

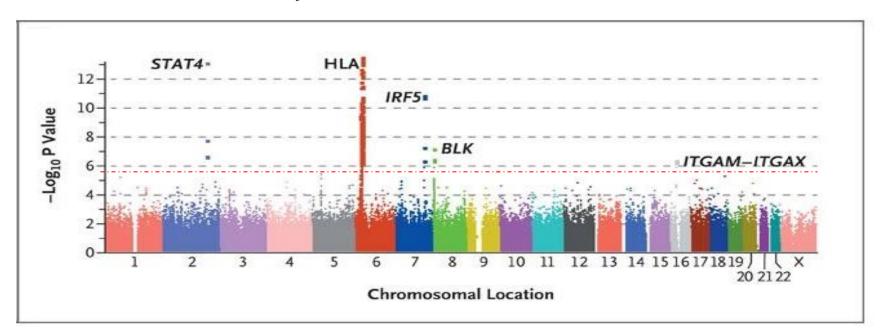
2.7
2.9
1.95
1.15
0.010–0.081

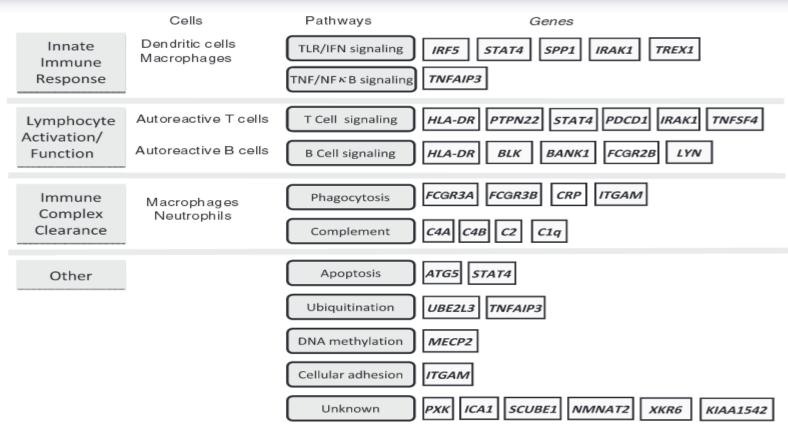
≈10%

African Caribbean


African American

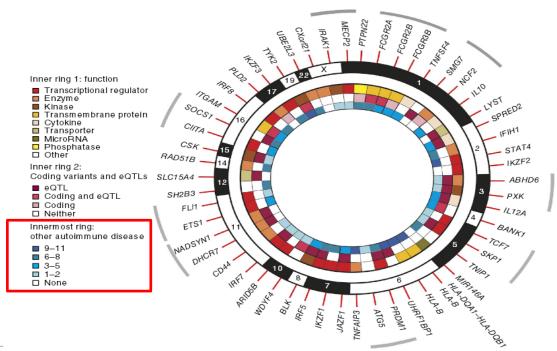
0.11 - 0.25


0.375


^{*} See Table 2 for definitions.

Genome Wide Association studies (GWAS)

Association of Systemic Lupus Erythematosus with C8orf13–BLK and ITGAM–ITGAX



Moser et al. Genes Immun. 2009

Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus

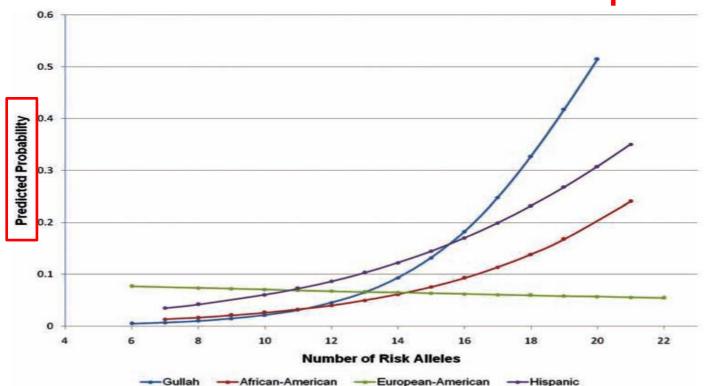
Figure 2 Summary of the functional roles of likely causal genes in SLE and other autoimmune diseases. The concentric rings in the figure show several layers of evidence to support functional annotation of the likely causal genes for SLE listed in Table 2. The genes are illustrated clockwise in chromosomal order, with gray arcs delineating loci at which several genes are implicated. Inner ring 1 shows each gene's functional category, taken from Ingenuity Pathway Analysis: inner ring 2 shows the presence of a cis-acting eQTL (Fig. 1) and/or coding variant; and innermost ring 3 shows the number of autoimmune diseases (excluding SLE) in ImmunoBase—type 1 diabetes, celiac disease, multiple sclerosis, Crohn's disease, primary biliary cirrhosis, psoriasis, rheumatoid arthritis, ulcerative colitis, ankylosing spondylitis, autoimmune thyroid disease, juvenile idiopathic arthritis, alopecia areata, inflammatory bowel disease, narcolepsy, primary sclerosing cholangitis, Sjögren's syndrome, systemic scleroderma and vitiligo-previously reported to be associated with the gene.

Bentham et al. Nature Genet 2015

GWAS et lupus Odd ratio

TREX1	25	Rare, found in 12 of 417 cases and 2 of 1712 controls
Complement C1q	~ 10	Rare, $>90\%$ $-/-$ affected
Complement C4A	6.5	Rare, $>70\%$ -/- and -/+
and C4B		affected, CNV
Complement C2	~5	<10% -/- affected

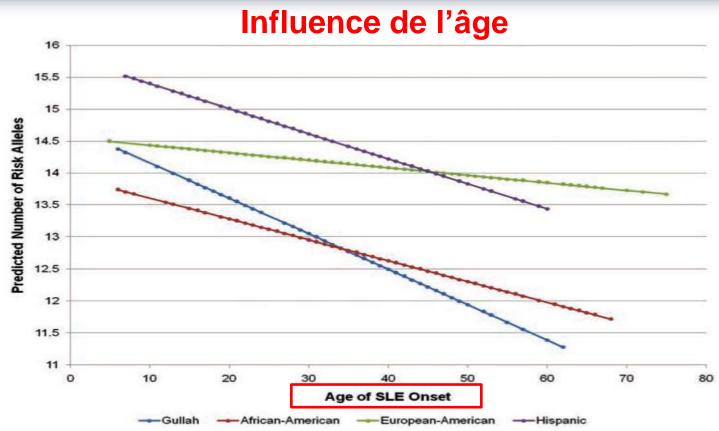
Complement C2	~5	<10% -/- affected
HLÁ	2.36	Multiple effects
TNFAIP3	2.28	Rare haplotype (minor allele
11111111	2.20	frequencies ~ 0.03 to 0.07)
FCGR3B	2.21	CNV
ITGAM	1.62	H77R
FcGR3A	1.6	F176V
IRF5	1.54	Three functional variants
STAT4	1.5	
IRAK1	1.5	Chromosome X, adjacent to
		MECP2
BANK1	1.4	
FCGR2A	1.35	H131R
ICA1	1.32	
PTPN22	1.3	N European; familial lupus
CRP	1.3	−707 mutation
TNFSF4/OX40	1.3	
LYN	1.30	
SCUBE1	1.28	
KIAA1542	1.28	rs49663128, SLEGEN GWAS,
DVV	4.05	marker for IRF7
PXK	1.25	
XKR6	1.23	- 2421 COT OF ECENT CHAR
Chromosome 5q33.3	1.23 1.22	rs2431697, SLEGEN GWAS rs10798269, SLEGEN GWAS
Chromosome 1q25.1 BLK/FAM167A	1.22	rs10/98269, SLEGEN GWAS
(C8orf13)	1.22	
UBE2L3	1.22	
MECP2	1.22	Chromosome X, adjacent to
WILCI 2	1.2	IRAK1
PDCD1	1.2	****
ATG5	1.19	
NMNAT2	1.18	
Chromosome	1.18	rs10903340, SLEGEN GWAS
8p21 1		,



