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Abstract

We introduce FLEXOLMO, a new class of language models (LMs) that supports
(1) distributed training without data sharing, where different model parameters
are independently trained on closed datasets, and (2) data-flexible inference, where
these parameters along with their associated data can be flexibly included or
excluded from model inferences with no further training. FLEXOLMO employs a
mixture-of-experts (MoE) architecture where each expert is trained independently
on closed datasets and later integrated through a new domain-informed routing
without any joint training. FLEXOLMO is trained on FLEXMIX, a corpus we
curate comprising publicly available datasets alongside seven domain-specific sets,
representing realistic approximations of closed sets. We evaluate models with up
to 37 billion parameters (20 billion active) on 31 diverse downstream tasks. We
show that a general expert trained on public data can be effectively combined with
independently trained experts from other data owners, leading to an average 41%
relative improvement while allowing users to opt out of certain data based on data
licensing or permission requirements. Our approach also outperforms prior model
merging methods by 10.1% on average and surpasses the standard MoE trained
without data restrictions using the same training FLOPs. Altogether, this research
presents a solution for both data owners and researchers in regulated industries with
sensitive or protected data. FLEXOLMO enables benefiting from closed data while
respecting data owners’ preferences by keeping their data local and supporting
fine-grained control of data access during inference.

1 Introduction

Pretraining language models (LMs) typically requires centralized access to all data during training
and does not have any mechanism to track or control the influence of specific data points on model
parameters. Model developers must therefore make a one-time decision on which data sources to
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Figure 1: An overview of FLEXOLMO. Data owners can contribute without sharing the data by
training their own expert modules (FFNs and router embeddings) with a shared public model as
an anchor point. At inference, these modules are integrated into a MoE model via a novel router
embedding concatenation. This design enables flexible inclusion or exclusion of experts and strict
opt-out guarantees, e.g., Github data can be excluded at no cost (blurred) during inference.

include, with limited ability to remove the effect of certain data after training [[1} 2} 13]. Moreover,
this centralized approach precludes the use of closed data that data owners cannot share with model
developers for confidentiality, regulatory, or other reasons. Although solutions have been proposed
to allow training without sharing the data, such as federated learning [4, 5], their practical adoption
remains limited due to performance degradation and the high cost of synchronized training [6} [7].

We introduce FLEXOLMO, a new class of LMs that enables distributed training on locally maintained
datasets while enabling flexible opt-in and opt-out during inference. FLEXOLMO employs
a mixture-of-experts (MoE) architecture [8 9], where each expert is trained independently on closed
datasets and later integrated into an MoE. This design allows data owners to contribute asynchronously
without sharing their data, while also enabling continual updates with new data and providing strong
guarantees for data opt-out during inference. Our approach can be seen as an instance of model
merging [10], which merges different models into a unified one [[11, [12]. However, our model is
designed to address the unique challenges in our problem setup—combining models pre-trained
on completely disjoint datasets with different distributions—which makes prior model merging
techniques like ensembling output probabilities [[11]] or merging model weights [12] suboptimal.

A key challenge in training FLEXOLMO is ensuring the merging of independently trained experts
without joint training. We introduce a training algorithm where each data owner independently trains
an expert module using the frozen public model as a shared anchor (Figure T). This approach teaches
independently trained experts to coordinate with the same public model and, by extension, with each
other. Additionally, the router, a module that determines which experts process each token, typically
requires joint training. We address this by assigning each expert a router embedding, initialized from
its domain embedding using an off-the-shelf embedder [[13] and further finetuned on its corresponding
data during individual expert training. These embeddings are then concatenated to form the router
during merging, removing the need for joint training.

To validate FLEXOLMO, we curate a data mixture called FLEXMIX, which includes a public training
set along with seven domain-specific sets (e.g., news, educational text, and Reddit). These domains
are chosen to simulate scenarios where high-quality data that can benefit LM training is not publicly
available.

We train FLEXOLMO first on public data, then extend it by merging expert modules trained inde-
pendently on our simulated closed sets. While continued pretraining on these sets improves some
downstream tasks, it suffers from catastrophic forgetting and inconsistent performance. In contrast,
FLEXOLMO improves upon the public model by 41% and also outperforms prior merging techniques
such as model soup and ensembling by 10.1% across 31 downstream tasks. We observe the largest
improvements on tasks related to closed sets. Notably, even on benchmarks where no individual



closed set improved performance over the public model, combining multiple experts yielded signifi-
cant gains, demonstrating synergies among independently trained modules. Our qualitative analysis
demonstrates that sparse expert activation across layers through the MoE architecture is key to
these gains. Our qualitative analysis shows that the MoE architecture’s ability to selectively activate
different experts per layer per token is crucial to these gains by combining the strengths of each
specialized expert.

We hope our work enables research with a broader range of closed datasets for LM training, particu-
larly for organizations interested in collaborating on scientific research through the new features that
FlexOlmo provides.

2 Background & Related Work

2.1 Background: Data Restrictions

The standard LM training practice requires model developers to aggregate all data centrally and make
a one-time decision on which data source to include and exclude. But many real-world data come
with sharing and usage restrictions and necessitates (1) model training without data pooling and (2)
model inference that can flexibly select different data sources based on use case and access privileges.

Data Sharing Constraints Organizations in regulated industries require LMs that can leverage
their closed datasets while maintaining strict data privacy and access controls. Healthcare institutions,
financial firms, and other entities possess valuable domain-specific data but cannot share it externally
due to HIPAA, GDPR [14![15]], data sovereignty laws [[16], and intellectual property (IP) protections.
These organizations need training paradigms that enable Al improvement on their sensitive data while
ensuring such sensitive data never leaves certain environments and can be removed from the model
after training, e.g., when data usage rights expire. In such settings, modular training approaches,
where individual experts are trained independently and asynchronously on locally maintained data,
are essential.

