
FLEXOLMO:
Open Language Models for Flexible Data Use

Weijia Shi∗aw Akshita Bhagia∗a Kevin Farhat∗a Niklas Muennighoffas Pete Walsha

Jacob Morrisonaw Dustin Schwenka Shayne Longprem Jake Poznanskia

Allyson Ettingera Daogao Liuw Margaret Liw Dirk Groenevelda Mike Lewisw

Wen-tau Yihw Luca Soldainia Kyle Loa Noah A. Smitha Luke Zettlemoyerw

Pang Wei Kohaw Hannaneh Hajishirziaw Ali Farhadiaw Sewon Min∗ab

aAllen Institute for AI wUniversity of Washington bUniversity of California, Berkeley
sStanford University mMIT

swj0419@uw.edu akshitab@allenai.org sewonm@berkeley.edu

Model hf.co/allenai/FlexOlmo-7x7B-1T

Code github.com/allenai/FlexOlmo

Blog allenai.org/blog/flexolmo

Abstract

We introduce FLEXOLMO, a new class of language models (LMs) that supports
(1) distributed training without data sharing, where different model parameters
are independently trained on closed datasets, and (2) data-flexible inference, where
these parameters along with their associated data can be flexibly included or
excluded from model inferences with no further training. FLEXOLMO employs a
mixture-of-experts (MoE) architecture where each expert is trained independently
on closed datasets and later integrated through a new domain-informed routing
without any joint training. FLEXOLMO is trained on FLEXMIX, a corpus we
curate comprising publicly available datasets alongside seven domain-specific sets,
representing realistic approximations of closed sets. We evaluate models with up
to 37 billion parameters (20 billion active) on 31 diverse downstream tasks. We
show that a general expert trained on public data can be effectively combined with
independently trained experts from other data owners, leading to an average 41%
relative improvement while allowing users to opt out of certain data based on data
licensing or permission requirements. Our approach also outperforms prior model
merging methods by 10.1% on average and surpasses the standard MoE trained
without data restrictions using the same training FLOPs. Altogether, this research
presents a solution for both data owners and researchers in regulated industries with
sensitive or protected data. FLEXOLMO enables benefiting from closed data while
respecting data owners’ preferences by keeping their data local and supporting
fine-grained control of data access during inference.

1 Introduction

Pretraining language models (LMs) typically requires centralized access to all data during training
and does not have any mechanism to track or control the influence of specific data points on model
parameters. Model developers must therefore make a one-time decision on which data sources to

*Core contributors.

Preprint. Under review.

https://huggingface.co/allenai/FlexOlmo-7x7B-1T
https://github.com/allenai/FlexOlmo
https://allenai.org/blog/flexolmo

FlexOlmo

MoE Module

Output

Attention

...

...

Input

+

FFN FFN

Model 2

Attention

+
FFN

Model n
...

Public Model

Attention

FFN

FFN FFN

Attention

+
FFN

Model n

FFN FFN

Attention

+
FFN

Model 1

FFN FFN

Attention

+
FFN

Router
Router

Router

Router

Figure 1: An overview of FLEXOLMO. Data owners can contribute without sharing the data by
training their own expert modules (FFNs and router embeddings) with a shared public model as
an anchor point. At inference, these modules are integrated into a MoE model via a novel router
embedding concatenation. This design enables flexible inclusion or exclusion of experts and strict
opt-out guarantees, e.g., Github data can be excluded at no cost (blurred) during inference.

include, with limited ability to remove the effect of certain data after training [1, 2, 3]. Moreover,
this centralized approach precludes the use of closed data that data owners cannot share with model
developers for confidentiality, regulatory, or other reasons. Although solutions have been proposed
to allow training without sharing the data, such as federated learning [4, 5], their practical adoption
remains limited due to performance degradation and the high cost of synchronized training [6, 7].

We introduce FLEXOLMO, a new class of LMs that enables distributed training on locally maintained
datasets while enabling flexible opt-in and opt-out during inference. FLEXOLMO (Figure 1) employs
a mixture-of-experts (MoE) architecture [8, 9], where each expert is trained independently on closed
datasets and later integrated into an MoE. This design allows data owners to contribute asynchronously
without sharing their data, while also enabling continual updates with new data and providing strong
guarantees for data opt-out during inference. Our approach can be seen as an instance of model
merging [10], which merges different models into a unified one [11, 12]. However, our model is
designed to address the unique challenges in our problem setup—combining models pre-trained
on completely disjoint datasets with different distributions—which makes prior model merging
techniques like ensembling output probabilities [11] or merging model weights [12] suboptimal.

A key challenge in training FLEXOLMO is ensuring the merging of independently trained experts
without joint training. We introduce a training algorithm where each data owner independently trains
an expert module using the frozen public model as a shared anchor (Figure 1). This approach teaches
independently trained experts to coordinate with the same public model and, by extension, with each
other. Additionally, the router, a module that determines which experts process each token, typically
requires joint training. We address this by assigning each expert a router embedding, initialized from
its domain embedding using an off-the-shelf embedder [13] and further finetuned on its corresponding
data during individual expert training. These embeddings are then concatenated to form the router
during merging, removing the need for joint training.

To validate FLEXOLMO, we curate a data mixture called FLEXMIX, which includes a public training
set along with seven domain-specific sets (e.g., news, educational text, and Reddit). These domains
are chosen to simulate scenarios where high-quality data that can benefit LM training is not publicly
available.

We train FLEXOLMO first on public data, then extend it by merging expert modules trained inde-
pendently on our simulated closed sets. While continued pretraining on these sets improves some
downstream tasks, it suffers from catastrophic forgetting and inconsistent performance. In contrast,
FLEXOLMO improves upon the public model by 41% and also outperforms prior merging techniques
such as model soup and ensembling by 10.1% across 31 downstream tasks. We observe the largest
improvements on tasks related to closed sets. Notably, even on benchmarks where no individual

2

closed set improved performance over the public model, combining multiple experts yielded signifi-
cant gains, demonstrating synergies among independently trained modules. Our qualitative analysis
demonstrates that sparse expert activation across layers through the MoE architecture is key to
these gains. Our qualitative analysis shows that the MoE architecture’s ability to selectively activate
different experts per layer per token is crucial to these gains by combining the strengths of each
specialized expert.

We hope our work enables research with a broader range of closed datasets for LM training, particu-
larly for organizations interested in collaborating on scientific research through the new features that
FlexOlmo provides.

2 Background & Related Work

2.1 Background: Data Restrictions

The standard LM training practice requires model developers to aggregate all data centrally and make
a one-time decision on which data source to include and exclude. But many real-world data come
with sharing and usage restrictions and necessitates (1) model training without data pooling and (2)
model inference that can flexibly select different data sources based on use case and access privileges.

Data Sharing Constraints Organizations in regulated industries require LMs that can leverage
their closed datasets while maintaining strict data privacy and access controls. Healthcare institutions,
financial firms, and other entities possess valuable domain-specific data but cannot share it externally
due to HIPAA, GDPR [14, 15], data sovereignty laws [16], and intellectual property (IP) protections.
These organizations need training paradigms that enable AI improvement on their sensitive data while
ensuring such sensitive data never leaves certain environments and can be removed from the model
after training, e.g., when data usage rights expire. In such settings, modular training approaches,
where individual experts are trained independently and asynchronously on locally maintained data,
are essential.

Data Use Constraints The inclusion of certain data depends on specific use cases and end users.
Privileged access: User-facing applications often involve closed data restricted to specific, authorized
users [17]. For example, GitHub Copilot must tailor code suggestions to reflect internal repositories
based on an engineer’s role and access rights [18]. Copyright and data consent: Legal and ethical
considerations on training data for AI are evolving and uncertain [19, 20, 21, 22, 23, 24, 20], and
often depend on the data’s intended use, e.g., licenses may prohibit commercial use or limit certain
query types [25, 26]. Model control: Training data often include sensitive content [27, 28, 29] which
may be beneficial in certain contexts but harmful in others. For instance, one may want to activate the
use of toxic content for toxicity classification in a research setting, but deactivate it in applications
presented to a general audience.

These real-world scenarios demonstrate the value of a new class of LM and accompanying training
methods that address restrictions in data sharing and usage.

2.2 Related Work

Federated Learning Federated Learning (FL) trains a single model over distributed datasets by
synchronously aggregating client updates [5, 4, 30]. FL methods range from classical approaches that
iteratively aggregate parameter updates from local clients [5, 31] to parameter-efficient techniques
which have been adapted for LMs [32, 33, 34]. FL can guarantee data privacy using techniques
such as homomorphic encryption [35] and differential privacy [36]. However, FL has seen limited
adoption in LM training due to the high cost of synchronization and performance degradation [6, 7],
and remains susceptible to privacy attacks due to inter-client communication [37, 38].

Our approach also avoids data sharing but differs fundamentally by supporting independent, asyn-
chronous training without costly inter-client communication, and allowing real-time opt-in and
opt-out. Like FL, our model allows data owners to optionally apply DP training locally for privacy
guarantees. Because DP is orthogonal to our architecture, each contributor can independently choose
whether to apply it, providing flexibility without compromising the overall design.

