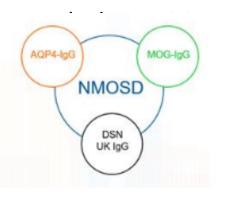
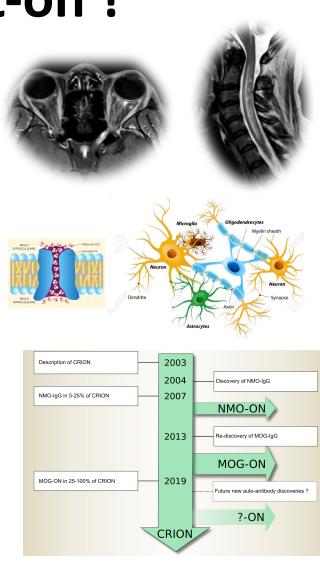
Neuromyélite optique Quels traitements fondés sur les preuves ?

Point de vue de l'ophtalmologiste Point de vue du neurologue





Fondation Ophtalmologique Adolphe de Rothschild C Papeix CHU Pitié Salpêtrière C Vignal Clermont FO Rothschild

De quoi parle --t-on ?

- NMO : description clinique : NO + myélite transverse
- **2004** : découverte des IgG anti-AQP4) ; cible : protéine AQP4 principalement exprimée au pied des astrocytes. *Critères de Wingerchuk en 2006*
- 2007 : introduction du spectre NMO
- 2013 : IgG anti-MOG , tableau NMO fréquent
- 2015 : critère

- Wingerchuk et al. Revised diagnostic criteria for neuromyelitis optica. Neurology 2006; 66 :1485-9
- Wingerchuk et al. The spectrum of neurmyelitis optica. Lancet Neurol 2007; 6:805-15
- Chen JJ, Pittock SJ, Flanagan EP, Lennon VA, Bhatti MT. Optic neuritis in the era of biomarkers. Surv Ophthalmol. 2019 Aug 16.
- Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177e89

De quoi parle -t-on ?

- 2015 : critères actuels de NMO
 - А

NMOSD Core Clinical Characteristics

Optic neuritis Acute myelitis Area postrema syndrome

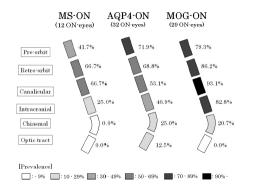
Acute brainstem syndrome

Symptomatic narcolepsy or acute diencephalic clinical syndrome*

Symptomatic cerebral syndrome*

* With corresponding NMOSD-typical brain lesions

в		AQP4-IgG Positive	AQP4-IgG Negative/Unknown
	Core Clinical Characteristics Needed	≥1	≥ 2 unique
			(one must be #1-3 below)
	Neuroimaging	No additional requirements needed	Must fulfill additional MRI
			requirements**


	**NMOSD additional MRI requirements
	(when ADP4-IgG seronegative or unknown)
1.	Acute optic neuritis
	 Brain MRI normal or non-specific white matter changes only
	 Extensive T2 hyperintense or T1 gadolinium enhancing optic nerve lesions
	 >50% of the optic nerve length or chiasmal involvement (Figure 1)
2.	Acute myelitis
	 Longitudinally extensive transverse myelitis (LETM) involving >/= 3 contiguous spinal cord segment
	 >/= 3 contiguous segments of spinal cord atrophy in patients with a history of transverse myelitis
3.	Area postrema syndrome
	 Dorsal medullary/area postrema lesions
4.	Acute brainstem syndrome
	 Periependymail brainstem lesions

- Wingerchuk et al. Revised diagnostic criteria for neuromyelitis optica. Neurology 2006; 66 :1485-9
- Wingerchuk et al. The spectrum of neurmyelitis optica. Lancet Neurol 2007; 6:805-15
- Chen JJ, Pittock SJ, Flanagan EP, Lennon VA, Bhatti MT. Optic neuritis in the era of biomarkers. Surv Ophthalmol. 2019 Aug 16.
- Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177e89