Data Use Constraints The inclusion of certain data depends on specific use cases and end users.
Privileged access: User-facing applications often involve closed data restricted to specific, authorized
users [17]. For example, GitHub Copilot must tailor code suggestions to reflect internal repositories
based on an engineer’s role and access rights [18]]. Copyright and data consent: Legal and ethical
considerations on training data for Al are evolving and uncertain [19} 20} 21}, 22} 123 24} [20]], and
often depend on the data’s intended use, e.g., licenses may prohibit commercial use or limit certain
query types [25 [26]. Model control: Training data often include sensitive content [27, 28, [29] which
may be beneficial in certain contexts but harmful in others. For instance, one may want to activate the
use of toxic content for toxicity classification in a research setting, but deactivate it in applications
presented to a general audience.

These real-world scenarios demonstrate the value of a new class of LM and accompanying training
methods that address restrictions in data sharing and usage.

2.2 Related Work

Federated Learning Federated Learning (FL) trains a single model over distributed datasets by
synchronously aggregating client updates [5} 4} 30]]. FL. methods range from classical approaches that
iteratively aggregate parameter updates from local clients [5,[31]] to parameter-efficient techniques
which have been adapted for LMs [32] [33] 134]. FL can guarantee data privacy using techniques
such as homomorphic encryption [35] and differential privacy [36]]. However, FL has seen limited
adoption in LM training due to the high cost of synchronization and performance degradation [6, 7],
and remains susceptible to privacy attacks due to inter-client communication [37} 38]].

Our approach also avoids data sharing but differs fundamentally by supporting independent, asyn-
chronous training without costly inter-client communication, and allowing real-time opt-in and
opt-out. Like FL, our model allows data owners to optionally apply DP training locally for privacy
guarantees. Because DP is orthogonal to our architecture, each contributor can independently choose
whether to apply it, providing flexibility without compromising the overall design.

Model Merging Our work builds on recent efforts [39,[10] that advocate for developing machine
learning models like open-source softwares, where sub-parts of the model can be trained independently



and subsequently merged into unified systems. This can be achieved through various methods,
including weight merging, output ensembling, and expert routing. Model soup—merging model
weights trained on different datasets from the same initialization—can boost performance [40} |12} 41]],
especially with weighted combinations [42} 43144} !45] 146, 147]]. Weighted output ensembling (e.g.,
BTM [48.149]) is also effective when models are trained on distinct datasets initialized from the same
seed model. These approaches can be applied to our setting, where each expert is independently
trained starting from the same public model then merged into a unified one. Our experiments (§5)
show that these methods are less effective, primarily because they lack learned connections between
different modules, which constrains the expressivity of the resulting models.

An alternative line of work focuses on expert routing methods, such as BTX [50]] and its extensions [S1}
52|, which merge dense, independently trained models into a mixture-of-experts (MoE) framework.
We draw inspiration from this work, as we also integrate independently trained models into a MoE.
However, these methods require joint training on a union of all datasets used in expert training after
merging. By contrast, FLEXOLMO removes the need for joint data access to enable training on locally
maintained datasets.

Related efforts in parameter-efficient training have explored merging LoRA adapter weights trained
on separate datasets [53 154} 55} 56], particularly to reduce communication overhead in collaborative
settings and support opt-out use cases [S7/]. Unlike these methods, which focus on merging lightweight
adapters, our approach merges full expert models into a standard MoE architecture.

Mixture-of-Experts (MoE) MoE models [8}19,158]], consisting of many small feedforward networks
called experts, have gained popularity for their training and inference efficiency. Our work leverages
the MoE architecture; however, our motivation and training method are fundamentally different as
our primarily goal is to support modularity rather than efficiency.

3 FLEXOLMO: LMs with Flexible Data Use

3.1 Problem Setup

Let My, be a model trained on a publicly available dataset Dyy,, and D = {D1, Dy, ..., D,}
represent a collection of locally maintained datasets with separate owners. Our objective is a single
model Mgya, which is constructed via composing M, and a set of modules {My, Ms,...,M,},
where each M; is independently trained by the owner of D;, who also has access to M.

This model satisfies two requirements: (1) training My, does not require anyone to have joint access
to the full dataset collection D, as each M; is trained independently by the owner of dataset D;; (2)
removing any module M; from Mjy,, guarantees complete removal of its associated data D;.

The key modeling challenges are: (1) to develop an algorithm that creates M; using D; and My,
and (2) to design the merging algorithm that combines Mpu,, M1, Mo, . .., My, into Mgg,.

3.2 Model Architecture

FLEXOLMO follows the standard MoE architecture: it replaces the feedforward network (FFN) in
each transformer block with a router and n small FFNs called expert modules {Mpub7 My, ..., M,}.
Note that we omit the layer index for each expert in our notation for simplicity. Given a processed
input token embedding x € R”, the MoE module computes output representation y:

y= Y softmax(r(x);)M;(x),
1€Topk(r(x))
where the router function r» computes the expert probabilities from x. Unlike standard MoEs where

experts are trained jointly, our experts are trained asynchronously on distinct datasets { Dy, ..., D,, }.

3.3 Training Algorithm

Standard MoEs train all experts and the router jointly on all data. In contrast, FLEXOLMO trains
experts independently by teaching them to coordinate (§3.3.1)) and merges them at inference using a
domain-informed router (§3.3.2). Optional router tuning can further improve performance (§3.3.3).



3.3.1 Training Experts to Coordinate

A straightforward way to train each expert would be to directly continue to train each expert M; on
its own data D; [48]]. We found that this method causes the experts to diverge too much from one
another and from the original seed model, which makes merging after isolated training difficult.

To prevent such divergence, we train experts independently while teaching them to coordinate
. We use M, as an anchor that teaches experts to coordinate with M, and, by extension,
with each other. Specifically, during training, for dataset D;, we construct a MoE model with two
expert modules—both initialized from the same FFNs from M. During training, we freeze My,
expert and the shared attention layer, while the other expert (1/;) is trained on D;. As each data
owner updates only their own FFNs while keeping all other parameters (those inherited from M
such as attention layer) frozen, the learned FFNs are designed to naturally coordinate with each other
later during merging at inference time. Importantly, with this approach, a router is learned so that
each expert can be integrated into a MoE architecture without additional training (details in §3.3.2).