Lupus « polygénique » ++++

Moser et al. Genes Immun. 2009 Graham et al. J Intern Med 2009

Lupus polygénique


Influence du nombre d'allèles de susceptibilité

19 susceptibility SLE alleles were tested

Webb et al. ARD 2011

Lupus polygénique

19 susceptibility SLE alleles were tested

Webb et al. ARD 2011

Odd ratio

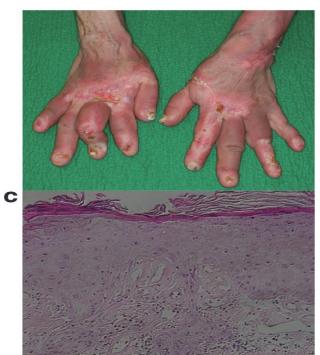
TREX1	25	Rare, found in 12 of 417 cases
G	10	and 2 of 1712 controls
Complement C1q	~ 10 6.5	Rare, >90% -/- affected
Complement C4A and C4B	6.5	Rare, $>70\%$ -/- and -/+
Complement C2	~5	affected, CNV <10% -/- affected
	~ 3	,
HLA	2.36	Multiple effects
TNFAIP3	2.28	Rare ĥaplotype (minor allele
		frequencies ~ 0.03 to 0.07)
FCGR3B	2.21	CNV
ITGAM	1.62	H77R
FcGR3A	1.6	F176V
IRF5	1.54	Three functional variants
STAT4	1.5	
IRAK1	1.5	Chromosome X, adjacent to MECP2
BANK1	1.4	
FCGR2A	1.35	H131R
ICA1	1.32	
PTPN22	1.3	N European; familial lupus
CRP	1.3	-707 mutation
TNFSF4/OX40	1.3	
LYN	1.30	
SCUBE1	1.28	
KIAA1542	1.28	rs49663128, SLEGEN GWAS,
		marker for IRF7
PXK	1.25	
XKR6	1.23	
Chromosome 5q33.3	1.23	rs2431697, SLEGEN GWAS
Chromosome 1q25.1	1.22	rs10798269, SLEGEN GWAS
BLK/FAM167A	1.22	
(C8orf13)		
UBE2L3	1.22	
MECP2	1.2	Chromosome X, adjacent to IRAK1
PDCD1	1.2	
ATG5	1.19	
NMNAT2	1.18	
Chromosome	1.18	rs10903340, SLEGEN GWAS
8p21.1		

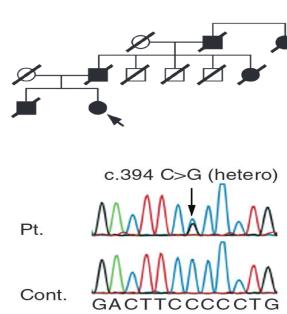
Lupus monogénique (très rare)

Moser et al. Genes Immun. 2009 Graham et al. J Intern Med 2009

Lupus monogéniques

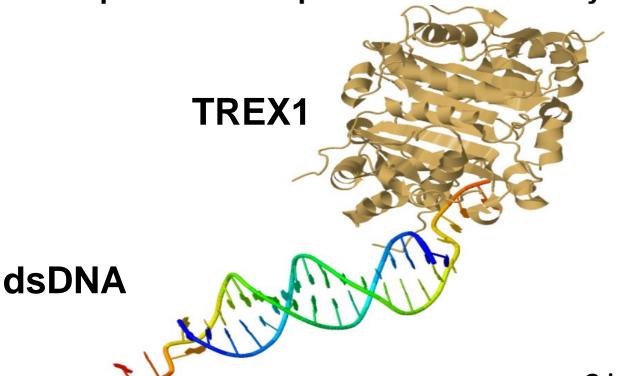
Interferonopathies

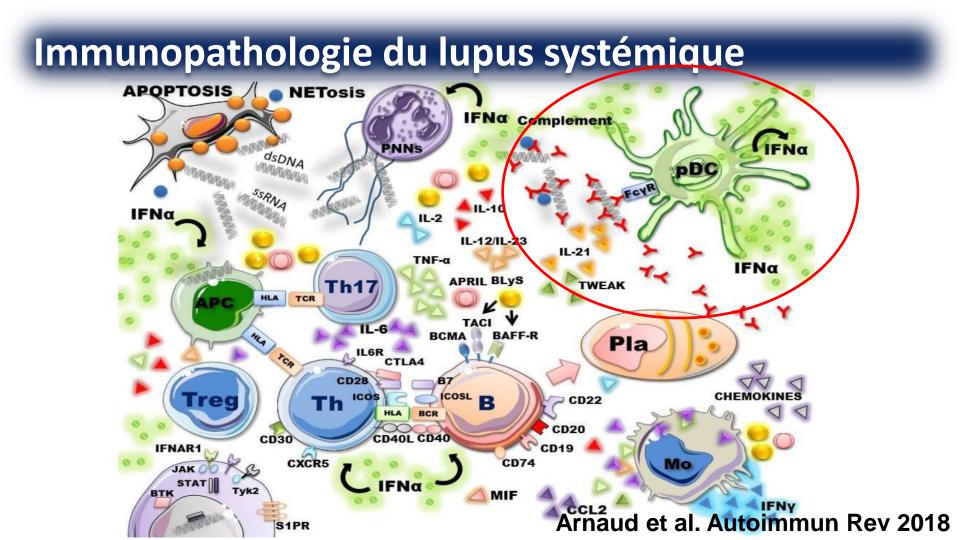

Gène/protéine	Âge à l'apparition	Fonction de la protéine	Voie associée à la signalisation de l'IFN de type I	Hérédité	Principales caractéristiques ajoutées au LES
TREX1/TREX1	Nouveaux-nés, enfants, adultes	Désoxyribonucléase	ADN cytosolique	Récessive autosomique	Engelures, glaucome, retard mental
SAMHD1/SAMHD1	Nouveaux-nés, enfants	Contrôle du pool de dNTP (± nucléase)	ADN cytosolique (± ARN cytosolique)	Récessive autosomique	Engelures, maladie de Moya-Moya, glaucome, retard mental
TMEM173/STING	Enfants, adultes	Adaptatrice de cGAS	ADN cytosolique (± ARN cytosolique)	Dominante autosomique	Pneumopathie interstitielle, fibrose pulmonaire, vascularite cutanée
RNASEH2A/RNASEH2A RNASEH2B/RNASEH2B RNASEH2C/RNASEH2C	Nouveaux-nés, enfants	Ribonucléase	ARN cytosolique : hybrides d'ADN	Récessive autosomique	Paraparésie, retard mental
IFIH1/MDA5	Nouveaux-nés, enfants, adultes	Senseur d'ARNdb	ARN cytosolique	Dominante autosomique	Paraparésie, glaucome, vascularite
DDX58/RIG-I	Enfants, adultes	Senseur d'ARNdb	ARN cytosolique	Dominante autosomique	Glaucome, syndrome de Singleton-Merten
ACP5/TRAP	Nouveaux-nés, enfants, adultes	Phosphatase	Inconnue	Récessive autosomique	SPENCD, cytopénies, vascularite, retard de croissance
C1QA,B,C/C1QA,B,C	Enfants, adultes	Voie canonique du complément	Inconnue	Récessive autosomique	Infections, lésions cutanées