Model Merging Our work builds on recent efforts [39, 10] that advocate for developing machine
learning models like open-source softwares, where sub-parts of the model can be trained independently

3

and subsequently merged into unified systems. This can be achieved through various methods,
including weight merging, output ensembling, and expert routing. Model soup—merging model
weights trained on different datasets from the same initialization—can boost performance [40, 12, 41],
especially with weighted combinations [42, 43, 44, 45, 46, 47]. Weighted output ensembling (e.g.,
BTM [48, 49]) is also effective when models are trained on distinct datasets initialized from the same
seed model. These approaches can be applied to our setting, where each expert is independently
trained starting from the same public model then merged into a unified one. Our experiments (§5)
show that these methods are less effective, primarily because they lack learned connections between
different modules, which constrains the expressivity of the resulting models.

An alternative line of work focuses on expert routing methods, such as BTX [50] and its extensions [51,
52], which merge dense, independently trained models into a mixture-of-experts (MoE) framework.
We draw inspiration from this work, as we also integrate independently trained models into a MoE.
However, these methods require joint training on a union of all datasets used in expert training after
merging. By contrast, FLEXOLMO removes the need for joint data access to enable training on locally
maintained datasets.

Related efforts in parameter-efficient training have explored merging LoRA adapter weights trained
on separate datasets [53, 54, 55, 56], particularly to reduce communication overhead in collaborative
settings and support opt-out use cases [57]. Unlike these methods, which focus on merging lightweight
adapters, our approach merges full expert models into a standard MoE architecture.

Mixture-of-Experts (MoE) MoE models [8, 9, 58], consisting of many small feedforward networks
called experts, have gained popularity for their training and inference efficiency. Our work leverages
the MoE architecture; however, our motivation and training method are fundamentally different as
our primarily goal is to support modularity rather than efficiency.

3 FLEXOLMO: LMs with Flexible Data Use

3.1 Problem Setup

Let Mpub be a model trained on a publicly available dataset Dpub, and D = {D1, D2, ..., Dn}
represent a collection of locally maintained datasets with separate owners. Our objective is a single
model Mfinal, which is constructed via composing Mpub and a set of modules {M1,M2, . . . ,Mn},
where each Mi is independently trained by the owner of Di, who also has access to Mpub.

This model satisfies two requirements: (1) training Mfinal does not require anyone to have joint access
to the full dataset collection D, as each Mi is trained independently by the owner of dataset Di; (2)
removing any module Mi from Mfinal guarantees complete removal of its associated data Di.

The key modeling challenges are: (1) to develop an algorithm that creates Mi using Di and Mpub,
and (2) to design the merging algorithm that combines Mpub,M1,M2, . . . ,Mn into Mfinal.

3.2 Model Architecture

FLEXOLMO follows the standard MoE architecture: it replaces the feedforward network (FFN) in
each transformer block with a router and n small FFNs called expert modules {Mpub,M1, ...,Mn}.
Note that we omit the layer index for each expert in our notation for simplicity. Given a processed
input token embedding x ∈ Rh, the MoE module computes output representation y:

y =
∑

i∈Topk(r(x))

softmax(r(x)i)Mi(x),

where the router function r computes the expert probabilities from x. Unlike standard MoEs where
experts are trained jointly, our experts are trained asynchronously on distinct datasets {D1, ..., Dn}.

3.3 Training Algorithm

Standard MoEs train all experts and the router jointly on all data. In contrast, FLEXOLMO trains
experts independently by teaching them to coordinate (§3.3.1) and merges them at inference using a
domain-informed router (§3.3.2). Optional router tuning can further improve performance (§3.3.3).

4

3.3.1 Training Experts to Coordinate

A straightforward way to train each expert would be to directly continue to train each expert Mi on
its own data Di [48]. We found that this method causes the experts to diverge too much from one
another and from the original seed model, which makes merging after isolated training difficult.

To prevent such divergence, we train experts independently while teaching them to coordinate
(Figure 1). We use Mpub as an anchor that teaches experts to coordinate with Mpub and, by extension,
with each other. Specifically, during training, for dataset Di, we construct a MoE model with two
expert modules—both initialized from the same FFNs from Mpub. During training, we freeze Mpub
expert and the shared attention layer, while the other expert (Mi) is trained on Di. As each data
owner updates only their own FFNs while keeping all other parameters (those inherited from Mpub
such as attention layer) frozen, the learned FFNs are designed to naturally coordinate with each other
later during merging at inference time. Importantly, with this approach, a router is learned so that
each expert can be integrated into a MoE architecture without additional training (details in §3.3.2).

3.3.2 Domain-Informed Router

The router plays a critical role in MoE: the router function r maps an input vector x to a distribution
over expert modules, including the public model as one of the experts:

r(x) = Wrx, Wr ∈ R(n+1)×h

In typical MoEs, Wr is trained end-to-end alongside all expert modules, using access to the full
training dataset. Instead, we decompose Wr into individual expert-specific router embeddings, where
each row ri represents the router embedding for expert Mi, learned only from Di:

Wr =

rpub
r1
...
rn

 , where ri =
1

|Si|
∑

dk∈Si

E(dk) ∈ Rh, Si ⊂ Di.

These router embeddings can be initialized by averaging domain-specific embeddings of samples
from each Di, obtained by encoding subsets of data using an off-the-shelf embedder E [59] that
maps a document into an h-dimensional vector. This method is motivated by prior model merging
work that leverages domain embeddings for routing [41, 60, 61, 62, 63, 64].

During coordinated training of experts (§3.3.1), we learn the router embeddings in pairs: [rpub, ri] The
public embedding rpub remains frozen across all experts, while ri is finetuned separately alongside
the parameters of Mi. At inference time, merging the expert embeddings into the complete router
matrix Wr directly integrates all expert modules into one unified MoE. Furthermore, experts can be
flexibly added or removed by simply adding or removing their corresponding router embedding.

Adding a Bias Term Unlike standard router learning that is learned among all experts jointly,
coordinated training of experts only learns pairwise routing decisions between one expert and the
public model. This means the model never directly compares experts M1 and M2 during training,
potentially limiting generalization during inference. To alleviate this issue, we add a negative bias
term bi for each independent trained expert {M1,M2, . . . ,Mn}. We select expert Mi when:

ri · x+ bi > rpub · x ∀i ∈ {1, 2, ..., n}
Otherwise default to Mpub. This helps the later merging process, where each expert competes not just
with the public model but with all other experts. Further details and justifications are provided in §D.

3.3.3 Optional Router Training on Proxy Data

With our proposed model design, expert modules can be merged without any additional training.
However, if data owners are willing to identify proxy samples within the public dataset Mpub that
resemble their closed data, we can optionally perform a lightweight router tuning step after merging,
using only public data from Dpub. Specifically, we assume each data owner selects a small proxy set
D̂i ⊆ Dpub, where |D̂i| ≪ 0.01× |Di|, chosen to approximate the distribution of their closed dataset
Di. While D̂i is too small to train expert modules, it still provides useful signals for improving router
quality. To construct D̂i, we train a binary classifier to distinguish Di from Dpub and select public
samples with the highest predicted likelihood of belonging to Di. After merging, we tune the router
embeddings r1, · · · , rn, rpub on the combined set D̂1, · · · , D̂n, and Dpub, sampled uniformly.

5

4 Experimental Setup

4.1 Training Data: FLEXMIX

Our corpus comprises a single Public Mix and seven closed sets—either real or simulated—which
are designed to be disjoint from each other and from the Public Mix. Figure 5 in §B provides the
statistics.

• Public Mix represents general web text based on Common Crawl (CC) 1. Specifically, we took the
Baseline version of DCLM [65], excluding news and creative writing content (described below).
This represents a public dataset that can be used without restrictions.

• News includes news content from DCLM-Baseline, obtained by applying the classifier from [66]
and selecting documents classified as News Articles. While included in CC when downloaded,
many of the original sources are subject to closed access [20].

• Creative Writing includes creative content from DCLM-Baseline, obtained by applying the
classifier from [66] and selecting documents classified as Creative Writing.

• Code includes code repositories from Starcoder [67, 68] with additional quality filtering as in [69].
• Academic includes open-access academic papers obtained from [70]; these are papers from [71,

72] but re-processed using olmOCR [70] for cleaner plain text.
• Educational Text includes educational text from digitized PDFs, converted to plain text using

olmOCR [70].
• Math includes math-relevant content, including web pages about or using math and math problem

sets, obtained by combining Dolmino Math Mix [69] and FineMath4+ [73].
• Reddit contains posts and comments originally sourced and released by Dolma [74], further

filtered and processed to improve quality (details in Appendix B). As of this writing, this Reddit
data is no longer unrestrictedly downloadable due to Reddit’s 2023 policy change.2

These seven sets are designed to represent datasets with at least one of the following characteristics:
(1) historically closed and not publicly available; (2) previously publicly available but now closed; or
(3) domains with scarce high-quality public data.