3.3.2 Domain-Informed Router

The router plays a critical role in MoE: the router function » maps an input vector x to a distribution
over expert modules, including the public model as one of the experts:

r(x)=W,x, W,¢€ R+ xR
In typical MoEs, W, is trained end-to-end alongside all expert modules, using access to the full

training dataset. Instead, we decompose W.,. into individual expert-specific router embeddings, where
each row r; represents the router embedding for expert M;, learned only from D;:

R rpub JE—
- r — 1 I
W, = . , where r; = TS Z E(dy) e R",S; C D;.
: | Z‘ dR€eS;
— r, —

These router embeddings can be initialized by averaging domain-specific embeddings of samples
from each D;, obtained by encoding subsets of data using an off-the-shelf embedder E [59] that
maps a document into an h-dimensional vector. This method is motivated by prior model merging
work that leverages domain embeddings for routing [411 (60, |61} 162} 163} [64].

During coordinated training of experts (, we learn the router embeddings in pairs: [rpup, I';] The
public embedding rp,, remains frozen across all experts, while r; is finetuned separately alongside
the parameters of M;. At inference time, merging the expert embeddings into the complete router
matrix W,. directly integrates all expert modules into one unified MoE. Furthermore, experts can be
flexibly added or removed by simply adding or removing their corresponding router embedding.

Adding a Bias Term Unlike standard router learning that is learned among all experts jointly,
coordinated training of experts only learns pairwise routing decisions between one expert and the
public model. This means the model never directly compares experts M; and Ms during training,
potentially limiting generalization during inference. To alleviate this issue, we add a negative bias
term b; for each independent trained expert { M7, Ma, ..., M, }. We select expert M; when:

ri-X+b; >rpp-x Vie{1,2,..,n}
Otherwise default to M. This helps the later merging process, where each expert competes not just
with the public model but with all other experts. Further details and justifications are provided in §D}

3.3.3 Optional Router Training on Proxy Data

With our proposed model design, expert modules can be merged without any additional training.
However, if data owners are willing to identify proxy samples within the public dataset My, that
resemble their closed data, we can optionally perform a lightweight router tuning step after merging,
using only public data from Dpp. Specifically, we assume each data owner selects a small proxy set

D, C Db, where |ﬁz\ < 0.01 x | D;|, chosen to approximate the distribution of their closed dataset
D;. While D; is too small to train expert modules, it still provides useful signals for improving router

quality. To construct D;, we train a binary classifier to distinguish D; from Dy, and select public
samples with the highest predicted likelihood of belonging to D;. After merging, we tune the router

embeddings ry, - - , Ty, I'pyp ON the combined set ﬁl, -++, Dy, and Dpyp,, sampled uniformly.



4 Experimental Setup

4.1 Training Data: FLEXMIX

Our corpus comprises a single Public Mix and seven closed sets—either real or simulated—which
are designed to be disjoint from each other and from the Public Mix. in §B|provides the
statistics.

* Public Mix represents general web text based on Common Crawl (CC) [ﬂ Specifically, we took the
Baseline version of DCLM [65]], excluding news and creative writing content (described below).
This represents a public dataset that can be used without restrictions.

» News includes news content from DCLM-Baseline, obtained by applying the classifier from [66]
and selecting documents classified as News Articles. While included in CC when downloaded,
many of the original sources are subject to closed access [20].

* Creative Writing includes creative content from DCLM-Baseline, obtained by applying the
classifier from [[66] and selecting documents classified as Creative Writing.

¢ Code includes code repositories from Starcoder [67,68] with additional quality filtering as in [69]].

* Academic includes open-access academic papers obtained from [70]; these are papers from [71,
72] but re-processed using olmOCR [70]] for cleaner plain text.

¢ Educational Text includes educational text from digitized PDFs, converted to plain text using
olmOCR [70]].

* Math includes math-relevant content, including web pages about or using math and math problem
sets, obtained by combining Dolmino Math Mix [69] and FineMath4+ [73].

* Reddit contains posts and comments originally sourced and released by Dolma [74], further
filtered and processed to improve quality (details in Appendix [B]). As of this writing, this Reddit
data is no longer unrestrictedly downloadable due to Reddit’s 2023 policy changeﬁ

These seven sets are designed to represent datasets with at least one of the following characteristics:
(1) historically closed and not publicly available; (2) previously publicly available but now closed; or
(3) domains with scarce high-quality public data.

4.2 Evaluation

We evaluate our models and baselines on a large and diverse collection of well-established benchmarks,
consisting of 31 tasks across 10 categories, broadly grouped into (1) general-purpose LM benchmarks
and (2) domain-specific evaluations. More details are provided in §C|

General-purpose Evaluation We report results on (1) MC9, nine multiple-choice datasets in-
cluding ARC-Easy [75], ARC-Challenge [75]], BoolQ [76], CSQA [77], HellaSwag [78]], Open-
BookQA [79]], PIQA [80], SociallQa [81]], and WinoGrande [82], (2) GENS, five generative tasks
including CoQA [83]], SQuAD [84]], Natural Questions [85], TriviaQA [86], and DROP [87]], as well
as (3) MMLU [88], (4) MMLU-Pro [89]], (5) AGIEval [90] consisting of 20 tasks from college
admission tasks, and (6) BBH [91] consisting of 23 challenging BIG-Bench tasks.

Domain-specific Evaluation While general-purpose evaluation benchmarks already include some
math assessment, we further evaluate math ability using (6) Math2, which encompasses two spe-
cialized math benchmarks: GSM8K [92] and MATH [93]]. To evaluate coding capabilities, we use
(7) Code4, 4 coding benchmarks including MBPP [94], MBPPPLUS [95], HUMANEVAL [96], and
HUMANEVALPLUS [95]]. To measure scientific literature understanding, we report on (8) SciRIFFS5:
comprising 5 subtasks from SciRIFF [97]. Finally, we include (9) NewsG: news generation and (10)
PoemG: poem generation tasks, both evaluated using an LM judge.