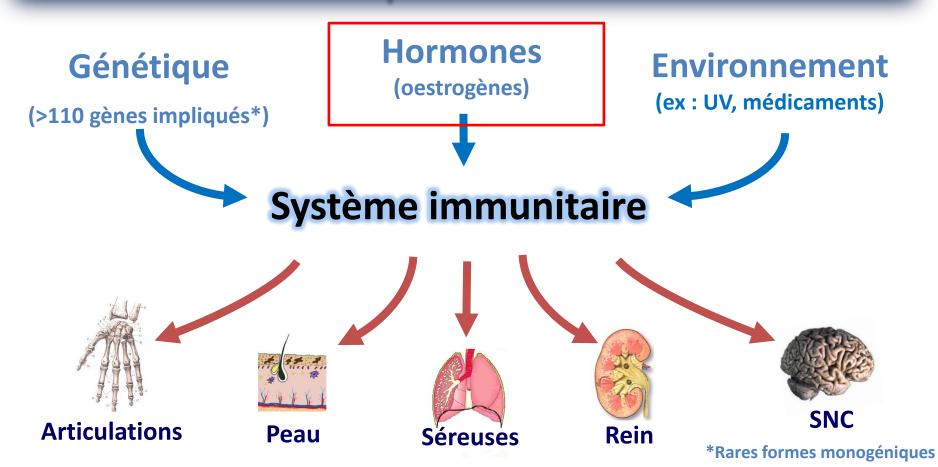

Arnaud et al. JBS 2018

Lupus monogéniques

TREX1 (familial chilblain lupus)

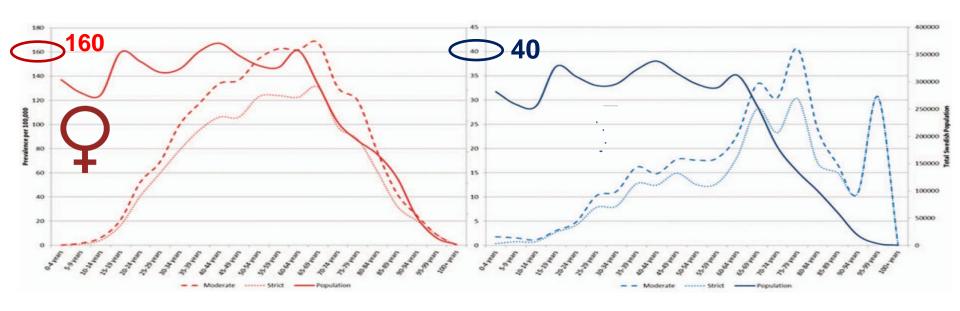





Lupus monogéniques

Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease

Les « causes » du lupus


Les « causes » du lupus

Comment évaluer le rôle des hormones

Prédominance féminine

Systemic Lupus Erythematosus Prevalence in Sweden in 2010: What Do National Registers Say?

Simard et al. Arthritis Care Research 2014

Dosages hormonaux

Sex Hormones and Systemic Lupus Erythematosus

Review and Meta-Analysis

Table 6. Sex hormone changes in SLE patients*

Hormone	Women	Men
DHEA/DHEAS	\downarrow	Probably ↓
↓ Progesterone	\downarrow	Unknown
↓ Testosterone	↓ ★	Normal
↓ Estradiol	↑ *	Normal
↓ (stimulates) Prolactin	↑ *	↑ *

^{*} Compared with healthy controls. SLE = systemic lupus erythematosus; DHEA/DHEAS = dehydroepiandrosterone/dehydroepiandrosterone sulfate.

^{*} Significant difference between SLE patients and healthy controls

Dosages hormonaux

Table 2. Sex hormone profiles in patients with SLE and their matched controls*

	SLE patients (n = 71)	Matched controls $(n = 25)$	P
FSH			
Levels, median (range) units/liter	4.2 (1.2–30)	3.6 (1.9–16)	0.23
High FSH (>12.5 units/liter), no. (%)	11 (15.5)	1 (4)	0.18
LH	, ,		
Levels, median (range) units/liter	4.6 (1.3-20)	2.7 (1.6-7.1)	< 0.0001
High LH (>9.6 units/liter), no. (%)	10 (14.1)	0 (0)	0.06
Prolactin			
Levels, median (range) mIU/liter	161 (23–1,022)	153 (47–339)	0.18
High prolactin (>278 mIU/liter), no. (%)	5 (7.0)	0 (0)	0.32
SHBG, median (range) nmoles/liter	32.0 (11–108)	29.0 (8.2–61)	0.33
Testosterone	` ′	` ′	
Levels, median (range) nmoles/liter	11.0 (4.0–32)	13.0 (3.4–27)	0.78
Low testosterone (<10 nmoles/liter), no. (%)	23 (32.4)	7 (28.0)	0.68
Bioactive testosterone	(****)	(/	
Levels, median (range) nmoles/liter	6.3 (2.9–13)	7.2 (2.7–11)	0.20
Low bioactive testosterone, no. (%)†	24 (34)	2 (8)	0.02

^{*} SLE = systemic lupus erythematosus; FSH = follicle-stimulating hormone; LH = luteinizing hormone; SHBG = sex hormone-binding globulin.

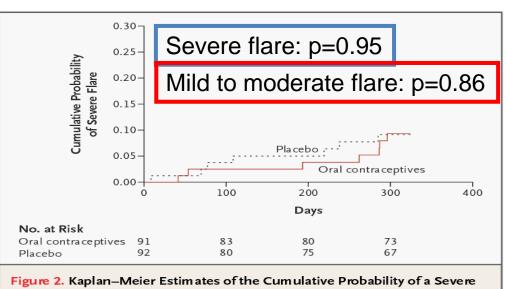
Arnaud et al. Arthritis Rheum. 2017

[†] Defined as <6.3 nmoles/liter for those ages 20–49 years and <4.4 nmoles/liter for those age ≥ 50 years.