4.2 Evaluation

We evaluate our models and baselines on a large and diverse collection of well-established benchmarks,
consisting of 31 tasks across 10 categories, broadly grouped into (1) general-purpose LM benchmarks
and (2) domain-specific evaluations. More details are provided in §C.

General-purpose Evaluation We report results on (1) MC9, nine multiple-choice datasets in-
cluding ARC-Easy [75], ARC-Challenge [75], BoolQ [76], CSQA [77], HellaSwag [78], Open-
BookQA [79], PIQA [80], SocialIQa [81], and WinoGrande [82], (2) GEN5, five generative tasks
including CoQA [83], SQuAD [84], Natural Questions [85], TriviaQA [86], and DROP [87], as well
as (3) MMLU [88], (4) MMLU-Pro [89], (5) AGIEval [90] consisting of 20 tasks from college
admission tasks, and (6) BBH [91] consisting of 23 challenging BIG-Bench tasks.

Domain-specific Evaluation While general-purpose evaluation benchmarks already include some
math assessment, we further evaluate math ability using (6) Math2, which encompasses two spe-
cialized math benchmarks: GSM8K [92] and MATH [93]. To evaluate coding capabilities, we use
(7) Code4, 4 coding benchmarks including MBPP [94], MBPPPLUS [95], HUMANEVAL [96], and
HUMANEVALPLUS [95]. To measure scientific literature understanding, we report on (8) SciRIFF5:
comprising 5 subtasks from SciRIFF [97]. Finally, we include (9) NewsG: news generation and (10)
PoemG: poem generation tasks, both evaluated using an LM judge.

4.3 Baselines

We compare our method against several baselines, either taken directly from prior work or minimally
adapted to our problem setting. All baselines, except for ‘Unrestricted training,’ train a set of dense

1https://commoncrawl.org
2Reddit’s 2023 policy change restricts third-party access and use of its data, including for language model

development; see nytimes.com/2023/04/18/technology/reddit-ai-openai-google.html.

6

https://commoncrawl.org
https://www.nytimes.com/2023/04/18/technology/reddit-ai-openai-google.html

models independently by continuing pretraining from the public model Mpub on each simulated
closed set, without architectural changes, and merge them using model merging techniques.

Prompt-based Routing We use an LM-based domain classifier via prompting to route each query
to the most suitable model, which is then used exclusively. We use Llama-3.1-8B-Instruct [98] and
OLMo-2-1124-7B-Instruct [69] as classifiers. More details are in §A.1.

Model Soup We perform uniform parameter averaging across all models following [12].

Branch-Train-Merge (BTM) We follow BTM [11], which ensembles models by computing a
weighted average of their output probabilities. Weights are obtained via a softmax over the log-
likelihoods of the input of each model. As in the original BTM, ensembling can be restricted to the
top-k models by zeroing the weights of all other models and renormalizing. See §A.1 for full details.

BTX We follow BTX [50], which upcycles an MoE from independently trained dense models. It
copies the dense model parameters to the corresponding experts in MoE while averaging non-expert
parameters such as attention layers for merging. The original BTX requires training all model
parameters on combined datasets after merging. To approximate it as closely as possible while
adhering to our setting, we perform this post-merge training on the public set only.

Unrestricted MoE To assess how closely our method approaches the benefits of full data access
while preserving data separation, we construct an upper-bound reference model: a sparse MoE
initialized from the public-only dense model and trained on the combined dataset, including all closed
sets and Public Mix. As MoE training incurs roughly 2× the FLOPs of our approach for the same
data size, we report both compute-controlled (1× FLOPs, 0.5× data) and data-controlled (2× FLOPs,
1× data) comparisons.

4.4 Training Setup

For the public model Mpub, we use a dense model with 7 billion parameters following the OLMo 2
architecture [69]. This model contains 32 layers with hidden dimension 4,096 and is trained on our
public mix for 1 trillion tokens. Following [69], we use a learning rate of 0.0009 and the AdamW
optimizer with parameters β1 = 0.9 and β2 = 0.95 and a cosine learning rate scheduler. The public
model is pretrained using 512 H100 GPUs with a global batch size of 4 million tokens for three days.

Each data owner then takes this checkpoint and performs continued-pretraining for 50 billion tokens
on their own data (totaling 400B tokens across all experts). For the optional router training, we use 5
billion tokens in total. The final FLEXOLMO, trained on 8 sets, has 37 billion total parameters with
20 billion active (4 active experts out of 8). More details can be found in §A.2.

5 Results and Analysis

We conduct ablation studies and compare against a comprehensive set of baselines at a small scale
with four experts—Public mix, math, educational text, and code (Table 1). We then evaluate our
final model on the full setup including the Public mix and all seven simulated closed sets (Table 2).
Finally, we present an in-depth analysis to illustrate the behavior and effectiveness of FLEXOLMO.

5.1 Main Results

Individual experts excel at their specialized tasks As shown in Table 1, experts trained on
each domain-specific set demonstrate strong performance in their specialized domains: the Math
expert achieves the highest scores on math tasks, while the Code expert performs the best on coding
benchmarks. However, these experts exhibit considerable performance degradation when evaluated
on tasks outside their domains. Notably, the Code expert performs poorly on general benchmarks.

FLEXOLMO outperforms individual experts FLEXOLMO outperforms individual experts in
most cases. It improves upon the model trained solely on public data, achieving an average 41%
relative gain. Largest improvements appear on benchmarks where closed data significantly boosts
individual expert performance, e.g., 35.6 → 47.1 on BBH, 8.1 → 50.7 on math, and 1.0 → 17.3 on
coding. Notably, FLEXOLMO even matches or exceeds the performance of specialized experts on
their respective tasks (e.g., on BBH and Math2).

7

Table 1: Evaluation of FLEXOLMO trained on four sets (public mix, math, educational text and code),
tested on 24 tasks with 100 samples per subtask.

MC9 GEN5 MMLU MMLU Pro AGI Eval BBH Math2 Code4 Avg.

Prev. Public model 68.4 58.8 57.0 27.1 39.0 35.6 8.1 1.0 36.9

Individual experts
Math 63.8 46.3 51.1 24.0 40.7 45.4 50.4 18.1 42.5
Code 38.7 41.4 30.0 14.6 29.0 38.2 6.0 22.4 27.5
Educational Text 63.0 52.8 57.7 26.8 39.6 40.0 13.1 4.3 37.2

Prior model merging work
Model soup 70.6 53.8 54.7 28.4 41.4 42.4 17.5 8.2 39.6
BTM 69.0 58.5 59.6 29.0 43.6 43.6 21.2 22.3 43.4
Prompt-based routing (router: OLMo) 59.9 48.8 50.0 25.4 38.7 41.3 41.5 20.7 40.8
Prompt-based routing (router: Llama) 64.2 53.4 57.7 26.4 39.9 39.8 21.5 17.3 40.0
BTX 69.6 57.9 56.2 28.5 43.1 41.3 16.8 6.4 40.0

Ours
FLEXOLMO (no optional router training) 71.1 58.6 58.1 28.4 44.8 43.4 51.5 18.2 46.7

- no bias 67.9 55.6 57.5 28.6 43.9 45.5 50.0 17.6 45.8
- no domain embedding init, no bias 70.0 55.4 56.1 25.9 41.1 44.9 44.9 16.6 44.4
- no training to coordinate 64.4 51.5 55.5 24.7 43.1 41.2 19.3 10.3 38.8

FLEXOLMO 71.0 59.8 59.9 30.8 45.8 47.1 50.7 17.3 47.8

Reference model (upperbound)
Unrestricted MoE (1× FLOPs, 0.5× Data) 68.0 53.8 57.8 28.9 41.5 48.6 49.4 22.2 46.3
Unrestricted MoE (2× FLOPs, 1× Data) 73.3 60.2 63.1 32.5 48.1 54.4 53.4 27.0 51.5

Table 2: Evaluation of FLEXOLMO trained on eight sets (public mix and seven simulated closed
sets) on 31 tasks across 10 categories, tested with 1,000 samples per subtask. “no RT” indicates no
optional router training on proxy data (§3.3.3).

MC9 GEN5 MMLU MMLU Pro AGIEval BBH Math2 NewsG PoemG SciRIFF5 Code4 Avg.