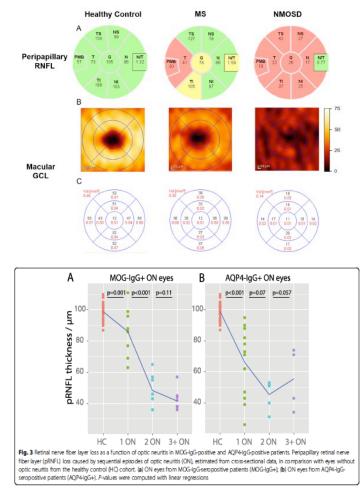
Devant une NOInfl Rôle de l'ophtalmologiste

Penser à ces 2 entités

- Lors d'une première poussée, si atypique (terrain, contexte auto immun, bilatérale, OP), sévère, mauvais récupération
- IRM atypique

- Lors des récidives ++++
- Il faudra adresser en neurologie et demander les Ac spécifiques

MOG n = 47
Femmes 24 (51%)
Caucasiens 48 (65%)
Bilatéral simultané 19 (40,4%)
ATCD NOInfl : n=9
Douleur 89,4%
Œdème papillaire 70,2%
AV < 1/10 34 %
IRM : ZHS orbite 93,3%
NO œdémateux 44,7%


IRM cérébrale normales 66%

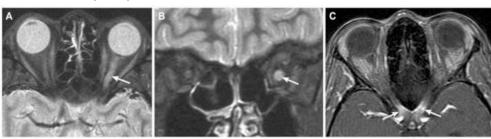
Biotti et al. Optic neuritis in patients with anti-MOG antibodies spectrum disorder: MRI and clinical features from a large multicentric cohort in FranceJ Neurol (2017) 264:2173–2175 NEMOS group J Neuroinflammation. 2016 Nov 1;13(1):282.

Ophtalmologiste et Neurologue ont un point de vue identique

 Traiter les poussées pour limiter les séquelles

 Mettre en place un traitement de fond pour éviter les poussées

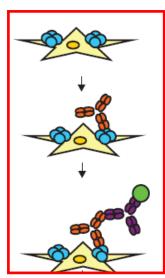
Stiebel-Kalish H, Lotan I, Brody J,Chodick G, Bialer O, Marignier R, et al. (2017) Retinal Nerve Fiber Layer May Be Better Preserved in MOG-IgG versus AQP4-IgG Optic Neuritis: ACohort Study. PLoS ONE 12(1): e0170847.