Rôle des ostrogènes naturels et de synthèse

Reproductive and Menopausal Factors and Risk of Systemic Lupus Erythematosus in Women

	No. of cases	Person-years	Age-adjusted RR (95% CI)	Multivariable RR (95% CI)
Pooled results (NHS + NHSII)				
Age at menarche, years				
≤10	_	_	_	2.1 (1.4–3.2)
11	_	_	_	1.2 (0.8–1.7)
12	_	_	_	1.0 (referent)
13	_	_	_	1.1 (0.8–1.6)
≥14	_	_	_	1.0 (0.7–1.5)
P for trend†				0.02
Oral contraceptive use				
Never	_	_	_	1.0 (referent)
Ever	_	_	_	1.5 (1.1–2.1)
Past	_	_	_	1.7 (1.2–2.3)
Current	_	_	_	
PMH use§				
Never	23	550,867	1.0 (referent)	1.0 (referent)
Ever	65	916,454	1.9 (1.2–3.1)	1.9 (1.2–3.1)
Past	27	359,311	2.4 (1.3–4.2)	2.2 (1.3–3.9)
Current	38	557,143	1.7 (1.0–2.9)	1.7 (0.9–2.9)
Duration of PMH use§				
Never	23	550,867	1.0 (referent)	1.0 (referent)
<5 years' use	34	441,661	1.7 (1.0–3.0)	1.8 (1.0–3.0)
≥5 years' use	31	474,793	2.1 (1.2–3.8)	2.0 (1.1–3.6)


Prospective study n = 238 803 (1976-2003) 262 incident SLE cases

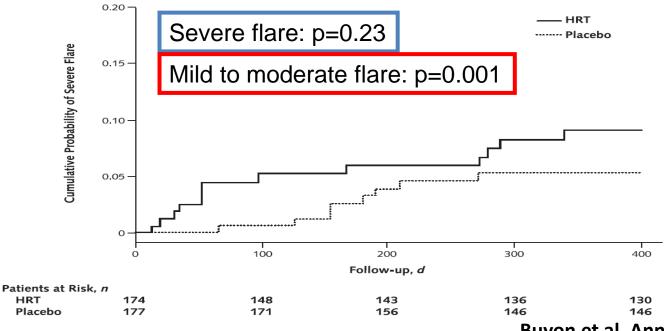
Costenbader et al. Arthritis Rheum. 2007

Rôle des ostrogènes de synthèse

Combined Oral Contraceptives in Women with Systemic Lupus Erythematosus

Table 1. Baseline Characteristics of the Study Subjects According to Treatment Group.*					
Characteristic	Oral Contraceptives (N=91)	Placebo (N = 92)			
Age (yr)					
Mean	29.8	30.1			
Range	18–39	18–39			
Active disease (%)	23	25			
SELENA-SLEDAI Instrument score					
Mean	3.01	3.39			
Range	0–10	0–12			
Renal disorder (%)	37	37			
Low levels of complement (%)	29	25			
Increased DNA binding (%)	32	22			
Prednisone use (%)	56	55			
Prednisone dose (mg/day)					
Mean	5.16	5.38			
Range	0–30	0-30†			

Flare in Subjects Receiving Oral Contraceptives and Placebo.


The difference between treatment groups in the 12-month rate of occurrence of severe flare was -0.0028 (P=0.95).

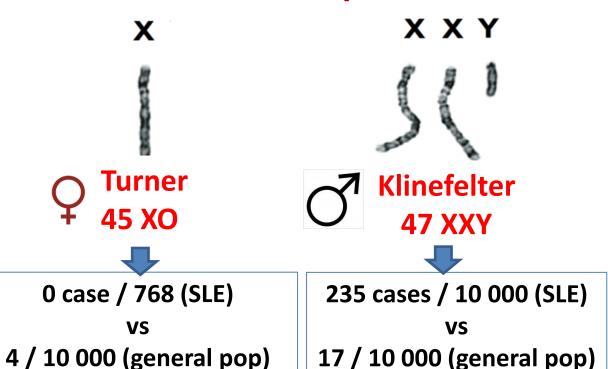
Rôle des ostrogènes de synthèse

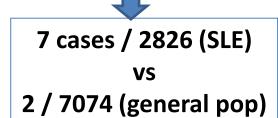
ARTICLE

The Effect of Combined Estrogen and Progesterone Hormone Replacement Therapy on Disease Activity in Systemic Lupus Erythematosus: A Randomized Trial

Buyon et al. Ann Intern Med. 2005

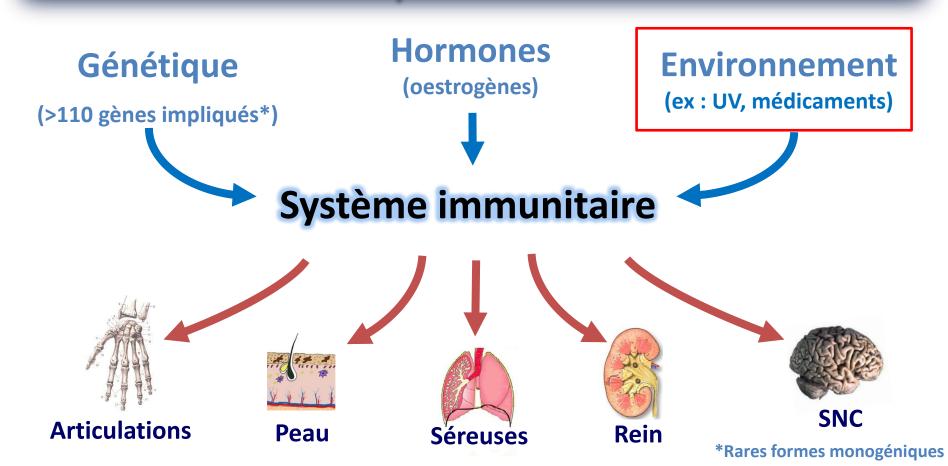
Rôle des ostrogènes


Modèles murins de lupus

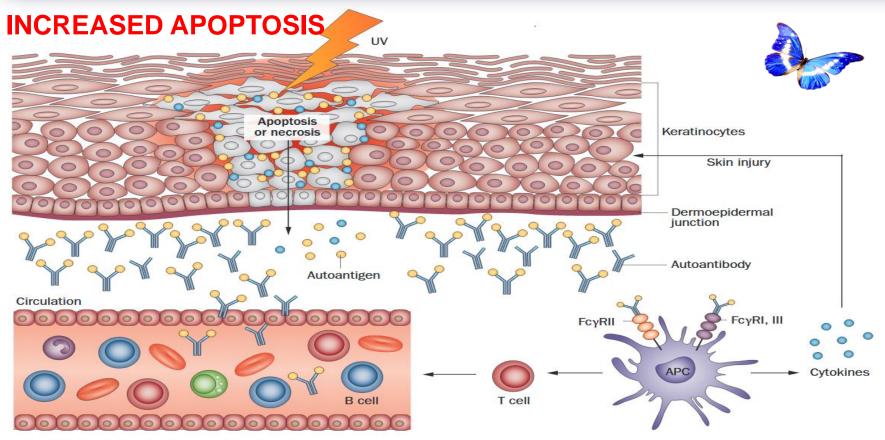

Carlsten et al. Clin Exp Immunol 1990 Walker et al. Arthritis Rheum. 1972

Un lien entre la génétique et les hormones?

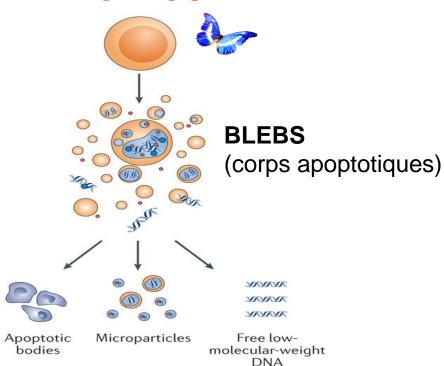
L'effet « dose-réponse » du chromosome X