Prev. Public model 68.7 58.8 55.9 26.2 39.9 35.7 8.2 76.0 47.8 48.1 1.1 42.4

Individual experts
Math 62.5 44.3 50.6 24.1 42.0 45.6 53.1 42.6 28.0 50.7 15.8 41.8
Code 40.5 39.4 29.5 14.5 27.4 38.1 6.0 45.1 28.2 48.0 21.0 30.7
Educational Text 64.3 52.1 56.5 27.0 39.7 40.3 13.6 57.6 51.8 51.7 3.0 41.6
News 46.5 48.6 36.4 15.2 25.7 30.9 2.5 77.7 26.9 47.0 0.0 32.5
Creative Writing 42.7 43.9 31.5 11.6 23.3 27.6 1.7 56.9 67.5 42.4 0.0 31.7
Academic 41.0 45.2 33.8 14.8 24.1 32.4 6.5 51.8 23.0 52.0 0.0 29.5
Reddit 64.7 36.5 56.1 25.5 35.5 19.7 2.5 54.1 8.6 32.7 1.7 30.7

Combined model
BTM (top-2) 68.7 57.7 59.4 28.3 43.2 44.3 23.1 73.6 54.4 46.3 24.0 47.6
FLEXOLMO (no RT) 69.2 53.2 58.8 34.0 43.4 42.1 52.1 78.2 60.1 54.4 18.6 51.3
FLEXOLMO 70.8 59.8 60.4 30.9 45.1 46.4 48.5 80.7 62.2 54.3 17.2 52.4

FLEXOLMO achieves more effective merging than baselines We also compare FLEXOLMO
with baseline merging methods (§4.3). All baselines outperform the model trained on Public Mix
only. However, their performance is inconsistent: model soup and BTX are generally weak,3 while
prompt-based routing is highly unstable: it performs well when the classifier selects the correct expert,
but degrades sharply when it does not. Among the baselines, BTM yields the best performance.
Nonetheless, FLEXOLMO outperforms all prior model merging methods, beating the best baseline
BTM by 10.1% relative on average. We attribute this to the MoE-based design of our model, which
selectively activates different experts per layer, effectively combining the complementary strengths of
each specialized model (see further analysis in §5.2).

Comparison to the unrestricted MoE Compared to the unrestricted MoE trained without consider-
ing data restrictions (§4.3), FLEXOLMO outperforms the FLOP-controlled setting (1× FLOPs, 0.5×
Data). It slightly underperforms the data-controlled model (2× FLOPs, 1× Data). This indicates that

3This is likely because training on disjoint datasets causes experts to diverge from each other and from the
seed model, making model soup limited, and training BTX on the public data only is not optimal.

8

Figure 2: Routing pattern analysis. We visualize how text from different domains activate experts
(four experts activated). The horizontal gray lines indicate uniform routing.

Figure 3: Effect of active expert count on
MMLU performance. Model performance
stabilizes after activating four experts.

Figure 4: Opting out of news data. Remov-
ing the news expert reduces performance on
NewsG with minimal impact on other tasks.

FLEXOLMO enables training without direct access to the data (requiring only model sharing) and
flexible opt-in and opt-out functions while retaining strong performance.

Ablations on FLEXOLMO We further evaluate FLEXOLMO by removing different components
introduced in §3.3: learning to coordinate, router initialization, and the bias term. Our results show
that each component plays an important role, with the removal of any one leading to performance
drop. In particular, we observe that randomly initializing router embeddings leads to the final learned
router embeddings being very similar to each other, making the later merging of multiple experts
harder. Furthermore, we confirm that FLEXOLMO benefits from additional router training (§3.3.3).

Final FLEXOLMO in the full setup Finally, we evaluate FLEXOLMO in the full eight-expert setup
and compare it against the public-only model, individual experts trained on closed datasets, and BTM
(top-2), the strongest baseline from Table 1. This was done by simply adding four additional experts,
benefiting from FLEXOLMO’s flexibility in easily adding new datasets. Consistent with earlier
findings, FLEXOLMO outperforms all individual models (the public baseline and individual experts),
demonstrating the synergistic effect of combining independently trained modules. Compared to the
strongest baseline BTM, it achieves a 10% relative improvement on average (Table 2). FLEXOLMO
excels on benchmarks where specialized experts perform well (BBH, Math2, NewsG, PoemG,
SciRIFF5, Code4), matching or surpassing the experts, and also shows strong results on tasks where
no single dataset suffices (e.g., MC9, Gen5, MMLU, MMLU Pro, AGI Eval).

5.2 Model Behavior Analysis

Routing patterns Figure 2 visualizes the router’s token distribution across experts for various
domain inputs. The router tends to activate the corresponding domain expert (e.g., math inputs
activate the math expert), demonstrating its ability to identify the most relevant module. We also
observe frequent activation of the public expert, likely due to our coordinated training strategy, where
each expert is designed to complement the public expert. Also, different combinations of experts are
activated at different layers. This highlights the model’s layer-specific specialization and its greater
expressivity than approaches that route inputs to a single expert (e.g., prompt-based routing).

9

Number of active experts We further analyze how the number of active experts affects downstream
task performance. As shown in Figure 3, performance consistently improves as more experts are
activated, up to four experts, after which it plateaus. This suggests that the final model can operate
efficiently as a sparse model by activating only four experts per input during inference.

Data opt-out FLEXOLMO offers a straightforward mechanism for opting out of specific datasets
by removing the corresponding expert module at inference time. In Figure 4, we evaluate the model’s
performance after excluding the news expert. As expected, performance drops on in-domain tasks
such as news generation. However, on unrelated tasks, performance remains largely unaffected.

5.3 Data Extraction Analysis

FLEXOLMO enables data owners to contribute to the model without sharing their data by instead
sharing model weights trained locally on their data. A natural and important concern is whether their
data can be extracted from these shared weights [99, 100, 101]. This risk is particularly relevant
when training data includes private or confidential information.

We empirically assess this risk by implementing training data extraction attacks following prior
work [99]. Specifically, we sample 10,000 documents from the math data.4 From each document, we
extract a 32-token prefix and use it to generate 256-token continuation using top-k sampling (k = 50),
top-p sampling (p = 0.95), and a temperature of 1.0. We sample 10 times per prefix, and if any of
the generated outputs achieves a normalized Levenshtein similarity of 0.9 or higher with the original
document, we consider that document to be extracted. To validate our implementation, we apply it to
a model overfitted on a small dataset (trained for 100 epochs), and observe a 60% extraction rate.

Our results are as follows:

1. A public model that has not seen any math data yields an extraction rate of 0.1%.5

2. A dense model trained on the math dataset (i.e., math expert) yields 1.6%.
3. FLEXOLMO with the math expert included yields 0.7%.

These results lead to the following conclusions. First, in practice, it is difficult to extract a substantial
portion of the training data, which is in line with previous findings [99]. However, if a model includes
any weights trained on the data, nonzero (though small) fraction of the data may be extractable. If
data owners are comfortable with this minimal leakage, as long as a meaningful fraction of the data
remains not extractable, we believe that FLEXOLMO, in its current form, is a viable solution. If the
owners’ data includes any private or sensitive information, we recommend training experts using
differentially private (DP) learning methods before contributing them to the model, which provides
formal privacy guarantees. Applying DP is largely orthogonal to our architecture, and different data
owners can make independent decisions on whether to apply DP or not, providing flexibility without
compromising the overall design.

5.4 Scaling FLEXOLMO Further

§4 and §5.1 present controlled experiments showing that FLEXOLMO performs competitively even
againsts models trained without data restrictions. Motivated by this, we evaluate whether the
FLEXOLMO recipe can further improve an already strong model trained on the same datasets.

We adopt the OLMo-2 7B setup [69], starting from a a checkpoint pre-trained on 4T tokens and
annealed for 50B tokens to produce a public expert. We then train two additional experts on math and
code, each for 50B tokens, and combine them with the public expert to form a three-expert version of
FLEXOLMO. We compare this model to the released version of OLMo-2,6 which was also continued
from the same 4T-token checkpoint using an equivalent compute budget (3×50B-token training).

4We chose the math data because it is the smallest among our simulated closed sets and the math expert is
trained for three epochs (instead of one), making it more susceptible to extraction. Therefore, the extraction
rates with the math data likely represent an upper bound.

5Manual inspection suggests that the prefix prompts a deterministic continuation, causing the model to
generate text that matches the target data even if the model has never seen that data during training, aligning
with findings from previous research [102].

6https://huggingface.co/allenai/OLMo-2-1124-7B

10

https://huggingface.co/allenai/OLMo-2-1124-7B

Table 3: Scaling up FLEXOLMO(§5.4): We applied the FLEXOLMO recipe to a 4T token pretrained
public model (Pre-anneal model used in OLMo-2 7B) by incorporating two additional experts focused
on math and code. The resulting modeling shows better performance compared to OLMo-2 7B, with
equivalent training FLOPs. Evaluation is done with 1,000 samples per subtasks. As FLEXOLMO with
3 active experts which makes the inference FLOPs 2.5× more than the dense models like OLMo-2
7B.

Inf. FLOPs MC9 GEN5 MMLU MMLU Pro AGI Eval BBH Math2 Code4 Avg.

Pre-anneal model 1× 74.8 62.8 63.1 32.1 46.8 38.2 17.4 8.7 43.1
OLMo-2 7B 1× 77.8 70.2 63.7 31.0 50.4 49.8 42.6 13.3 49.8
FLEXOLMO 2.5× 77.8 71.0 65.2 33.5 51.9 53.1 51.0 18.9 52.8

As shown in Table 3, FLEXOLMO consistently outperforms OLMo-2, with especially large gains on
math and code tasks (BBH, Math2, Code4). This suggests that expert specialization with selective
activation enhances performance without catastrophic forgetting or forcing diverse capabilities to
compete for fixed model capacity. The results align with BTX [50], which similarly trains modular
models to improve performance, even without data constraints.