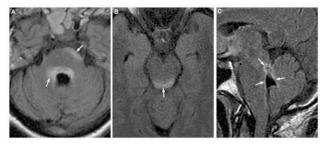

Neuromyélite optique de devic spectrum disorder

Rare : 1/100 000 Etemadifar 2015

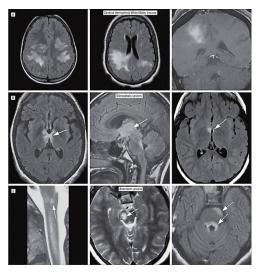
Pronostic sévère

Wingerchuk, 1999, Neurology


Névrite optique


Myélite transverse étendue

AQP4

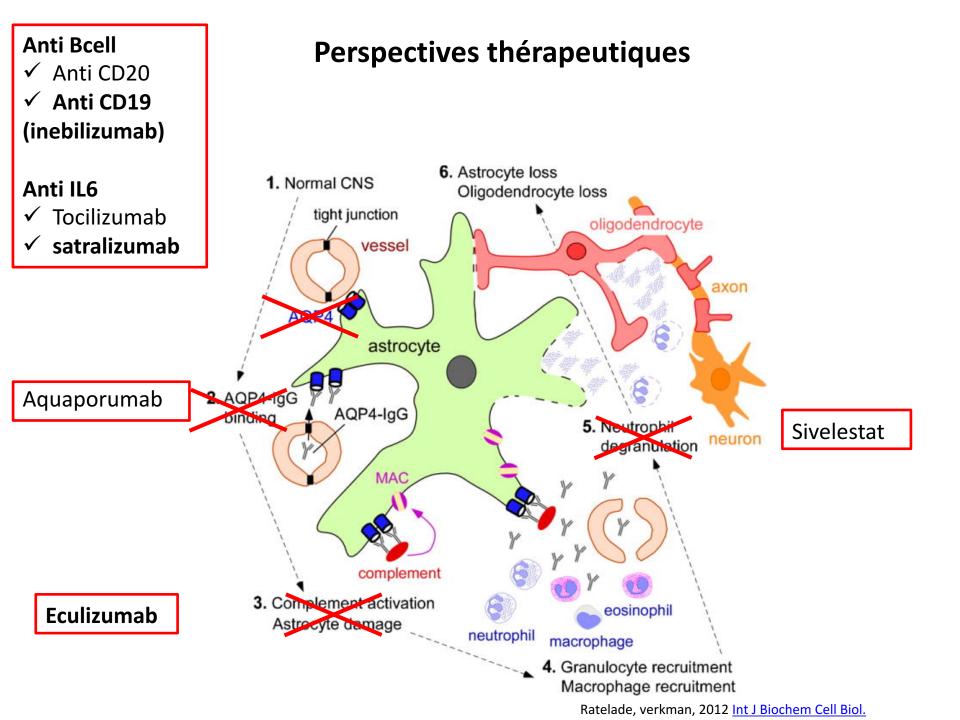


Atteinte du tronc cérébrale

Atteinte encéphalique

Traitement de fond

- Azathioprine (Mandler, 1998)
- PLEX (Weinschenker, 1999)
- Immunosuppresseurs (Papeix, 2003)
- Rituximab (Cree, 2005)
- MFM (Jacob, 2009)
- Tocilizumab (Araki, 2014)


Comparaison du taux annualisé de poussées

pré et sous traitement chez les patients NMO

Table 2. Treatment-Associated Annualized Relapse Rates (ARRs) and Hazard Risks Relative to Rituximab

Medication	Pretreatment ARR	Posttreatment ARR	Change From Pretreatment to Posttreatment, %	Hazard Risk Relative to Rituximab (95% CI)	<i>P</i> Value
Azathioprine	2.26	0.63	72.1	2.12 (1.12- 4.01)	.02
Mycophenolate mofetil					
Total	2.61	0.33	87.4	1.48 (0.75-2.93)	.26
Optimal dosing	2.55	0.25	90.2		
Rituximab					
Total	2.89	0.33	88.6	1 [Reference]	
Optimal dosing	3.25	0.20	93.9		
Switch treatments	1.03	0.14	86.4		.054

JAMA Neurol. 2014;71(3):324-330.

RéSumé des principaux résultats

	PREVENT	N-MOmentum	Sakura- Sky	Sakura-star
	Eculizumab	Inebilizumab	Sartralizumab	Sartralizumab
	Anti- C5	Anti-CD19	Anti –IL6R	Anti –IL6R
Sujets	AQP4+	AQP4 + et -	AQP4 + et -	AQP4 + et -
	143	(212+18)=230	(55+28)=83	(64+31)=95
Bras placebo	Déjà sous IS	PBo seul	Déjà sous IS	PBo seul

Ce que nous disent les résultats de ces 4 essais

- Les trois traitements sont très efficaces sur la prévention des poussées
- Meilleure efficacité chez AQP4 +
- Analyses de sous groupes Eculizumab et inebilizumab
 - Efficacité sur la sévérité des poussées et une meilleure récupération

Traitement des poussées

O'Riordan et al. 1996. JNNP.

Mandler et al, 1998, Ann Neurol..