4.3 Baselines

We compare our method against several baselines, either taken directly from prior work or minimally
adapted to our problem setting. All baselines, except for ‘Unrestricted training,’ train a set of dense

'"https://commoncrawl .org
Reddit’s 2023 policy change restricts third-party access and use of its data, including for language model
development; see nytimes.com/2023/04/18/technology/reddit-ai-openai-google.html.
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models independently by continuing pretraining from the public model M, on each simulated
closed set, without architectural changes, and merge them using model merging techniques.

Prompt-based Routing We use an LM-based domain classifier via prompting to route each query
to the most suitable model, which is then used exclusively. We use Llama-3.1-8B-Instruct [98] and
OLMo-2-1124-7B-Instruct [69] as classifiers. More details are in §A.T]

Model Soup We perform uniform parameter averaging across all models following [12].

Branch-Train-Merge (BTM) We follow BTM [11], which ensembles models by computing a
weighted average of their output probabilities. Weights are obtained via a softmax over the log-
likelihoods of the input of each model. As in the original BTM, ensembling can be restricted to the
top-k models by zeroing the weights of all other models and renormalizing. See §A.T|for full details.

BTX We follow BTX [50]], which upcycles an MoE from independently trained dense models. It
copies the dense model parameters to the corresponding experts in MoE while averaging non-expert
parameters such as attention layers for merging. The original BTX requires training all model
parameters on combined datasets after merging. To approximate it as closely as possible while
adhering to our setting, we perform this post-merge training on the public set only.

Unrestricted MoE To assess how closely our method approaches the benefits of full data access
while preserving data separation, we construct an upper-bound reference model: a sparse MoE
initialized from the public-only dense model and trained on the combined dataset, including all closed
sets and Public Mix. As MoE training incurs roughly 2x the FLOPs of our approach for the same
data size, we report both compute-controlled (1 x FLOPs, 0.5 data) and data-controlled (2x FLOPs,
1x data) comparisons.

4.4 Training Setup

For the public model M, we use a dense model with 7 billion parameters following the OLMo 2
architecture [69]. This model contains 32 layers with hidden dimension 4,096 and is trained on our
public mix for 1 trillion tokens. Following [69], we use a learning rate of 0.0009 and the AdamW
optimizer with parameters 81 = 0.9 and 82 = 0.95 and a cosine learning rate scheduler. The public
model is pretrained using 512 H100 GPUs with a global batch size of 4 million tokens for three days.

Each data owner then takes this checkpoint and performs continued-pretraining for 50 billion tokens
on their own data (totaling 400B tokens across all experts). For the optional router training, we use 5
billion tokens in total. The final FLEXOLMO, trained on 8 sets, has 37 billion total parameters with
20 billion active (4 active experts out of 8). More details can be found in

5 Results and Analysis

We conduct ablation studies and compare against a comprehensive set of baselines at a small scale
with four experts—Public mix, math, educational text, and code (Table T). We then evaluate our
final model on the full setup including the Public mix and all seven simulated closed sets (Table 2).
Finally, we present an in-depth analysis to illustrate the behavior and effectiveness of FLEXOLMO.

5.1 Main Results

Individual experts excel at their specialized tasks As shown in [Table 1} experts trained on
each domain-specific set demonstrate strong performance in their specialized domains: the Math
expert achieves the highest scores on math tasks, while the Code expert performs the best on coding
benchmarks. However, these experts exhibit considerable performance degradation when evaluated
on tasks outside their domains. Notably, the Code expert performs poorly on general benchmarks.

FLEXOLMO outperforms individual experts FLEXOLMO outperforms individual experts in
most cases. It improves upon the model trained solely on public data, achieving an average 41%
relative gain. Largest improvements appear on benchmarks where closed data significantly boosts
individual expert performance, e.g., 35.6 — 47.1 on BBH, 8.1 — 50.7 on math, and 1.0 — 17.3 on
coding. Notably, FLEXOLMO even matches or exceeds the performance of specialized experts on
their respective tasks (e.g., on BBH and Math2).



Table 1: Evaluation of FLEXOLMO trained on four sets (public mix, math, educational text and code),
tested on 24 tasks with 100 samples per subtask.

MC9 GENS MMLU MMLU Pro AGIEval BBH Math2 Code4 Avg.

Prev. Public model 684 588 57.0 27.1 39.0 35.6 8.1 1.0 36.9
Individual experts
Math 63.8 463 51.1 24.0 40.7 454 504 18.1 425
Code 387 414 30.0 14.6 29.0 382 6.0 224 275
Educational Text 63.0 52.8 57.7 26.8 39.6 40.0 13.1 43 372
Prior model merging work
Model soup 70.6 538 54.7 28.4 414 424 17.5 8.2 39.6
BTM 69.0 585 59.6 29.0 436 436 212 223 434
Prompt-based routing (router: OLMo) 59.9 488 50.0 254 38.7 413 415  20.7 40.8
Prompt-based routing (router: Llama) 642 534 57.7 26.4 39.9 39.8 21.5 17.3 40.0
BTX 69.6 579 56.2 28.5 43.1 413 16.8 6.4 40.0
Ours
FLEXOLMO (no optional router training) 71.1  58.6 58.1 28.4 448 434 51.5 18.2 46.7
- no bias 679 55.6 57.5 28.6 439 455 500 17.6 45.8
- no domain embedding init, no bias  70.0  55.4 56.1 259 41.1 449 449 166 444
- no training to coordinate 644 515 55.5 24.7 43.1 412 19.3 10.3 38.8
FLEXOLMO 71.0 59.8 59.9 30.8 458 471 507 173 47.8
Reference model (upperbound)
Unrestricted MoE (1x FLOPs, 0.5x Data) 68.0  53.8 57.8 28.9 415 486 494 222 463
Unrestricted MoE (2x FLOPs, 1x Data) 733  60.2 63.1 32.5 48.1 544 534 270 515

Table 2: Evaluation of FLEXOLMO trained on eight sets (public mix and seven simulated closed
sets) on 31 tasks across 10 categories, tested with 1,000 samples per subtask. “no RT” indicates no
optional router training on proxy data (§3.3.3).