6 Conclusion

We introduce FLEXOLMO, a new class of LMs that solves real-world data constraint challenges with
(1) modular, distributed training, where different model parameters are independently trained on
disjoint and locally maintained datasets, and (2) data-flexible inference, where data can be selectively
included at inference-time, with guarantees. We show that FLEXOLMO significantly outperforms
competitive baselines, while providing the benefits of distributed training and flexible inference. We
hope this work broadens access to diverse datasets for LM training—datasets that would otherwise
remain inaccessible because standard LM training requires centralized data pooling and offers no
opt-out mechanism for data use based on proposed use cases or other data limitations.

Acknowledgements

We thank Preston Jiang, Colin Raffel, Percy Liang, Matei Zaharia, Peter Henderson, David Q. Sun,
Kevin Kuo, Virginia Smith, and Ai2 members for valuable discussion and feedback.

SM was supported in part by a grant from DARPA to the Simons Institute for the Theory of Computing.
PWK was supported by the Singapore National Research Foundation and the National AI Group in
the Singapore Ministry of Digital Development and Information under the AI Visiting Professorship
Programme (award number AIVP-2024-001), and by the AI2050 program at Schmidt Sciences.

References
[1] Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter.

TOFU: A task of fictitious unlearning for LLMs. In First Conference on Language Modeling,
2024.

[2] Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
Liu, Luke Zettlemoyer, Noah A Smith, and Chiyuan Zhang. Muse: Machine unlearning six-
way evaluation for language models. arXiv preprint arXiv:2407.06460, 2024.

[3] A Feder Cooper, Christopher A Choquette-Choo, Miranda Bogen, Matthew Jagielski, Katja
Filippova, Ken Ziyu Liu, Alexandra Chouldechova, Jamie Hayes, Yangsibo Huang, Niloofar
Mireshghallah, et al. Machine unlearning doesn’t do what you think: Lessons for generative ai
policy, research, and practice. arXiv preprint arXiv:2412.06966, 2024.

[4] Jakub Konecnỳ, H Brendan McMahan, X Yu Felix, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency.
CoRR, 2016.

11

[5] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Aarti
Singh and Jerry Zhu, editors, Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, volume 54 of Proceedings of Machine Learning Research, pages
1273–1282. PMLR, 20–22 Apr 2017.

[6] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard Hua Yang, Farokhi Farhad, Shi Jin, Tony
Q. S. Quek, and H. Vincent Poor. Federated learning with differential privacy: Algorithms and
performance analysis. IEEE Transactions on Information Forensics and Security, 15:3454–
3469, 2019.

[7] Xiaojin Zhang, Yan Kang, Kai Chen, Lixin Fan, and Qiang Yang. Trading off privacy, utility,
and efficiency in federated learning. ACM Transactions on Intelligent Systems and Technology,
14:1 – 32, 2022.

[8] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[9] Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min,
Weijia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-
experts language models. arXiv preprint arXiv:2409.02060, 2024.

[10] Prateek Yadav, Colin Raffel, Mohammed Muqeeth, Lucas Caccia, Haokun Liu, Tianlong Chen,
Mohit Bansal, Leshem Choshen, and Alessandro Sordoni. A survey on model moerging:
Recycling and routing among specialized experts for collaborative learning. CoRR, 2024.

[11] Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A. Smith, and
Luke Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language
models, 2022.

[12] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith,
et al. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In International conference on machine learning, pages
23965–23998. PMLR, 2022.

[13] Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet
Singh, and Douwe Kiela. Generative representational instruction tuning, 2024.

[14] BIS Innovation Hub Nordic Centre. Project aurora: the power of data, technology and
collaboration to combat money laundering across institutions and borders. Technical report.
Occasional publication No. 66.

[15] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated
learning. Knowledge-Based Systems, 216:106775, 2021.

[16] Patrik Hummel, Matthias Braun, Max Tretter, and Peter Dabrock. Data sovereignty: A review.
Big Data & Society, 8(1):2053951720982012, 2021.

[17] Martin Grund, Stefania Leone, Herman van Hövell, Sven Wagner-Boysen, Sebastian Hillig,
Hyukjin Kwon, David Lewis, Jakob Mund, Polo-Francois Poli, Lionel Montrieux, et al.
Databricks lakeguard: Supporting fine-grained access control and multi-user capabilities for
apache spark workloads. In Companion of the 2025 International Conference on Management
of Data, pages 418–430, 2025.

[18] Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin, Shawn Simis-
ter, Ganesh Sittampalam, and Edward Aftandilian. Productivity assessment of neural code
completion. In Proceedings of the 6th ACM SIGPLAN International Symposium on Machine
Programming, pages 21–29, 2022.

[19] Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A Lemley, and Percy
Liang. Foundation models and fair use. Journal of Machine Learning Research, 24(400):1–79,
2023.

12

[20] Shayne Longpre, Robert Mahari, Ariel Lee, Campbell Lund, Hamidah Oderinwale, William
Brannon, Nayan Saxena, Naana Obeng-Marnu, Tobin South, Cole Hunter, et al. Consent in
crisis: The rapid decline of the ai data commons. Advances in Neural Information Processing
Systems, 37:108042–108087, 2024.

[21] Ziv Epstein, Aaron Hertzmann, Investigators of Human Creativity, Memo Akten, Hany Farid,
Jessica Fjeld, Morgan R Frank, Matthew Groh, Laura Herman, Neil Leach, et al. Art and the
science of generative ai. Science, 380(6650):1110–1111, 2023.

[22] Rishi Bommasani, Kevin Klyman, Shayne Longpre, Sayash Kapoor, Nestor Maslej, Betty
Xiong, Daniel Zhang, and Percy Liang. The foundation model transparency index. arXiv
preprint arXiv:2310.12941, 2023.

[23] Peter Henderson, Xuechen Li, Dan Jurafsky, Tatsunori Hashimoto, Mark A Lemley, and Percy
Liang. Foundation models and copyright questions, 2023.

[24] Shayne Longpre, Robert Mahari, Anthony Chen, Naana Obeng-Marnu, Damien Sileo, William
Brannon, Niklas Muennighoff, Nathan Khazam, Jad Kabbara, Kartik Perisetla, Xinyi Wu,
Enrico Shippole, Kurt D. Bollacker, Tongshuang Wu, Luis Villa, Sandy Pentland, and Sara
Hooker. A large-scale audit of dataset licensing and attribution in ai. Nat. Mac. Intell.,
6(8):975–987, 2024.

[25] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

[26] Shayne Longpre, Robert Mahari, Anthony Chen, Naana Obeng-Marnu, Damien Sileo, William
Brannon, Niklas Muennighoff, Nathan Khazam, Jad Kabbara, Kartik Perisetla, et al. The data
provenance initiative: A large scale audit of dataset licensing & attribution in ai. arXiv preprint
arXiv:2310.16787, 2023.

[27] Abeba Birhane, Sanghyun Han, Vishnu Boddeti, Sasha Luccioni, et al. Into the laion’s den:
Investigating hate in multimodal datasets. Advances in neural information processing systems,
36:21268–21284, 2023.

[28] Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study
on the colossal clean crawled corpus. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 1286–1305, 2021.

[29] Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. In The
Twelfth International Conference on Learning Representations.

[30] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and trends® in machine
learning, 14(1–2):1–210, 2021.

[31] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine learning
and systems, 2:429–450, 2020.

[32] Xinghao Wu, Xuefeng Liu, Jianwei Niu, Haolin Wang, Shaojie Tang, and Guogang Zhu.
Fedlora: When personalized federated learning meets low-rank adaptation. 2024.

[33] Haodong Zhao, Wei Du, Fangqi Li, Peixuan Li, and Gongshen Liu. Fedprompt:
Communication-efficient and privacy-preserving prompt tuning in federated learning. In
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1–5. IEEE, 2023.

[34] Kevin Kuo, Arian Raje, Kousik Rajesh, and Virginia Smith. Federated lora with sparse
communication. arXiv preprint arXiv:2406.05233, 2024.

13

[35] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Proceedings of the 17th International Conference on Theory and Application of Cryptographic
Techniques, EUROCRYPT’99, page 223–238, Berlin, Heidelberg, 1999. Springer-Verlag.

[36] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014.

[37] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh Agarwal,
Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. Attack of the tails: Yes, you
really can backdoor federated learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
16070–16084. Curran Associates, Inc., 2020.

[38] Erfan Darzi, Florian Dubost, Nanna M Sijtsema, and Peter MA van Ooijen. Exploring
adversarial attacks in federated learning for medical imaging. IEEE Transactions on Industrial
Informatics, 2024.

[39] Colin Raffel. Building machine learning models like open source software. Communications
of the ACM, 66(2):38–40, 2023.

[40] Milad I Akhlaghi and Sergey V Sukhov. Knowledge fusion in feedforward artificial neural
networks. Neural Processing Letters, 48(1):257–272, 2018.