- Corticoïdes : 5 à 10 g en IVL pas de relais PO
- Plasmaphérèse : 7 EP
 - Possibilité de mixer Solumédrol et EP
 - Ac monoclonal 24 h après EP
 - Facteur de recupération complète :
 - Utilisation en 1ère ligne
 - Délai de traitement court
 - AQP4 +
 - Atteinte mono focale

ARTICLE OPEN ACCESS CLASS OF EVIDENCE

Apheresis therapies for NMOSD attacks

A retrospective study of 207 therapeutic interventions

Ingo Nieter, MD, Anna Gahlen, MD, Nadja Bortsow, MD, Katrin Fischer, MD, Klaus-Dieter Wernecke, PhD, Krestin Heilley, MD, Rorence Pache, MD, Niemers Ruperckt, MD, Joachin Hawk, MD, Tana Kumpfel MD, Orhan Akas, MD, Hans-Peter Hartung, MD, Martus Ringelstein, MD, Christian Geis, MD, Christoph Kleinzchnitz, MD, Adim Berthele, MD, Bernhard Hemmer, MD, Klemens Angstwurm, MD, Jan Patrik Stellmann, MD, Sirom Schuster, MD, Martin Sangel, MD, Forlan Lauda, MD, Hayrettin Tumari, MD, Christoph Mayer, MD, Marina Krunnbiolz, MD, Lena Zettner, MD, Ulf Zemann, MD, Raffuliker, MD, Matthias Schwab, MD, Martin Marrinak, MD, Ghorit Ther Begl, MD, Ulrich Hostadward ND, MD, (Indire Hubau, KD, MD, Ulev K. Zettl, MD, Jürgen Faiss, MD, Brighter Wildemann, MD, Fridemann Pad, MD, Sven Jarius, MD, and Corima Trebst, MD, on behalf on NEMOS (Neuropelits Optica Study Group)

Neurol Neuroimmunol Neuroinflamm 2018;5:e504. doi:10.1212/NXL0000000000000504

Abstract

Objective

To analyze whether 1 of the 2 apheresis techniques, therapeute plasma exchange (PE) or immunoxdsorption (IA), is superior in treating neuromyelitis optica spectrum disorder (NMOSD) attacks and to identify predictive factors for complete remission (CR).

Methods

This retrospective cohost study was based on the registry of the German Neuromystiks Optics Budy Group, a nationskik network cataliholish in 2008. In creating alpitests with meanrophiles including dangooid according to the 2008 Wingshead, esterios or with supportin-4 (AQP4-ab)-unibedy-sexpositive NMOSD treated at 6 regional hospitals and 16 tertiary reform a centers until March 2013. Besides docuptive data analysis of patient and attack characteristics, generalized estimation equation (GEE) analyses were applied to compare generation of the aphrenis techniques. A GEE model was generated to assess relations of another support of the effectives of the 2 aphrenis techniques. A GEE model was generated to assess relations of some

Results

Two handed and even attack in 105 patients (5% AQP+4a-anthody serpositiv) were treated with at least 1 aphrensis theory. Nother F for 1 Awa proven surgiver in the theory of MOXD0 tatacks. Uves only Asidova theory aphrensis theory, Shong predictors for C awere the use of aphrensis theory as fixed as the art provide the start provide the start provide the transformation of the transformation of the start provide the start p

Conclusions

Our findings suggest early use of an apheresis therapy in NMOSD attacks, particularly in AQP4-ab-seropositive patients. No superiority was shown for one of the 2 apheresis techniques.