MC9 GEN5S MMLU MMLU Pro AGIEval BBH Math2 NewsG PoemG SciRIFF5 Code4 Avg.

Prev. Public model 68.7 58.8 55.9 26.2 39.9 357 8.2 76.0 47.8 48.1 1.1 424
Individual experts

Math 625 443 50.6 24.1 420 456 531 42.6 28.0 50.7 15.8 41.8
Code 40.5 394 29.5 14.5 274 38.1 6.0 45.1 28.2 48.0 21.0 30.7
Educational Text 643  52.1 56.5 27.0 39.7 403 13.6 57.6 51.8 51.7 3.0 41.6
News 46.5 48.6 36.4 15.2 25.7 30.9 2.5 71.7 26.9 47.0 0.0 325
Creative Writing 4277 439 31.5 11.6 233 27.6 1.7 56.9 67.5 42.4 0.0 31.7
Academic 41.0 452 33.8 14.8 24.1 324 6.5 51.8 23.0 52.0 0.0 29.5
Reddit 64.7 36.5 56.1 25.5 355 19.7 2.5 54.1 8.6 32.7 1.7 30.7
Combined model

BTM (top-2) 68.7 57.7 59.4 28.3 432 443 231 73.6 54.4 463  24.0 47.6
FLEXOLMO (noRT) 69.2 532 58.8 34.0 434 421 521 78.2 60.1 544 18.6 513
FLEXOLMO 70.8 59.8 60.4 30.9 45.1 464 485 80.7 62.2 543 172 524

FLEXOLMO achieves more effective merging than baselines We also compare FLEXOLMO
with baseline merging methods (§4.3). All baselines outperform the model trained on Public Mix
only. However, their performance is inconsistent: model soup and BTX are generally Weakﬂ while
prompt-based routing is highly unstable: it performs well when the classifier selects the correct expert,
but degrades sharply when it does not. Among the baselines, BTM yields the best performance.
Nonetheless, FLEXOLMO outperforms all prior model merging methods, beating the best baseline
BTM by 10.1% relative on average. We attribute this to the MoE-based design of our model, which
selectively activates different experts per layer, effectively combining the complementary strengths of
each specialized model (see further analysis in §5.2).

Comparison to the unrestricted MoE Compared to the unrestricted MoE trained without consider-
ing data restrictions (§4.3), FLEXOLMO outperforms the FLOP-controlled setting (1x FLOPs, 0.5 x
Data). It slightly underperforms the data-controlled model (2 x FLOPs, 1x Data). This indicates that

3This is likely because training on disjoint datasets causes experts to diverge from each other and from the
seed model, making model soup limited, and training BTX on the public data only is not optimal.
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Figure 2: Routing pattern analysis. We visualize how text from different domains activate experts
(four experts activated). The horizontal gray lines indicate uniform routing.
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stabilizes after activating four experts. NewsG with minimal impact on other tasks.

FLEXOLMO enables training without direct access to the data (requiring only model sharing) and
flexible opt-in and opt-out functions while retaining strong performance.

Ablations on FLEXOLMO We further evaluate FLEXOLMO by removing different components
introduced in @ learning to coordinate, router initialization, and the bias term. Our results show
that each component plays an important role, with the removal of any one leading to performance
drop. In particular, we observe that randomly initializing router embeddings leads to the final learned
router embeddings being very similar to each other, making the later merging of multiple experts
harder. Furthermore, we confirm that FLEXOLMO benefits from additional router training (@.

Final FLEXOLMO in the full setup Finally, we evaluate FLEXOLMO in the full eight-expert setup
and compare it against the public-only model, individual experts trained on closed datasets, and BTM
(top-2), the strongest baseline from[Table 1] This was done by simply adding four additional experts,
benefiting from FLEXOLMO’s flexibility in easily adding new datasets. Consistent with earlier
findings, FLEXOLMO outperforms all individual models (the public baseline and individual experts),
demonstrating the synergistic effect of combining independently trained modules. Compared to the
strongest baseline BTM, it achieves a 10% relative improvement on average (Table 2). FLEXOLMO
excels on benchmarks where specialized experts perform well (BBH, Math2, NewsG, PoemG,
SciRIFF5, Code4), matching or surpassing the experts, and also shows strong results on tasks where
no single dataset suffices (e.g., MC9, Gen5, MMLU, MMLU Pro, AGI Eval).

5.2 Model Behavior Analysis

Routing patterns [Fig visualizes the router’s token distribution across experts for various
domain inputs. The router tends to activate the corresponding domain expert (e.g., math inputs
activate the math expert), demonstrating its ability to identify the most relevant module. We also
observe frequent activation of the public expert, likely due to our coordinated training strategy, where
each expert is designed to complement the public expert. Also, different combinations of experts are
activated at different layers. This highlights the model’s layer-specific specialization and its greater

expressivity than approaches that route inputs to a single expert (e.g., prompt-based routing).
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Number of active experts We further analyze how the number of active experts affects downstream
task performance. As shown in performance consistently improves as more experts are
activated, up to four experts, after which it plateaus. This suggests that the final model can operate
efficiently as a sparse model by activating only four experts per input during inference.

Data opt-out FLEXOLMO offers a straightforward mechanism for opting out of specific datasets
by removing the corresponding expert module at inference time. In|[Figure 4] we evaluate the model’s
performance after excluding the news expert. As expected, performance drops on in-domain tasks
such as news generation. However, on unrelated tasks, performance remains largely unaffected.

5.3 Data Extraction Analysis

FLEXOLMO enables data owners to contribute to the model without sharing their data by instead
sharing model weights trained locally on their data. A natural and important concern is whether their
data can be extracted from these shared weights [99| [100, [101]]. This risk is particularly relevant
when training data includes private or confidential information.

We empirically assess this risk by implementing training data extraction attacks following prior
work [99]. Specifically, we sample 10,000 documents from the math dataE] From each document, we
extract a 32-token prefix and use it to generate 256-token continuation using top-k sampling (k = 50),
top-p sampling (p = 0.95), and a temperature of 1.0. We sample 10 times per prefix, and if any of
the generated outputs achieves a normalized Levenshtein similarity of 0.9 or higher with the original
document, we consider that document to be extracted. To validate our implementation, we apply it to
a model overfitted on a small dataset (trained for 100 epochs), and observe a 60% extraction rate.