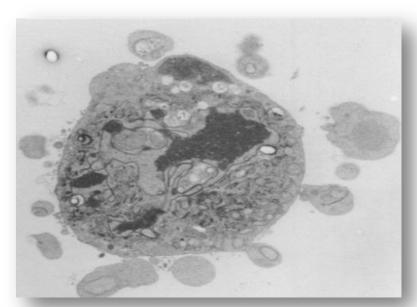


Scofield et al. Arthritis Rheum. 2008 Liu et al. Arthritis Rheum. 2015


Les « causes » du lupus

Quels facteurs environnementaux

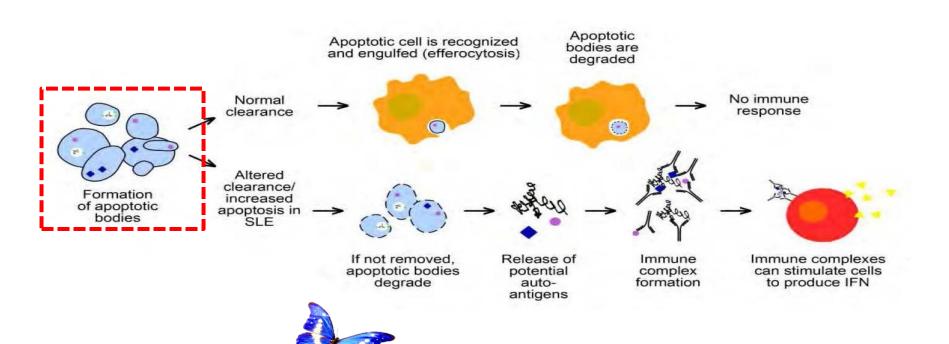

Le rôle délétère des UVs

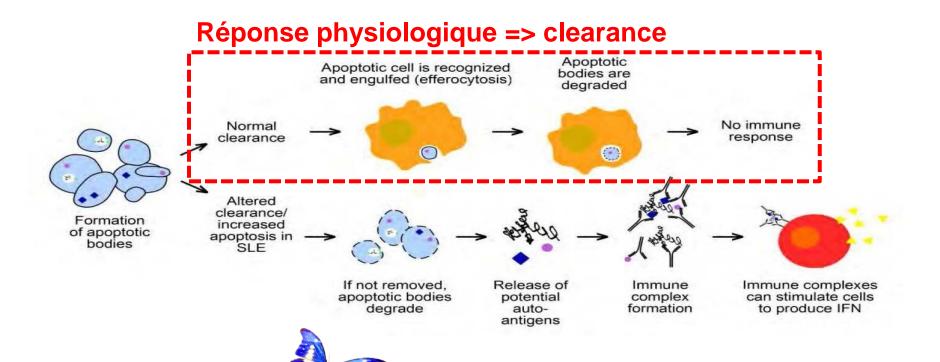


Deng et al. Nat Rev Rheumatol 2015

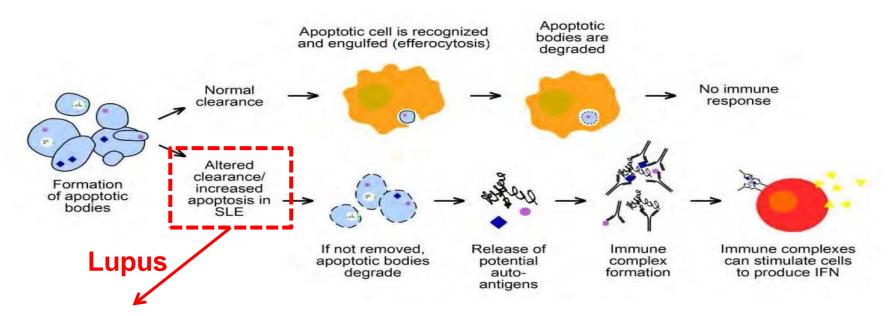
Principales sources d'auto-antigènes au cours du lupus