[41] Alexandra Chronopoulou, Matthew E Peters, Alexander Fraser, and Jesse Dodge. Adaptersoup:
Weight averaging to improve generalization of pretrained language models. arXiv preprint
arXiv:2302.07027, 2023.

[42] Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-
merging: Resolving interference when merging models. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing
Systems, volume 36, pages 7093–7115. Curran Associates, Inc., 2023.

[43] Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 17703–17716. Curran Associates,
Inc., 2022.

[44] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International
Conference on Learning Representations, 2023.

[45] Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization
of model merging recipes. arXiv preprint arXiv:2403.13187, 2024.

[46] Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng
Tao. Adamerging: Adaptive model merging for multi-task learning. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

[47] Jacob Morrison, Noah A. Smith, Hannaneh Hajishirzi, Pang Wei Koh, Jesse Dodge, and
Pradeep Dasigi. Merge to learn: Efficiently adding skills to language models with model
merging, 2024.

[48] Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A Smith, and
Luke Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language
models. arXiv preprint arXiv:2208.03306, 2022.

[49] Suchin Gururangan, Margaret Li, Mike Lewis, Weijia Shi, Tim Althoff, Noah A Smith, and
Luke Zettlemoyer. Scaling expert language models with unsupervised domain discovery. arXiv
preprint arXiv:2303.14177, 2023.

[50] Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste
Rozière, Jacob Kahn, Daniel Li, Wen-tau Yih, Jason Weston, et al. Branch-train-mix: Mixing
expert llms into a mixture-of-experts llm. arXiv preprint arXiv:2403.07816, 2024.

14

[51] Peter Schafhalter, Shun Liao, Yanqi Zhou, Chih-Kuan Yeh, Arun Kandoor, and James Laudon.
Scalable multi-domain adaptation of language models using modular experts. arXiv preprint
arXiv:2410.10181, 2024.

[52] Qizhen Zhang, Prajjwal Bhargava, Chloe Bi, Chris X Cai, Jakob Foerster, Jeremy Fu,
Punit Singh Koura, Ruan Silva, Sheng Shen, Emily Dinan, et al. Bts: Harmonizing spe-
cialized experts into a generalist llm. arXiv preprint arXiv:2502.00075, 2025.

[53] Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker.
Pushing mixture of experts to the limit: Extremely parameter efficient moe for instruction
tuning. arXiv preprint arXiv:2309.05444, 2023.

[54] Yun Zhu, Nevan Wichers, Chu-Cheng Lin, Xinyi Wang, Tianlong Chen, Lei Shu, Han Lu,
Canoee Liu, Liangchen Luo, Jindong Chen, and Lei Meng. Sira: Sparse mixture of low rank
adaptation, 2023.

[55] Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Wei Shen, Limao Xiong, Yuhao Zhou,
Xiao Wang, Zhiheng Xi, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui Zheng, Tao Gui, Qi Zhang,
and Xuanjing Huang. LoRAMoE: Alleviating world knowledge forgetting in large language
models via MoE-style plugin. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors,
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1932–1945, Bangkok, Thailand, August 2024. Association
for Computational Linguistics.

[56] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and Iryna Gurevych.
Adapterfusion: Non-destructive task composition for transfer learning. arXiv preprint
arXiv:2005.00247, 2020.

[57] Kevin Kuo, Amrith Setlur, Kartik Srinivas, Aditi Raghunathan, and Virginia Smith. Exact
unlearning of finetuning data via model merging at scale. arXiv preprint arXiv:2504.04626,
2025.

[58] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Yu Wu, et al. Deepseekmoe: Towards ultimate expert specializa-
tion in mixture-of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

[59] Niklas Muennighoff, Hongjin SU, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet
Singh, and Douwe Kiela. Generative representational instruction tuning. In The Thirteenth
International Conference on Learning Representations, 2025.

[60] Ziyu Zhao, Leilei Gan, Guoyin Wang, Wangchunshu Zhou, Hongxia Yang, Kun Kuang, and
Fei Wu. Loraretriever: Input-aware lora retrieval and composition for mixed tasks in the wild.
arXiv preprint arXiv:2402.09997, 2024.

[61] Joel Jang, Seungone Kim, Seonghyeon Ye, Doyoung Kim, Lajanugen Logeswaran, Moontae
Lee, Kyungjae Lee, and Minjoon Seo. Exploring the benefits of training expert language
models over instruction tuning. In International Conference on Machine Learning, pages
14702–14729. PMLR, 2023.

[62] Feng Cheng, Ziyang Wang, Yi-Lin Sung, Yan-Bo Lin, Mohit Bansal, and Gedas Bertasius.
Dam: Dynamic adapter merging for continual video qa learning. In 2025 IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pages 6805–6817. IEEE, 2025.

[63] Hyunji Lee, Luca Soldaini, Arman Cohan, Minjoon Seo, and Kyle Lo. Routerretriever:
Routing over a mixture of expert embedding models. arXiv preprint arXiv:2409.02685, 2024.

[64] Joshua Belofsky. Token-level adaptation of lora adapters for downstream task generalization.
In Proceedings of the 2023 6th Artificial Intelligence and Cloud Computing Conference, pages
168–172, 2023.

[65] Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik
Bansal, Etash Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff,
Reinhard Heckel, Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon

15

Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh,
Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel
Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu,
Thao Nguyen, Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri,
Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander
Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas
Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal
Shankar. Datacomp-lm: In search of the next generation of training sets for language models,
2025.

[66] Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini.
Organize the web: Constructing domains enhances pre-training data curation, 2025.

[67] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha
Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav
Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz
Ferrandis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries.
Starcoder: may the source be with you!, 2023.

[68] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz
Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau,
Leandro von Werra, and Harm de Vries. The stack: 3 tb of permissively licensed source code,
2022.

[69] Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind
Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi,
Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik,
William Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam,
Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden,
Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and
Hannaneh Hajishirzi. 2 olmo 2 furious, 2025.

[70] Jake Poznanski, Jon Borchardt, Jason Dunkelberger, Regan Huff, Daniel Lin, Aman Rangapur,
Christopher Wilhelm, Kyle Lo, and Luca Soldaini. olmocr: Unlocking trillions of tokens in
pdfs with vision language models, 2025.

[71] Luca Soldaini and Kyle Lo. peS2o (Pretraining Efficiently on S2ORC) Dataset. Technical re-
port, Allen Institute for AI, 2023. ODC-By, https://github.com/allenai/pes2o.

[72] Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Daniel Weld. S2ORC: The
semantic scholar open research corpus. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pages 4969–4983, Online, July 2020. Association for Computational Linguistics.

[73] Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme
Penedo, Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav
Srivastav, Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben
Burtenshaw, Hugo Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro
von Werra, and Thomas Wolf. Smollm2: When smol goes big – data-centric training of a
small language model, 2025.

[74] Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell
Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann,

16

https://github.com/allenai/pes2o

Ananya Harsh Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob
Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha
Ravichander, Kyle Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind
Tafjord, Pete Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk
Groeneveld, Jesse Dodge, and Kyle Lo. Dolma: an open corpus of three trillion tokens for
language model pretraining research, 2024.

[75] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv:1803.05457v1, 2018.

[76] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions,
2019.

[77] Amrita Saha, Vardaan Pahuja, Mitesh M. Khapra, Karthik Sankaranarayanan, and Sarath
Chandar. Complex sequential question answering: Towards learning to converse over linked
question answer pairs with a knowledge graph, 2018.

[78] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence?, 2019.

[79] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

[80] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language, 2019.

[81] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa:
Commonsense reasoning about social interactions, 2019.

[82] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. arXiv preprint arXiv:1907.10641, 2019.

[83] Siva Reddy, Danqi Chen, and Christopher D. Manning. Coqa: A conversational question
answering challenge, 2019.

[84] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+
questions for machine comprehension of text, 2016.

[85] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh,
Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova,
Llion Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc
Le, and Slav Petrov. Natural questions: A benchmark for question answering research.
Transactions of the Association for Computational Linguistics, 7:452–466, 2019.

[86] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale
distantly supervised challenge dataset for reading comprehension, 2017.

[87] Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt
Gardner. Drop: A reading comprehension benchmark requiring discrete reasoning over
paragraphs, 2019.

[88] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. Proceedings of the
International Conference on Learning Representations (ICLR), 2021.

[89] Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo,
Weiming Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex
Zhuang, Rongqi Fan, Xiang Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark, 2024.

[90] Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models, 2023.

17

[91] Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won
Chung, Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Chal-
lenging big-bench tasks and whether chain-of-thought can solve them, 2022.

[92] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

[93] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset,
2021.

[94] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis
with large language models, 2021.

[95] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and LINGMING ZHANG. Is your code
generated by chatGPT really correct? rigorous evaluation of large language models for code
generation. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[96] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul
Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke
Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad
Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra,
Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

[97] David Wadden, Kejian Shi, Jacob Morrison, Aakanksha Naik, Shruti Singh, Nitzan Barzi-
lay, Kyle Lo, Tom Hope, Luca Soldaini, Shannon Zejiang Shen, Doug Downey, Hannaneh
Hajishirzi, and Arman Cohan. Sciriff: A resource to enhance language model instruction-
following over scientific literature, 2024.