Our results are as follows:

1. A public model that has not seen any math data yields an extraction rate of O.I%E]
2. A dense model trained on the math dataset (i.e., math expert) yields 1.6%.
3. FLEXOLMO with the math expert included yields 0.7%.

These results lead to the following conclusions. First, in practice, it is difficult to extract a substantial
portion of the training data, which is in line with previous findings [99]. However, if a model includes
any weights trained on the data, nonzero (though small) fraction of the data may be extractable. If
data owners are comfortable with this minimal leakage, as long as a meaningful fraction of the data
remains not extractable, we believe that FLEXOLMO, in its current form, is a viable solution. If the
owners’ data includes any private or sensitive information, we recommend training experts using
differentially private (DP) learning methods before contributing them to the model, which provides
formal privacy guarantees. Applying DP is largely orthogonal to our architecture, and different data
owners can make independent decisions on whether to apply DP or not, providing flexibility without
compromising the overall design.

5.4 Scaling FLEXOLMO Further

§d]and §5.1] present controlled experiments showing that FLEXOLMO performs competitively even
againsts models trained without data restrictions. Motivated by this, we evaluate whether the
FLEXOLMO recipe can further improve an already strong model trained on the same datasets.

We adopt the OLMo-2 7B setup [69]], starting from a a checkpoint pre-trained on 4T tokens and
annealed for 50B tokens to produce a public expert. We then train two additional experts on math and
code, each for 50B tokens, and combine them with the public expert to form a three-expert version of
FLEXOLMO. We compare this model to the released version of OLMo—ZE] which was also continued
from the same 4T-token checkpoint using an equivalent compute budget (3 x 50B-token training).

“We chose the math data because it is the smallest among our simulated closed sets and the math expert is
trained for three epochs (instead of one), making it more susceptible to extraction. Therefore, the extraction
rates with the math data likely represent an upper bound.

SManual inspection suggests that the prefix prompts a deterministic continuation, causing the model to
generate text that matches the target data even if the model has never seen that data during training, aligning
with findings from previous research [102].

®https://huggingface.co/allenai/OLMo-2-1124-7B
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Table 3: Scaling up FLEXOLMO(: We applied the FLEXOLMO recipe to a 4T token pretrained
public model (Pre-anneal model used in OLMo-2 7B) by incorporating two additional experts focused
on math and code. The resulting modeling shows better performance compared to OLMo-2 7B, with
equivalent training FLOPs. Evaluation is done with 1,000 samples per subtasks. As FLEXOLMO with
3 active experts which makes the inference FLOPs 2.5x more than the dense models like OLMo-2
7B.

Inf. FLOPs MC9 GEN5 MMLU MMLU Pro AGIEval BBH Math2 Code4 Avg.

Pre-anneal model 1x 74.8 628 63.1 32.1 46.8 38.2 17.4 8.7 43.1
OLMo-2 7B 1x 71.8  70.2 63.7 31.0 504 498 426 133 498
FLEXOLMO 2.5x 778 710 65.2 33.5 519 531 51.0 189 528

As shown in[Table 3] FLEXOLMO consistently outperforms OLMo-2, with especially large gains on
math and code tasks (BBH, Math2, Code4). This suggests that expert specialization with selective
activation enhances performance without catastrophic forgetting or forcing diverse capabilities to
compete for fixed model capacity. The results align with BTX [50], which similarly trains modular
models to improve performance, even without data constraints.

6 Conclusion

We introduce FLEXOLMO, a new class of LMs that solves real-world data constraint challenges with
(1) modular, distributed training, where different model parameters are independently trained on
disjoint and locally maintained datasets, and (2) data-flexible inference, where data can be selectively
included at inference-time, with guarantees. We show that FLEXOLMO significantly outperforms
competitive baselines, while providing the benefits of distributed training and flexible inference. We
hope this work broadens access to diverse datasets for LM training—datasets that would otherwise
remain inaccessible because standard LM training requires centralized data pooling and offers no
opt-out mechanism for data use based on proposed use cases or other data limitations.
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A Model Details

A.1 Baseline Details

Prompt-based routing We implemented a domain-specific classifier where each input query is
categorized into exactly one of n domains using the prompts shown below. Once classified, the query
is routed exclusively to the corresponding expert model for processing. In particular, the following
prompt was used for our primary experimental setup:

"""Classify the given text into one of the following domains:
: Math

Code

General science and educational content

News

Creative writing and literature

Reddit

Research and academic content

Other

|
~ oW NP O

Provide the number between 0 and 7."""
For ablations with four datasets instead of eight, we used the following prompting.

"""Classify the given text into one of the following domains:
- 0: Math

1: Code

— 2: General science and academic content

3: Other

Provide the number between 0 and 3."""

Branch-Train-Merge (BTM) BTM [11] first assigns a weight to each expert and then combines
their predictions through ensembling.

Formally, for a test instance « and the expert ¢ we compute the negative-log-likelihood loss £;(x)
and convert it to a weight with a temperature-controlled softmax:

exp(—ﬁi(x)/T)

M J
> exp(—L;(@)/7)
where 7 > 0 sharpens (7 < 1) or flattens (7 > 1) the distribution over the M experts. We optionally
retain only the k largest-weight experts S, (z) (k< M) and renormalize:

() = wi(z)1[i € Sk(x)].

Zjesk(z) w; ()

At inference time, let z; ; € RVl be the logit vector produced by the expert i at generation step ¢. We
combine logits token-by-token:

zi(v) = Z Wi () it (v), veV.

1€k ()

w;(x) =

A.2 Training Details

In FLEXOLMO, to initialize router embeddings with domain embeddings, we sample 1,000 documents
from each data source, process them through GritLM/GritLM-7B [13] to obtain document
embeddings, and then average these embeddings.