APOPTOSE

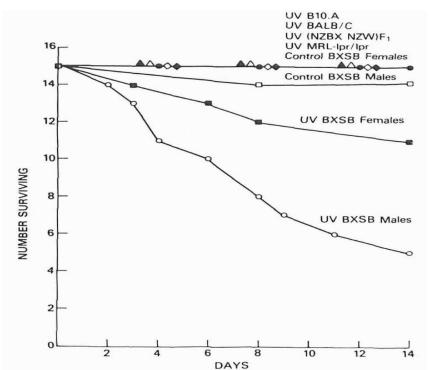



Casciola-Rosen et al. J Exp Med 1994

Pisetsky et al. Nat Rev Rheumatol 2015


Le rôle de l'apoptose au cours du lupus

Le rôle de l'apoptose au cours du lupus

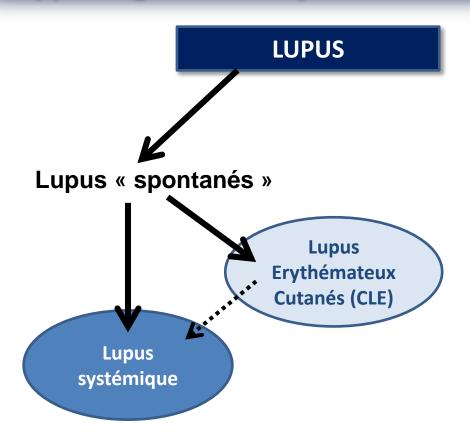

Le rôle de l'apoptose au cours du lupus

Déficit en complément Polymorphisme des FcγR Activité DNAse I diminuée

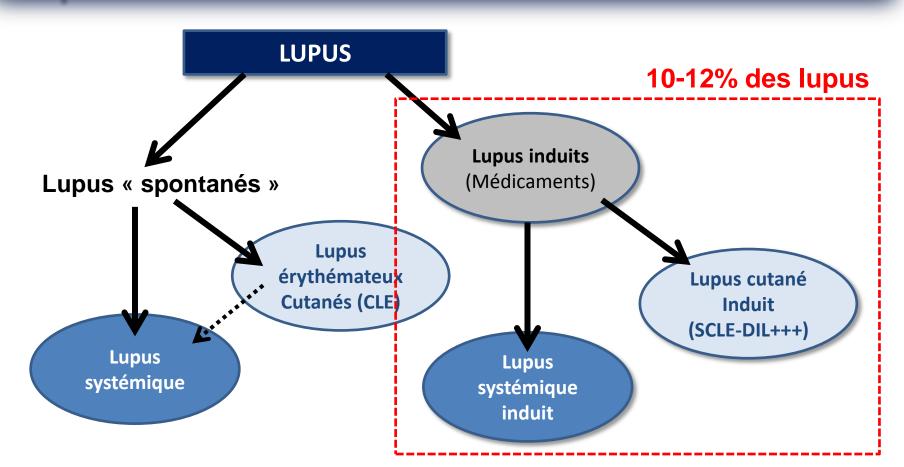
Le rôle délétère des UVs

Le rôle des UV chez lupus-prone mice

Ancel et al. J Invest Derm 1985


Exposition aux UV et risque de lupus

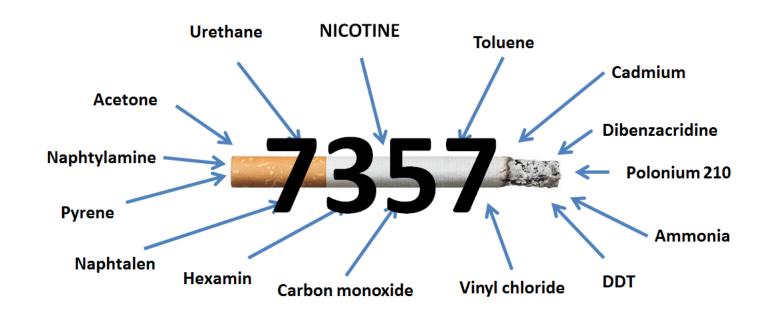
	<u> </u>		
	Patients (n = 258) n (%)	Controls (<i>n</i> = 263) <i>n</i> (%)	OR (95% CI)ª
Skin characteristics			
Skin tone			
Fair or very fair	187 (72)	209 (79)	0.72 (0.48, 1.1)
Olive, dark or very dark	71 (28)	54 (21)	1.0 (referent)
Reaction to sun-2h, midday			
Tan or darken without burning	50 (20)	56 (22)	1.0 (referent)
Sunburn	101 (39)	140 (54)	0.88 (0.55, 1.4)
Sunburn with blistering or rash	88 (34)	55 (21)	2.1 (1.3, 3.6)
Other	17 (7)	9 (3)	2.4 (0.96, 6.0)
Outdoor work (≥20 h/week, ≥2 months/year)			
In 12 months before diagnosis (patients)	32 (12)	16 (6)	1.9 (1.0, 3.7)
or past 12 months (controls)			
Total years, mean (s.p.)	1.2 (3.5)	1.6 (3.6)	(P = 0.29)
0	185 (72)	181 (69)	1.0 (referent)
1–4	54 (21)	50 (19)	1.0 (0.67, 1.6)
≥5 or more	18 (7)	32 (12)	0.62 (0.32, 1.2)
Outdoor work in the 12 months before diagnos	is, among people whose	reaction to the midday su	ın is to: ^b
Tan or darken without burning	4 (8)	5 (9)	0.75 (0.18, 3.2)
Sunburn	14 (14)	8 (6)	2.7 (1.0, 6.9)
Sunburn with blistering or rash	13 (15)	1 (2)	7.9 (0.97, 64.7)


Clinical manifestations	At first visit (%)	During follow-up (%)
Arthritis	69	84
Malar rash	40	58
Fever	36	52
Photosensitivity	29	45
Nephropathy	16	39
Serositis	17	36
Neuro involvement	12	27
Oral ulcers	11	24
Thrombocytopenia	9	22
Adenomegaly	7	12
Discoid lupus	6	10
Myositis	4	9
Hemolytic anemia	4	8
Pulmonary involvement	3	3

Cervera et al. Medicine 1993

Typologie des lupus...

Lupus induits



Lupus induits

> 100 médicaments

≈ 20% pour 1 an de traitement (>5%) High risk Procainamide Hydralazine -→ ≈ 5-8% / 1 an **Moderate (1-5%)** to low (0.1-1%) Quinidine, Captopril, anti-TNFα, Interferon-α, Methyldopa, Sulfasalazine, Propylthiouracil, Acebutolol, Chlorpromazine, Isoniazid, Minocycline, Carbamazepine, Terbinafin low risk (0-0.1%) to very low (<0.1%) Disopyramide, Propafenone, Amiodarone, Atenolol, Labetalol, Streptomycin, Pindolol, Minoxidil, Prazosin, Enalapril, Lisinopril, Nalidixic acid, Clonidine, Clozapine, Sertraline, Quinine, Hydrochlorothiazide, Clobazam, Phenytoin, Primidone, Ethosuximide, Valproic acid, Phenylbutazone, Mesalazine, Zafirlukast, Chlorthalidone, Sulfamethoxazole, Simvastatin, Atorvastatin

Exposition à la cigarette

NUMBER OF CHEMICAL COMPOUNDS DETECTABLE IN CIGARETTE SMOKE

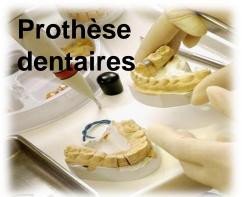
Exposition à la cigarette

EVER versus NEVER smokers

	SLE ca	ses	Contro	ols		Odds Ratio		Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95	5% CI
Reidenberg et al. (1993)	67	195	97	195	11.4%	0.53 [0.35, 0.79]	1993	-	
Nagata et al. (1995)	54	282	32	292	11.0%	1.92 [1.20, 3.09]	1995		
Hardy et al. (1998)	67	139	118	281	11.4%	1.29 [0.85, 1.93]	1998	+-	
Cooper et al. (2001)	77	125	40	125	10.7%	3.41 [2.03, 5.74]	2001	-	-
Ghaussy et al. (2001)	102	265	171	355	11.9%	0.67 [0.49, 0.93]	2001	-	
Bengtsson et al. (2002)	51	85	105	205	10.8%	1.43 [0.86, 2.39]	2002	+-	
Kiyohara et al. (2009)	53	151	86	424	11.4%	2.13 [1.41, 3.20]	2009		
Ekblom-Kullberg et al. (2013)	153	205	552	862	11.8%	1.65 [1.17, 2.33]	2013	-	
Zou et al. (2014)	37	260	11	260	9.5%	3.76 [1.87, 7.54]	2014	-	•
Total (95% CI)		1707		2999	100.0%	1.52 [1.00-2	2.311	•	
Total events	661		1212						
Heterogeneity: Tau² = 0.35; Chi²	e 66.78,	df = 8 (l	P < 0.000	001); l ^a :	= 88%		0.01	0.1	10 100
Test for overall effect: Z = 1.98 (F	P = 0.05)						0.01	0.1	10 100

Arnaud et al. Autoimmunity Rev 2019

Silice et lupus


Sable (silice)