[98] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal,
Anthony S. Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aur’elien Rodriguez, Austen Gregerson, Ava Spataru, Bap
tiste Rozière, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang
Wu, Corinne Wong, Cris tian Cantón Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel
Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab A. AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriele
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Grégoire Mialon, Guanglong
Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der
Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca,
Joshua Johnstun, Joshua Saxe, Ju-Qing Jia, Kalyan Vasuden Alwala, K. Upasani, Kate Plawiak,
Keqian Li, Ken-591 neth Heafield, Kevin R. Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuen ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher,
Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melissa
Hall Melanie Kambadur, Mike Lewis, (...), Yu Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The
llama 3 herd of models. ArXiv, abs/2407.21783, 2024.

18

[99] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Kather-
ine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training
data from large language models. In 30th USENIX security symposium (USENIX Security 21),
pages 2633–2650, 2021.

[100] Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer,
Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models.
In 32nd USENIX Security Symposium (USENIX Security 23), pages 5253–5270, 2023.

[101] A Feder Cooper, Aaron Gokaslan, Amy B Cyphert, Christopher De Sa, Mark A Lemley,
Daniel E Ho, and Percy Liang. Extracting memorized pieces of (copyrighted) books from
open-weight language models. arXiv preprint arXiv:2505.12546, 2025.

[102] Ken Liu, Christopher A. Choquette-Choo, Matthew Jagielski, Peter Kairouz, Sanmi Koyejo,
Percy Liang, and Nicolas Papernot. Language models may verbatim complete text they were
not explicitly trained on. In Forty-second International Conference on Machine Learning,
2025.

[103] Luke Merrick, Danmei Xu, Gaurav Nuti, and Daniel Campos. Arctic-embed: Scalable,
efficient, and accurate text embedding models. arXiv preprint arXiv:2405.05374, 2024.

[104] Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn.
The pushshift reddit dataset. In Proceedings of the international AAAI conference on web and
social media, volume 14, pages 830–839, 2020.

[105] Dirk Groeneveld, Iz Beltagy, Evan Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkin-
son, Russell Authur, Khyathi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yul-
ing Gu, Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, William Smith, Emma Strubell, Nishant Subramani, Mitchell
Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge,
Kyle Lo, Luca Soldaini, Noah Smith, and Hannaneh Hajishirzi. OLMo: Accelerating the
science of language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors,
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 15789–15809, Bangkok, Thailand, August 2024. Association
for Computational Linguistics.

[106] Cody Blakeney, Mansheej Paul, Brett W. Larsen, Sean Owen, and Jonathan Frankle. Does
your data spark joy? performance gains from domain upsampling at the end of training, 2024.

[107] Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor
Melis, and Edward Grefenstette. The narrativeqa reading comprehension challenge, 2017.

[108] Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Haddad, Jesse Dodge, and Hannaneh Ha-
jishirzi. Olmes: A standard for language model evaluations, 2025.

[109] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu,
Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems
with language models, 2022.

[110] Weijia Shi, Jaechan Lee, Yangsibo Huang, Sadhika Malladi, Jieyu Zhao, Ari Holtzman, Daogao
Liu, Luke Zettlemoyer, Noah A. Smith, and Chiyuan Zhang. Muse: Machine unlearning
six-way evaluation for language models, 2024.

19

A Model Details

A.1 Baseline Details

Prompt-based routing We implemented a domain-specific classifier where each input query is
categorized into exactly one of n domains using the prompts shown below. Once classified, the query
is routed exclusively to the corresponding expert model for processing. In particular, the following
prompt was used for our primary experimental setup:

"""Classify the given text into one of the following domains:
- 0: Math
- 1: Code
- 2: General science and educational content
- 3: News
- 4: Creative writing and literature
- 5: Reddit
- 6: Research and academic content
- 7: Other

Provide the number between 0 and 7."""

For ablations with four datasets instead of eight, we used the following prompting.

"""Classify the given text into one of the following domains:
- 0: Math
- 1: Code
- 2: General science and academic content
- 3: Other

Provide the number between 0 and 3."""

Branch–Train–Merge (BTM) BTM [11] first assigns a weight to each expert and then combines
their predictions through ensembling.

Formally, for a test instance x and the expert i we compute the negative-log-likelihood loss Li(x)
and convert it to a weight with a temperature-controlled softmax:

wi(x) =
exp

(
−Li(x)/τ

)∑M
j=1 exp

(
−Lj(x)/τ

) ,
where τ > 0 sharpens (τ <1) or flattens (τ >1) the distribution over the M experts. We optionally
retain only the k largest-weight experts Sk(x) (k<M) and renormalize:

w̃i(x) =
wi(x)1[i ∈ Sk(x)]∑

j∈Sk(x)
wj(x)

.

At inference time, let zi,t ∈ R|V | be the logit vector produced by the expert i at generation step t. We
combine logits token-by-token:

zt(v) =
∑

i∈Sk(x)

w̃i(x) zi,t(v), v ∈ V.

A.2 Training Details

In FLEXOLMO, to initialize router embeddings with domain embeddings, we sample 1,000 documents
from each data source, process them through GritLM/GritLM-7B [13] to obtain document
embeddings, and then average these embeddings.

To obtain proxy data D̂i, we train a binary classifier to distinguish Di from Dpub and select pub-
lic samples with the highest predicted likelihood of belonging to Di. Specifically, we finetune
Snowflake/snowflake-arctic-embed-xs [103], which contains 22M parameters, using a
learning rate of 3× 10−6. The classifier is trained on a balanced dataset of 500,000 samples (250,000
documents from each source - public and private). The classifier quickly achieved an accuracy above
95% across all datasets considered.

20

B Data Details

Figure 5: Statistics of our data
mix (descriptions in §4.1).

Name # Tokens (B)

Public Mix 2.37× 103

News 158.0
Creative Writing 201.9
Math 20.3
StarCoder 83.0
Academic 58.6
Educational text 102.2
Reddit 9.9

Table 5 presents the statistics of our training data described in
Section 4.1.

B.1 Reddit Data Processing

The construction of this dataset involved three major phases.

1. Reddit data filtering A dataset of submission/comment
pairs was derived from the PushShift Reddit dataset [104] (bulk
dump as of March 2023) – the same dump used for Dolma Red-
dit (https://huggingface.co/datasets/allenai/
dolma).

To derive our initial dataset, we extracted each submission and
concatenated it with its top-scoring, top-level comment. We
then performed further rule-based filtering with the following
constraints:

• Filter out deleted/removed content.
• Filter out content marked as over_18.
• Filter out all posts from a list of 26,123 banned or NSFW subreddits.
• Filter out posts from likely bot authors (drawn from https://botrank.pastimes.eu/ as of Sept 2024).
• Filter out posts containing non-text media.
• Perform document-level text deduplication via Bloom filter.

2. Retrieval-based subreddit selection Dense retrieval was then used to identify academically-
relevant subreddits for further filtering. We adapted search queries from MMLU test questions, and
performed dense retrieval with these queries on the filtered Reddit data from Step #2, retaining the
top 5 hits for each query. Based on these retrieved outputs, we selected 151 subreddits meeting the
following criteria:

• Subreddit has >= 20 *unique* retrieved items for queries within a given MMLU category; OR
• Subreddit has >=100 retrieved items for queries across all MMLU categories.

We then filtered the dataset from Step #1 to retain only documents from subreddits on this list of 151
subreddits.

3. Format rewriting Finally, the data from Step #2 was input to a synthetic rewriting pipeline to
generate academic QA items with coverage of diverse question formats. We defined 7 categories of
question format inspired by variation observed in MMLU, and used these to construct prompts for
QA text generation. The format categories are as follows:

1. open-ended
2. statement completion
3. fill-in-the-blank
4. statement truth verification
5. which-of-following-has-property-X
6. which-of-following-is-true
7. in-question options

For each format category we constructed a prompt for generating questions of that category given an
input text. Below is an example prompt, for the “in-question-options” category. Prompts for other
categories differ in 1) the content of the “For format ...” paragraph and 2) the in-context examples
(1-3 examples per prompt).

21

https://huggingface.co/datasets/allenai/dolma
https://huggingface.co/datasets/allenai/dolma

I will ask you to convert a text into multiple-choice questions. Here is the text:

“{text}”

Instructions: Convert the information in the text into academic multiple choice
questions. ONLY include questions that are academic. DONOT reference the text in the
question.

For format, use questions that provide options within the question and give choices for
which options are true. Examples:

Dogs have which of the following properties?

I. They are mammals
II. They have five legs.
III. They have a tail.

A. I only
B. II only
C. III only
D. I and III

Answer: D

%%%%

Which of the following are cities in the US?

I. Paris
II. Athens
III. Chicago

A. I only
B. II only
C. III only
D. I, II and III

Answer: C

Separate ALL questions with “\n%%%%\n”.