Classification of evidence

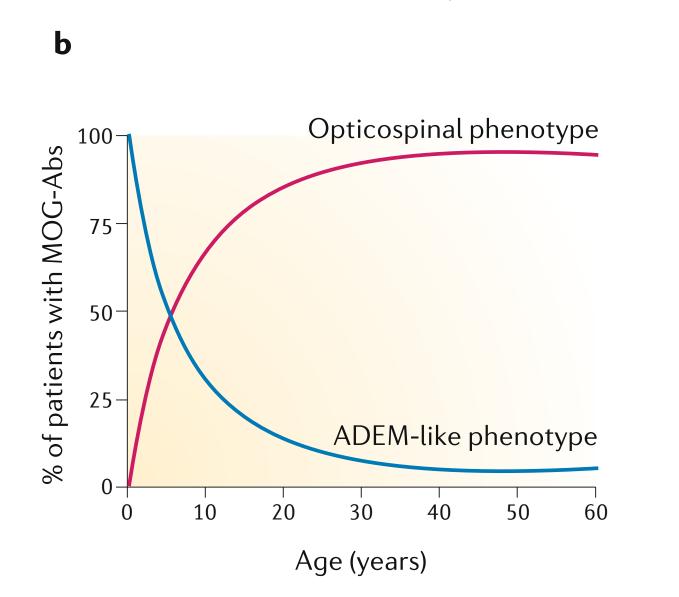
This study provides Class IV evidence that for patients with NMOSD, neither PE nor IA is superior in the treatment of attacks.

Correspondence Dr. Kleiter ingo.kleiter@rub.de

RELATED ARTICLE

Editorial

Plasmapheresis for acute attacks in neuromyelitis optica spectrum disorders Page e510


MORE ONLINE → Class of Evidence

Criteria for rating therapeutic and diagnostic studies NPub.org/coe

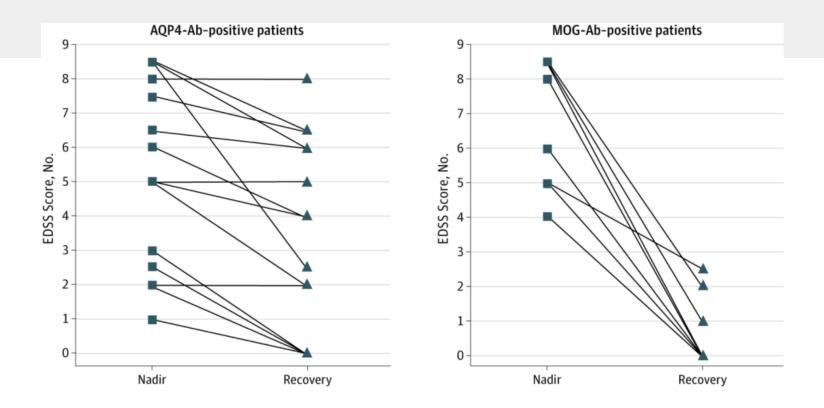
Les interrogations qui persistent

- les effets à long terme
 - efficacité
 - Tolérance
- Durée du traitement
- Identification de facteurs prédictifs de poussée pour escalade?
 - NLF and GFAP
 - Dosage des CD19
- Doit on le proposer aux AQP4 négatifs ? Anti MOG ?

Anti MOG Reindl, Nature Reviews Neurology 2019

Etude comparative des NMOSD AQP4+ et anti MOG +

JAMA Neurol. 2014;71(3):276-283. doi:10.1001/jamaneurol.2013.5857


Table 1. Comparison of Clinical Features in Patients With MOG-Ab-Positive and AQP4-Ab-Positive NMO/NMOSD

Feature	MOG-Ab Positive (n = 9)	AQP4-Ab Positive (n = 20)	P Value
Follow-up, median (range), mo	18.00 (2.2-38.5)	20.47 (5.0-36.6)	NS
Female, %	44	90	.02
White, %	78	60	NS
Age at onset, mean (SD), y	32.29 (17.1)	44.86 (14.8)	.05
Coexisting autoimmunity, No. (%)	1 (11)	9 (45)	NS
Onset episode, No. (%)			
ON only	0 (0)	6 (30)	NS
TM only	3 (33)	12 (60)	NS
ON+TM	4 (44)	0 (0)	.005
Brain/brainstem+TM	2 (22)	0 (0)	NS
Brain only	0 (0)	2 (10)	NS
Nadir EDSS score, median (range)	6.0 (4-8.5)	5.5 (1-8.5)	NS
EDSS score at best recovery, median (range)	0 (0-2.5)	4.0 (0-8)	.01
Patients with TM at onset left motor disabled, No. (%)	0 (0)	7 (58)	.007
Patients with ON at onset left visually disabled, No. (%)	0 (0)	2 (33)	NS
Subsequent relapse, No. (%)	0 (0)	8 (40)	.03

Abbreviations: Ab, antibody; AQP4, aquaporin-4; EDSS, Expanded Disability Status Scale; MOG, myelin-oligodendrocyte glycoprotein; NMO, neuromyelitis optica; NS, not significant; ON, optic neuritis; SD, spectrum disorder; TM, transverse myelitis.