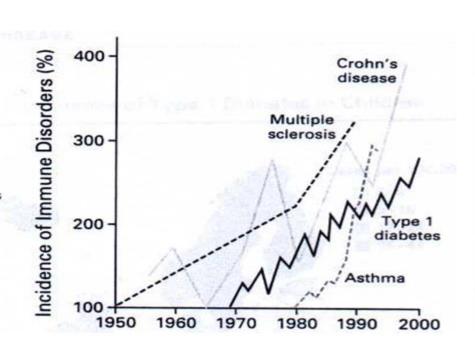
Activation lymphocyte

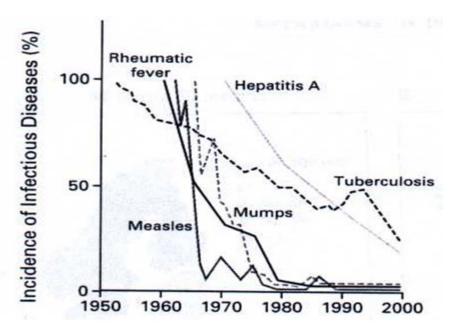
Kiyohara et al. J Rheum 2012

Silica and SLE

Exposures and activities ^a	Patients (<i>n</i> = 258) <i>n</i> (%)	Controls (<i>n</i> = 263) <i>n</i> (%)	OR (95% CI) ^b
Occupational			
Silica dust ^c	40 (16)	27 (10)	1.6 (0.90, 2.7)
Artist, working with paints, dyes or developing film	14 (5)	4 (2)	3.9 (1.3, 12.3)
Repairing or cleaning machinery or metal	15 (6)	8 (3)	1.9 (0.76, 4.7)
Stains, varnishes or paint strippers ^d	12 (5)	10 (4)	1.4 (0.54, 3.6)
Sterilizing dental equipment	6 (2)	2 (1)	3.9 (0.76, 20.0)
Mercury (≥once per week)	7 (3)	3 (1)	3.1 (0.77, 12.7)
Nail polish or applications	9 (3)	1 (0)	10.2 (1.3, 81.5)
Gasoline-taxi, bus or truck driver or job pumping gas	10 (4)	15 (6)	0.76 (0.32, 1.8)
Pesticides ^e	9 (3)	9 (3)	1.1 (0.43, 3.0)
Drawing blood, giving injections	14 (5)	18 (7)	0.97 (0.45, 2.1)
Dry cleaning	5 (2)	4 (2)	1.5 (0.38, 5.6)
Non-occupational			
Pottery or ceramic work-ever ^f	59 (23)	42 (16)	1.7 (1.1, 2.7)
Total days-never	199 (77)	221 (84)	1.0 (referent)
5–25	19 (7)	19 (7)	1.2 (0.62, 2.4)
≥26	39 (15)	22 (8)	2.2 (1.2, 3.9)
Home renovation with drywall—ever ^g	49 (19)	40 (15)	1.3 (0.83, 2.1)
Stained or leaded glass-everf	8 (3)	3 (1)	3.0 (0.76, 11.6)
Combined silica exposure ⁿ			
Any	111 (43)	88 (33)	1.6 (1.1, 2.3)
Number of exposure scenarios-0	147 (57)	175 (67)	1.0 (referent)
1	79 (31)	69 (26)	1.4 (0.97, 2.1)
2	27 (10)	17 (6)	1.9 (0.97, 3.7)
2 3	5 (2)	2 (1)	3.7 (0.67, 20.1)

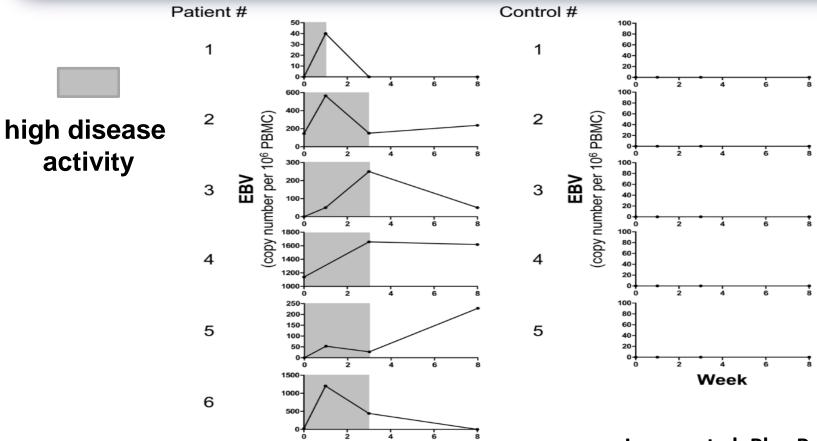
Cooper et al. Rheumatology 2010


Prospective Risk of Rheumatologic Disease Associated with Occupational Exposure in a Cohort of Male Construction Workers


Table 3	Occupational Exposure-	and Smoking-associated	Risks of Rheumatologic	c Disease: Multivariate Analysis
Table 3	occupational Exposure-	and Jinoking-associated	i Kisks of Kifeumatologi	c bisease. Multivariate Analysis

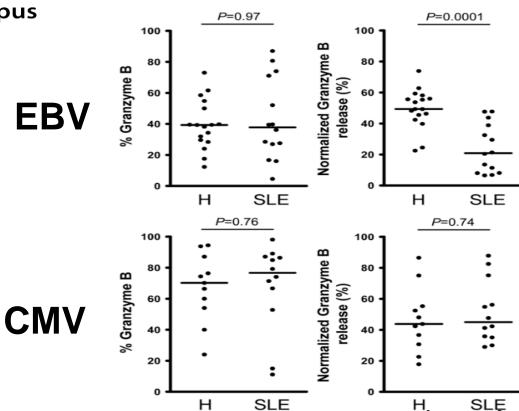
	Adjusted Risk Estimates for Rheumatologic Disease by Disease Type											
	Seropos	Seropositive RA		Seronegative RA		Any RA		SSc, DM				
Exposure	n	RR (95% CI)	n	RR (95% CI)	N	RR (95% CI)	n	RR (95% CI)				
Dust type												
Neither dust	182	1.0 (Referent)	74	1.0 (Referent)	273	1.0 (Referent)	47	1.0 (Referent)				
Silica	127	1.28 (1.02-1.61)	57	1.46 (1.03-2.07)	195	1.33 (1.11-1.60)	42	1.76 (1.16-2.68)				
Other inorganic	158	1.27 (1.02-1.57)	64	1.28 (0.92-1.79)	245	1.32 (1.11-1.57)	39	1.19 (0.78-1.82)				
Smoking												
Never	82	1.0 (Referent)	50	1.0 (Referent)	147	1.0 (Referent)	34	1.0 (Referent)				
Ever smoker	385	2.41 (1.89-3.07)	145	1.52 (1.10-2.12)	566	1.99 (1.66-2.40)	94	1.73 (1.15-2.60)				

All risk estimates adjusted for age (10-year increments), smoking status, and both of the job exposure matrix exposure categories shown (silica and other inorganic dust). CI = confidence interval; DM = dermatomyositis; RA = Rheumatoid arthritis; RR = relative risk; SLE = Systemic lupus erythematosus; SSc = Systemic sclerosis.


L'hypothèse hygiéniste

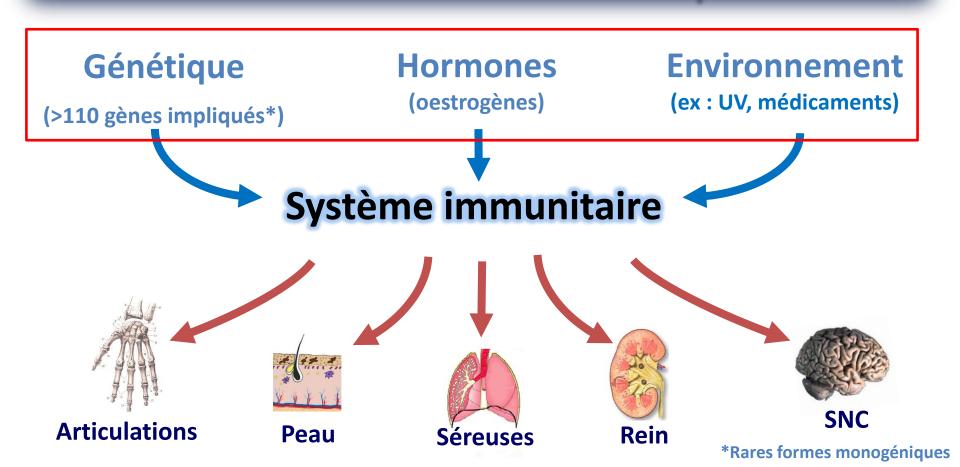
Bach JF New Engl J Med 2002

Infection à EBV et lupus



Week

Larsen et al. Plos Pathogen 2011

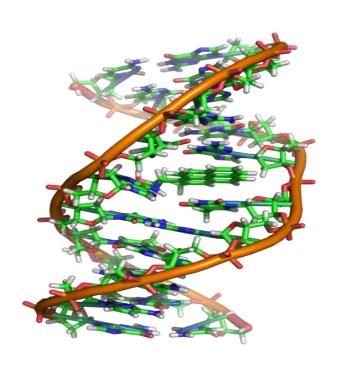

Infection à EBV et lupus

Exhausted Cytotoxic Control of Epstein-Barr Virus in Human Lupus P=0.0001

Larsen, Arnaud et al. Plos Pathogen 2011

Une interaction multifactorielle complexe

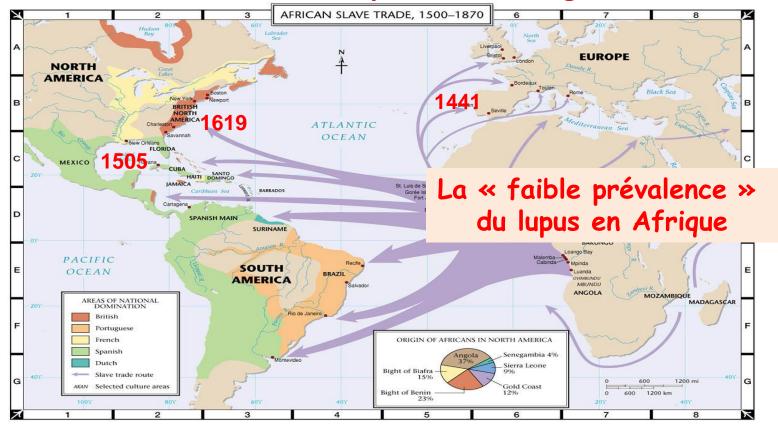
Nottingham


Total 25 / 100 000
Afro-Caribbean 207
Asian (Chinese) 93
Asian (Indian) 49
Whites 20