To obtain proxy data D;, we train a binary classifier to distinguish D; from Dp,;, and select pub-
lic samples with the highest predicted likelihood of belonging to D;. Specifically, we finetune
Snowflake/snowflake-arctic—embed-xs [103], which contains 22M parameters, using a
learning rate of 3 x 106, The classifier is trained on a balanced dataset of 500,000 samples (250,000
documents from each source - public and private). The classifier quickly achieved an accuracy above
95% across all datasets considered.
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B Data Details

Table [3] presents the statistics of our training data described in Figure 5: Statistics of our data

Section 411 mix (descriptions in §4.T).
. . Name # Tokens (B)
B.1 Reddit Data Processing
Public Mix 2.37 x 10°
The construction of this dataset involved three major phases. News 158.0
Creative Writing 201.9
1. Reddit data filtering A dataset of submission/comment ~ Math 20.3
pairs was derived from the PushShift Reddit dataset [104] (bulk SAtargod?f ggg
dump as of March 2023) — the same dump used for Dolma Red- cademic ’
. : . Educational text 102.2
dit (https://huggingface.co/datasets/allenai/ Reddit 99
dolma). ’

To derive our initial dataset, we extracted each submission and
concatenated it with its top-scoring, top-level comment. We
then performed further rule-based filtering with the following
constraints:

« Filter out deleted/removed content.

* Filter out content marked as over_18.

« Filter out all posts from a list of 26,123 banned or NSFW subreddits.

* Filter out posts from likely bot authors (drawn from https://botrank.pastimes.eu/ as of Sept 2024).
« Filter out posts containing non-text media.

* Perform document-level text deduplication via Bloom filter.

2. Retrieval-based subreddit selection Dense retrieval was then used to identify academically-
relevant subreddits for further filtering. We adapted search queries from MMLU test questions, and
performed dense retrieval with these queries on the filtered Reddit data from Step #2, retaining the
top 5 hits for each query. Based on these retrieved outputs, we selected 151 subreddits meeting the
following criteria:

* Subreddit has >= 20 *unique* retrieved items for queries within a given MMLU category; OR
* Subreddit has >=100 retrieved items for queries across all MMLU categories.

We then filtered the dataset from Step #1 to retain only documents from subreddits on this list of 151
subreddits.

3. Format rewriting Finally, the data from Step #2 was input to a synthetic rewriting pipeline to
generate academic QA items with coverage of diverse question formats. We defined 7 categories of
question format inspired by variation observed in MMLU, and used these to construct prompts for
QA text generation. The format categories are as follows:

open-ended

statement completion
fill-in-the-blank

statement truth verification
which-of-following-has-property-X
which-of-following-is-true

Nk W=

in-question options

For each format category we constructed a prompt for generating questions of that category given an
input text. Below is an example prompt, for the “in-question-options” category. Prompts for other
categories differ in 1) the content of the “For format ...” paragraph and 2) the in-context examples
(1-3 examples per prompt).
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I will ask you to convert a text into multiple-choice questions. Here is the text:
“ftext}”

Instructions: Convert the information in the text into academic multiple choice
questions. ONLY include questions that are academic. DONOT reference the text in the
question.

For format, use questions that provide options within the question and give choices for
which options are true. Examples:

Dogs have which of the following properties?

L. They are mammals
II. They have five legs.
II1. They have a tail.

A. I only

B. Il only
C. Il only
D. I and Il

Answer: D
0% % Yo
Which of the following are cities in the US?

L Paris
1I. Athens
HI. Chicago

A. I only

B. Il only

C. Il only

D. I, Il and 111

Answer: C

Separate ALL questions with “\n% % % %\n .

For generating our rewritten QA data, we prompted GPT-40 mini (Jan 2025 version). We iterated
over the submission/comment pairs in the data from Step #2, and for each of these texts we sampled a
format category and prompted the GPT-40 mini to generate QA pairs for that text and format category.
For longer input texts, format categories were resampled and prompted for again, a number of times
proportional to the length of the text.

Finally, GPT-40 mini outputs were parsed into separate QA items based on the “% %% %" separator,
and 50% of items were prepended with the prefix “Question: .

We validated these rewritten data in experiments with OLMo 7B [105]] models trained to 2T tokens,
carrying out continued pretraining on a 50-50 mix of DCLM and Reddit data while annealing the
learning rate to zero, a strategy used in [106} 69, 98]. We run this continued pretraining with two
versions of Reddit data: the filtered data from Step #2, and the rewritten data from Step #3. We find
that the rewriting improves over the non-rewritten data in both MC9 and MMLU: MC9 improves
from 0.74 to 0.76 and MMLU improves from 0.62 to 0.66.

C Evaluation Details

All evaluations are done using the OLMES evaluation standard introduced by [108]], following key
metrics from the OLMO 2 framework [69]. Table E]presents a detailed breakdown of our evaluation
datasets and metrics. General description is provided in here, we provide more details.
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Table 4: Evaluation benchmarks. . Benchmarks are divided into general-purpose and domain-
specific categories. Original dataset citations are listed at right. ' SCIRIFF spans several subtasks
(BioASQ factoid, general, and yes/no questions, COVID DeepSet QA, and PubMedQA) evaluated
with different metrics. MATHT includes seven subsets: algebra, counting and probability, geometry,
intermediate algebra, number theory, prealgebra, and precalculus.