Etude comparative des NMOSD AQP4+ et anti MOG +

JAMA Neurol. 2014;71(3):276-283. doi:10.1001/jamaneurol.2013.5857

Figure Legend:

Expanded Disability Status Scale (EDSS) Scores at Nadir and Recovery of the Onset EpisodePatients with aquarorin-4 antibody (AQP4-Ab)-positive neuromyelitis optica/neuromyelitis optica spectrum disorder often showed poor recovery from the acute episode (left), with little change in EDSS scores, whereas recovery in myelin-oligodendrocyte glycoprotein antibody (MOG-Ab)-positive patients was often dramatic (right). The median change in EDSS scores between episode nadir and recovery was significantly higher in MOG-Ab-positive patients compared with AOP4-Ab positive patients (6 vs 2; P<.001). Date of download: 10/21/2016

Association. All rights reserved.

Histologie

	MOG	AQP4
Démyélinisation	primaire bien délimitée Macrophages avec débris de myéline	secondaire
Astrocytes	Préservation relative	Perte +++
Infiltrat inflammatoire	lymphocytes T , qq B Péri-vasculaires	PNN et PNEo
Dépôts de complément Avec complexe terminal	oui	Oui + dépôt d'IgG
Pré-OGD	Préservation des pré-OGD immature (n'exprime pas la MOG)	

RESEARCH

Open Access

Evaluation of treatment response in adults with relapsing MOG-Ab-associated disease

Alvaro Cobo-Calvo^{1,2,18}, María Sepúlveda³, Fabien Rollot^{4,5}, Thais Armangué^{3,6}, Anne Ruiz², Elisabeth Maillart⁷, Caroline Papeix⁷, Bertrand Audoin⁸, Helene Zephir⁹, Damien Biotti¹⁰, Jonathan Ciron¹⁰, Francoise Durand-Dubief¹, Nicolas Collongues¹¹, Xavier Ayrignac¹², Pierre Labauge¹², Eric Thouvenot¹³, Bertrand Bourre¹⁴, Alexis Montcuquet¹⁵, Mikael Cohen¹⁶, Romain Deschamps¹⁷, Nuria Solà-Valls³, Sara Llufriu³, Jerome De Seze¹¹, Yolanda Blanco³, Sandra Vukusic^{1,18}, Albert Saiz³ and Romain Marignier^{1,2,18*}

JNeuroinflammation, 2019

165 patients adultes MOG +

- 59 non traités et 66 traités

Table 3 Evaluation of pre-treatment and on-treatment annualised relapse ratio and EDSS according to treatment group