Leicester

Total 26 / 100 000
Asian 64
Whites 20

Birmingham

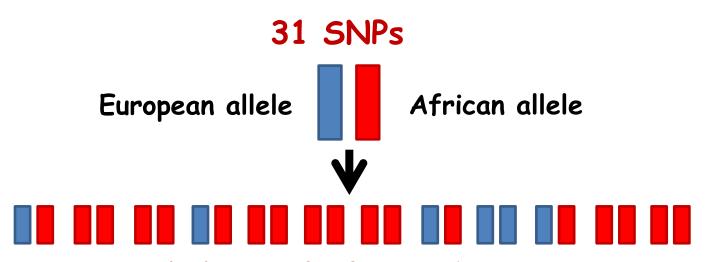

Total 28 / 100 000
Afro-Caribbean 112
Asian (Indian) 47
Whites 21

ou...

Modification du risque chez les migrants

L'absence de donnée fiable en Afrique

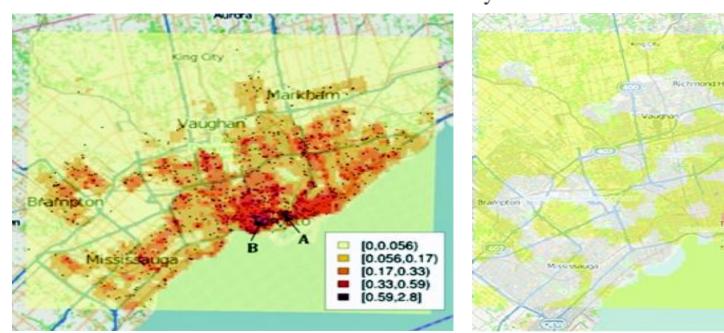
Table 1. Systemic lupus erythematosus (SLE) in populations of African ancestry*


Country, state, or city (ref.)	No. of SLE cases	Population- based	Years studied	ACR criteria	Incidence in females	Prevalence in females
West Africa						
Ghana (39)	11	No	1983-1989	1971	NA	NA
Guinea (33)	1	No	1971	None	NA	NA
Nigeria (31, 35)	3	No	?, ?	None	NA	NA
Ivory Coast (34)	9	No	1972-1983	1971	NA	NA
Gabon (36)	1	No	1968	None	NA	NA
Congo Republic (37)	3	No	1961-1962	None	NA	NA
Senegal (32, 38)	4	No	1973-1975, 1959	None	NA	NA
Africa, other						
Zimbabwe (18–20, 23, 24)	71	No	1962–1967, ?, ?, 1979–1983	None, 1971, 1982	NA	NA
South Africa (16, 17, 21, 22, 25, 27)	287	No	1984–1990, ?, ?, 1975–1987, 1969–1975, 1960–1972	None, 1971, 1982	NA	NA
Uganda (26, 28)	26	No	1968-1978, ?	1971, none	NA	NA
Kenya (29)	1	No	1961	None	NA	NA
Ethiopia (30)	4	No	1971-1978	None	NA	NA

Systemic lupus erythematosus in migrants from west Africa compared with Afro-Caribbean people in the UK

SLE has a high prevalence in Afro-Caribbean populations but has been reported to be rare in west Africa. We assessed prevalence (per 100 000) of SLE in women in an area of south London and estimated it to be 177 (95% CI 135–220) in Afro-Caribbeans, 110 (58–163) in west Africans, and 35 (26–43) in Europeans. The high prevalence of SLE in recent migrants from west Africa suggests that the disease is not rare in west Africa, and that there is a genetic basis for the high risk of SLE in people of west African descent compared with other groups.

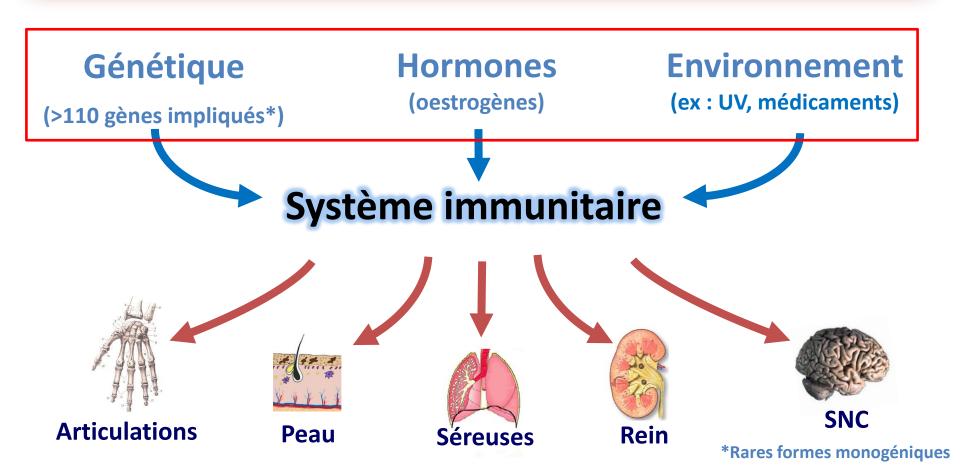
Relation of risk of systemic lupus erythematosus to west African admixture in a Caribbean population


Calculation of African admixture
Proportion of the genome of African origin

Relation of risk of systemic lupus erythematosus to west African admixture in a Caribbean population

Factor	Odds ratio associated with unit change in African admixture	95%CI
Univariate analyses: risk factors examined one at a time, with age and sex as only other variables in the model		
African admixture	32.5	2.0-517
Lived at age 12 in household lacking water supply	2.2	1.1 - 4.4
Age completed full-time education ^a	1.5	0.9 - 2.4
Multivariate analysis		
African admixture	28.4	1.7-485
Lived at age 12 in household lacking water supply	2.7	1.2-5.8
Years of education	2.0	1.1 - 3.3

Une interaction complexe


A Hot Spot for Systemic Lupus Erythematosus, but Not for Psoriatic Arthritis, Identified by Spatial Analysis Suggests an Interaction Between Ethnicity and Place of Residence

Al-Maini et al. Arthritis Rheum 2013

Une interaction multifactorielle complexe

Laurent.arnaud@chru-strasbourg.fr

Twitter: Lupusreference

Service de rhumatologie, Hôpitaux Universitaires de Strasbourg Centre National de Référence des Maladies Systémiques Autoimmunes Rares