General Benchmarks Domain-specific Benchmarks
Benchmark Metric Citation = Benchmark Metric Citation
ARC-EAsY AcCraw 1751 HUMANEVAL Pass@1 [96]
ARC-CHALLENGE AcCraw 1751 HUMANEVALPLUS Pass@1 [95]
BooLQ AcCraw 176l MBPP Pass@1 194]
CSQA AcCraw [771 MBPPPLUS Pass@1 951
HELLASWAG AcCraw 1781 SCIRIFFT — 197]
OPENBOOKQA AcCraw 1791 MATH' Exact Match [93]
PIQA AcCraw 180] NEWS GENERATION LM-as-judge -
SocCIAL IQA AcCraw 1811 POEM GENERATION LM-as-judge -
WINOGRANDE AcCraw [82] GSMSK Exact Match  [92]
MMLU AcCraw (881
MMLU-PRrO AcCraw [89]
AGIEVAL (English) AcCraw 1901
BIG-BENCH HARD (BBH)  Exact Match [91]]
CoQA F1 [83]
DROP F1 1871
NATURAL QUESTIONS (NQ) F1 1851
SQUAD Fl [84]
TRIVIAQA F1 [86]
NARRATIVEQA F1 [107]

Aggregate scores (averages of individual benchmarks)

GENS5: CoQA, SQUAD, NATURAL QUESTIONS, TRIVIAQA, DROP

MC9: ARC-EASY, ARC-CHALLENGE, BOOLQ, CSQA, HELLASWAG, OPENBOOKQA, PIQA, SOCIAL IQA, WINOGRANDE
CODE4: MBPP, MBPPPLUS, HUMANEVAL, HUMANEVALPLUS

SciRiFF  We select five subtasks that do not require structured prediction: BioASQ-Factoid,
BioASQ-Yes/No, BioASQ-General, PubMedQA, and COVID-QA., with our tables reporting
the average performance across all five tasks.

MATH We assess solution correctness through exact matching with ground truth answers, following
the methodology established in [109].

News Generation We use the muse-bench/MUSE-News dataset from [110], selecting articles
containing between 64 and 128 tokens. Models are prompted to continue an article given a prefix of
the first 32 tokens, using a sampling temperature of 0.8. A Llama-3.3-70B-Instruct model
serves as the judge, evaluating each completion based on journalistic quality (2 points), topical
coherence (2 points), and clarity/fluency (1 point), for a total score between 0 and 5, which is then
normalized to a 0-100 scale. To reduce variance, we generate five completions per prompt and report
the average score.

Poem Generation We employ the merve/poetry datasel[]> filtering poems to those containing
64—-128 tokens. From a total of 176 poems (147 Renaissance, 29 Modern), we reserve five poems
(three Renaissance, two Modern) for few-shot examples and use 100 for testing. Models continue
each poem from its first four lines, following the same prompting and evaluation settings as in
NEWSGEN. A genre-aware Llama-3.3-70B-Instruct judge evaluates each completion based
on poetic craftsmanship (2 points), thematic coherence (2 points), and clarity/fluency (1 point), with
scores normalized to a 0—100 scale. As with news generation, five completions are generated per
prompt, and we report the average score across all instances.

"nttps://www.kaggle.com/datasets/ishnoor/poetry-analysis-with-machine-learning/
data

23


https://www.kaggle.com/datasets/ishnoor/poetry-analysis-with-machine-learning/data
https://www.kaggle.com/datasets/ishnoor/poetry-analysis-with-machine-learning/data

D Methodology Intuition

D.1 Problem Setup

Given an input data x € R”, the router learning can be viewed as a multi-class classification problem
with n+1 classes: a public class Cpyp, and 12 closed classes {C;}™_. The scoring function s; : R - R
such that s;(x) = r; - x represents the score for class C;, where r; is the router embedding and the
higher scores indicate higher class membership likelihood.

Training: Pairwise Blnary Classification In training experts to coordinate (§3.3.1), we learn n
binary classifiers {f;}"_,, where each f; : R" — {Cpu», C;} discriminates between Cpub and Ci:

C; if 8;(x) > spup(x
0 = G (x) > spun(x)

pub  Otherwise.

The decision boundary h; between Cp,,p, and C; is defined as:
hi = {x € R" : s,,(x) = si(x)}.

Inference: Multiclass Classification At inference time (§[3.3.2] - these n binary classifiers are
combined into a unified multi-class classifier that maps from R” to the complete class space

Cpub, C1, . .., Cp. The final classification decision is determined by:
F(x) = arg _ _max 8:(x).
i€ {pub, 1, n

The key question is: how could we make the ensemble of binary classifiers { f; }}_; route inputs as
close to if we had trained one unified multiclass classifier F' end-to-end on all data‘7

Our intuition is if each binary classifier f; learns the decision boundary "C; vs. not C;" rather than
just "C; vs. Coup", this could make decision boundary that tightly encircles C; which leads to better
multi-class classification.

D.2  Anchor Point and Negative Bias . Classification Boundary
To ensure each classifier f; learns a better decision 7 (Toom,
. o pub | °
boundary h;, we propose two key techniques: 6 Sgesg®
N % 9 o

Freezing 1,1, and M,,;, as anchor points During 05’5
training of each binary classifier f;, we fix the public ~ &* J

. 4
expert Mpy, and router embedding rp,p, to ensure €3 i
all classifiers share a common coordinate system by 2 il
maintaining: 1 S - C;Bb\ased bouncary

7’ == No bias boundary
. 4
Spub(X) = rpup - %, Vi € {1,--- ,n}. % i 2 3 4 5 6 1 8

Feature 1

Without this constraint, each binary classifier would

L. . YPR S Figure 6: During training, the negative bias
optimize both ry,,1, and r; independently, resultmg in g & £ &

shifts the decision boundary. So that a more
inconsistent coordinate systems where rpub #* rI()]u)b selective subset of data will be used to train
for ¢ # j during the training of binary classifiers the expert corresponding to C;.
fi and f;. Such inconsistency would invalidate the
multi-class classifier F'(x), as it would attempt to compare scores computed in incompatible embed-
ding spaces. By maintaining a fixed reference point, we ensure all decision boundaries h; are defined
relative to the same coordinate system, enabling their meaningful composition during inference
without additional training.

Adding a negative bias During training of f;, each binary classifier only needs to satisfy r; - x >
I'pub - X for x € C;. When Cpyp, and C; is separable, many possible r; vectors (no bias boundary in
can satisfy this constraint without precisely characterizing the specialized region of C;. We
refine this by adding a negative bias term to each expert:

ri-x+b; >rpp-x Vie{l,2,..,n}

As illustrates, the negative bias term could help move the decision boundary h; closer to
C;’s data points. This means, during training, a more selective subset of data will be used to train the
local expert. This facilitates merging, where experts compete not only with Cpy1, but with each other.
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