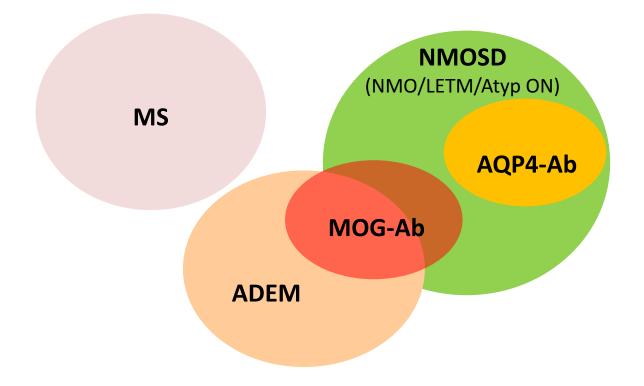
Treatr group		Treated ≥ 6 months at any time, <i>n</i> (%)	Eligible for analysis, n (%)	FU before treatment (years), median (range)	FU under treatment (years), median (range)	ARR pre/ on- treatment, mean (SD)	Freedom of relapse on- treatment n (%)	p value ARR pre/ on- treatment	EDSS pre/ end of treatment, mean (SD)	Freedom of EDSS progression, n (%)	<i>p</i> value EDSS pre/end- treatment
Type I IS	AZT	19/66 (28.8)	11/19 (57.9)	2.4 (0.6–7.6)	2.1 (0.5–12.6)	1.05 (1.20)/ 0.43 (0.79)	6 (54.5)	0.041	1.86 (1.30)/ 1.68 (1.19)	11 (100)	0.157
	MMF	12/66 (18.2)	11/12 (91.7)	1.7 (0.5–46.4)	1.7 (0.5–6.8)	1.20 (1.11)/ 0.23 (0.60)	8 (12.7)	0.033	2.72 (1.69)/ 2.64 (1.76)	11 (100)	0.317
	RTX	30/66 (45.5)	26/30 (86.7)	3.3 (0.5–18.33)	1.7 (0.5–4.9)	1.08 (0.98)/ 0.43 (0.89)	19 (73.1)	0.012	3.11 (1.83)/ 2.58 (1.90)	23 (88.5)	0.096
Туре	II IS	6/66 (9.1)	5/6 (83.3)	5.2 (2.9–10.3)	2.0 (0.6–3.7)	0.64 (0.45) 0.65 (0.69)	2 (40)	0.893	3.8 (1.52)/ 4.0 (1.45)	1 (20.0)	0.317
Туре	III IS	8/66 (12.1)	3/8 (37.5)	_	-	_	_	_	-	_	_
^a MS-D	MD	10/66 66	9/10 (90)	1.95 (0.5–20.1)	3.7 (1.0–14.7)	1.13 (1.38)/ 0.49 (0.41)	2 (22.2)	0.374	2.5 (0.90)/ 3.17 (2.15)	7 (77.7)	0.188

*Patients treated with type III IS (corticosteroids, n = 2 and intravenous immunoglobulins, n = 1) were not eligible for analysis due to treated number ≤ 5 ^aAmong the 9 patients with MS-DMD eligible for the analysis, 2 patients were treated with natalizumab, 1 with glatiramer acetate and 6 with interferon *FU* follow-up, *ARR* annualised relapse ratio, *SD* standard deviation, *EDSS* Expanded Disability Status Scale, *IS* immunosuppressants, *MS-DMD* multiple sclerosis disease-modifying drugs, *AZT* azathioprine, *MMF* mycophenolate mophetil, *RTX* rituximab

- Etude rétrospective de 121 patients (13 pays): 30 enfants / 91 adultes
 - 20 traités dès P1: 30% qui rechutent (médiane 2 mois)
 - 101 traités à partir de P2 ou plus tard:

Rechute sous anti-CD20: CD19 < 1% ds 79%

	n	Diminution du taux de poussée	Survie sans poussée à 2 ans
n	101	37% 95%CI:19-52%, p< 0.001	
En 1 ^{ere} ligne	47	63% 95%Cl:35-79%, p= 0.001	55%
En 2° ou 3° ligne (après AZA/MMF)	54	26% 95%Cl:2-44%, p = 0,038	18%


Efficacité des IVIG chez les NMO anti – MOG

IgIV induction à 2g/KG puis 1 g/kg

		Nombre de patients	TAP avant	TAP après
Hachachen et <i>al</i> . 2018	MOG	16	2,6	0,51
Ramanathan et <i>al.</i> 2017	MOG	7	2	0
Jarius et <i>al.</i> 2016	MOG	1		0
Viwanathan et <i>al.</i> 2015	AQP4	6	0,75	1,5
Karthikeayan P734 Ectrims 2019	MOG	3	2,02	0,13

Cout ? Durée?

Conclusion