For generating our rewritten QA data, we prompted GPT-4o mini (Jan 2025 version). We iterated
over the submission/comment pairs in the data from Step #2, and for each of these texts we sampled a
format category and prompted the GPT-4o mini to generate QA pairs for that text and format category.
For longer input texts, format categories were resampled and prompted for again, a number of times
proportional to the length of the text.

Finally, GPT-4o mini outputs were parsed into separate QA items based on the “%%%%” separator,
and 50% of items were prepended with the prefix “Question: ”.

We validated these rewritten data in experiments with OLMo 7B [105] models trained to 2T tokens,
carrying out continued pretraining on a 50-50 mix of DCLM and Reddit data while annealing the
learning rate to zero, a strategy used in [106, 69, 98]. We run this continued pretraining with two
versions of Reddit data: the filtered data from Step #2, and the rewritten data from Step #3. We find
that the rewriting improves over the non-rewritten data in both MC9 and MMLU: MC9 improves
from 0.74 to 0.76 and MMLU improves from 0.62 to 0.66.

C Evaluation Details

All evaluations are done using the OLMES evaluation standard introduced by [108], following key
metrics from the OLMO 2 framework [69]. Table 4 presents a detailed breakdown of our evaluation
datasets and metrics. General description is provided in §4.2; here, we provide more details.

22

Table 4: Evaluation benchmarks. . Benchmarks are divided into general-purpose and domain-
specific categories. Original dataset citations are listed at right. †SCIRIFF spans several subtasks
(BioASQ factoid, general, and yes/no questions, COVID DeepSet QA, and PubMedQA) evaluated
with different metrics. MATH† includes seven subsets: algebra, counting and probability, geometry,
intermediate algebra, number theory, prealgebra, and precalculus.

General Benchmarks Domain-specific Benchmarks

Benchmark Metric Citation Benchmark Metric Citation

ARC-EASY Accraw [75] HUMANEVAL Pass@1 [96]
ARC-CHALLENGE Accraw [75] HUMANEVALPLUS Pass@1 [95]
BOOLQ Accraw [76] MBPP Pass@1 [94]
CSQA Accraw [77] MBPPPLUS Pass@1 [95]
HELLASWAG Accraw [78] SCIRIFF† — [97]
OPENBOOKQA Accraw [79] MATH† Exact Match [93]
PIQA Accraw [80] NEWS GENERATION LM-as-judge -
SOCIAL IQA Accraw [81] POEM GENERATION LM-as-judge -
WINOGRANDE Accraw [82] GSM8K Exact Match [92]
MMLU Accraw [88]
MMLU-PRO Accraw [89]
AGIEVAL (English) Accraw [90]
BIG-BENCH HARD (BBH) Exact Match [91]
COQA F1 [83]
DROP F1 [87]
NATURAL QUESTIONS (NQ) F1 [85]
SQUAD F1 [84]
TRIVIAQA F1 [86]
NARRATIVEQA F1 [107]

Aggregate scores (averages of individual benchmarks)
GEN5: COQA, SQUAD, NATURAL QUESTIONS, TRIVIAQA, DROP
MC9: ARC-EASY, ARC-CHALLENGE, BOOLQ, CSQA, HELLASWAG, OPENBOOKQA, PIQA, SOCIAL IQA, WINOGRANDE

CODE4: MBPP, MBPPPLUS, HUMANEVAL, HUMANEVALPLUS

SciRiFF We select five subtasks that do not require structured prediction: BioASQ-Factoid,
BioASQ-Yes/No, BioASQ-General, PubMedQA, and COVID-QA. , with our tables reporting
the average performance across all five tasks.

MATH We assess solution correctness through exact matching with ground truth answers, following
the methodology established in [109].

News Generation We use the muse-bench/MUSE-News dataset from [110], selecting articles
containing between 64 and 128 tokens. Models are prompted to continue an article given a prefix of
the first 32 tokens, using a sampling temperature of 0.8. A Llama-3.3-70B-Instruct model
serves as the judge, evaluating each completion based on journalistic quality (2 points), topical
coherence (2 points), and clarity/fluency (1 point), for a total score between 0 and 5, which is then
normalized to a 0–100 scale. To reduce variance, we generate five completions per prompt and report
the average score.

Poem Generation We employ the merve/poetry dataset7, filtering poems to those containing
64–128 tokens. From a total of 176 poems (147 Renaissance, 29 Modern), we reserve five poems
(three Renaissance, two Modern) for few-shot examples and use 100 for testing. Models continue
each poem from its first four lines, following the same prompting and evaluation settings as in
NEWSGEN. A genre-aware Llama-3.3-70B-Instruct judge evaluates each completion based
on poetic craftsmanship (2 points), thematic coherence (2 points), and clarity/fluency (1 point), with
scores normalized to a 0–100 scale. As with news generation, five completions are generated per
prompt, and we report the average score across all instances.

7https://www.kaggle.com/datasets/ishnoor/poetry-analysis-with-machine-learning/
data

23

https://www.kaggle.com/datasets/ishnoor/poetry-analysis-with-machine-learning/data
https://www.kaggle.com/datasets/ishnoor/poetry-analysis-with-machine-learning/data

D Methodology Intuition

D.1 Problem Setup

Given an input data x ∈ Rh, the router learning can be viewed as a multi-class classification problem
with n+1 classes: a public class Cpub and n closed classes {Ci}ni=1. The scoring function si : Rh → R
such that si(x) = ri · x represents the score for class Ci, where ri is the router embedding and the
higher scores indicate higher class membership likelihood.

Training: Pairwise Binary Classification In training experts to coordinate (§3.3.1), we learn n
binary classifiers {fi}ni=1, where each fi : Rh → {Cpub, Ci} discriminates between Cpub and Ci:

fi(x) =

{
Ci if si(x) > spub(x)

Cpub otherwise.

The decision boundary hi between Cpub and Ci is defined as:

hi := {x ∈ Rh : spub(x) = si(x)}.

Inference: Multiclass Classification At inference time (§ 3.3.2), these n binary classifiers are
combined into a unified multi-class classifier that maps from Rh to the complete class space
Cpub, C1, . . . , Cn. The final classification decision is determined by:

F (x) = arg max
i∈{pub,1,··· ,n}

si(x).

The key question is: how could we make the ensemble of binary classifiers {fi}ni=1 route inputs as
close to if we had trained one unified multiclass classifier F end-to-end on all data?

Our intuition is if each binary classifier fi learns the decision boundary "Ci vs. not Ci" rather than
just "Ci vs. Cpub", this could make decision boundary that tightly encircles Ci which leads to better
multi-class classification.

D.2 Anchor Point and Negative Bias

Figure 6: During training, the negative bias
shifts the decision boundary. So that a more
selective subset of data will be used to train
the expert corresponding to C1.

To ensure each classifier fi learns a better decision
boundary hi, we propose two key techniques:

Freezing rpub and Mpub as anchor points During
training of each binary classifier fi, we fix the public
expert Mpub and router embedding rpub to ensure
all classifiers share a common coordinate system by
maintaining:

spub(x) = rpub · x,∀i ∈ {1, · · · , n}.

Without this constraint, each binary classifier would
optimize both rpub and ri independently, resulting in
inconsistent coordinate systems where r

(i)
pub ̸= r

(j)
pub

for i ̸= j during the training of binary classifiers
fi and fj . Such inconsistency would invalidate the
multi-class classifier F (x), as it would attempt to compare scores computed in incompatible embed-
ding spaces. By maintaining a fixed reference point, we ensure all decision boundaries hi are defined
relative to the same coordinate system, enabling their meaningful composition during inference
without additional training.

Adding a negative bias During training of fi, each binary classifier only needs to satisfy ri · x >
rpub · x for x ∈ Ci. When Cpub and Ci is separable, many possible ri vectors (no bias boundary in
Figure 6) can satisfy this constraint without precisely characterizing the specialized region of Ci. We
refine this by adding a negative bias term to each expert:

ri · x+ bi > rpub · x ∀i ∈ {1, 2, ..., n}
As Figure 6 illustrates, the negative bias term could help move the decision boundary hi closer to
Ci’s data points. This means, during training, a more selective subset of data will be used to train the
local expert. This facilitates merging, where experts compete not only with Cpub but with each other.

24

	Introduction
	Background & Related Work
	Background: Data Restrictions
	Related Work

	FlexOlmo: LMs with Flexible Data Use
	Problem Setup
	Model Architecture
	Training Algorithm
	Training Experts to Coordinate
	Domain-Informed Router
	Optional Router Training on Proxy Data

	Experimental Setup
	Training Data: FlexMix
	Evaluation
	Baselines
	Training Setup

	Results and Analysis
	Main Results
	Model Behavior Analysis
	Data Extraction Analysis
	Scaling FlexOlmo Further

	Conclusion
	Model Details
	Baseline Details
	Training Details

	Data Details
	Reddit Data Processing

	Evaluation Details
	Methodology Intuition
	Problem Setup
	Anchor Point and Negative Bias

