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Abstract

We introduce Olmo 3, a family of state-of-the-art, fully open language models at the 7B and 32B
parameter scales. Olmo 3 model construction targets long context reasoning, function calling, coding,
instruction following, general chat, and knowledge recall. The release includes the entire model
flow, i.e., the full lifecycle of the family of models, including every stage, checkpoint, datapoint, and
dependency used to build it. Our flagship model, Olmo3Think-32B, is the strongest fully open thinking
model released to-date.
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1 Introduction
We introduce Olmo 3, a family of state-of-the-art, fully open language and thinking models at the 7B and
32B parameter scales with a diverse set of capabilities, including long context reasoning, function calling,
coding, instruction following, general chat, and knowledge recall. With the Olmo 3 release, we go farther
by providing complete access to its entire model flow: the full life-cycle of a language model, including
every stage, checkpoint, datapoint, and dependency required to create it. This enables infinite customization
through intervention at any stage of the model development process—not just the final weights.

To truly advance open-source AI research and development, we argue that releasing a state-of-the-art language
model should make its entire model flow—not just its endpoint—transparent and accessible. With the Olmo
3 release, we provide complete access to the pathways we charted throughout the model flow, from initial
conception to the creation of state-of-the-art, fully open language models.

Specifically, we train Olmo 3 Base as a foundation on which to build models for thinking and tool use
capabilities. From Olmo 3 Base we develop our flagship model, Olmo3Think, trained to perform step-by-step
reasoning by generating intermediate thinking traces before producing a final answer. Olmo 3 Think-32B is
the strongest fully open thinking model, narrowing the gap to the best open-weight models of similar scale,
such as the Qwen 3-32B thinking models (Yang et al., 2025a), on our suite of reasoning benchmarks, while
being trained on six times fewer tokens. For the first time, the Olmo 3 release also enables reasoning chains
to be traced back to their original training data.
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Figure 1 In Olmo 3, we release the full model flow, including data, code and weights for all stages of development.
Olmo 3 Think 32B (shown here) is competitive with Qwen 3 32B which does not have a released base model. Our
underlying Olmo 3 Base 32B is comparable with the best open-weights base models like Qwen 2.5 32B and Gemma 3
27B, but it additionally comes with intermediate checkpoints that enable the study of mid-training and long context
extension recipes.

In addition, we train Olmo 3 Instruct, which produces shorter sequences than the corresponding Olmo 3
Think model to improve inference efficiency and is designed to focus on general chat and function calling.
Olmo 3 Instruct outperforms open weight models Qwen 2.5 (Qwen et al., 2024), Gemma 3 (Gemma 3 Team,
2025), Llama 3 (Grattafiori et al., 2024), and narrows the gap to Qwen 3 (Yang et al., 2025a) model families
at a similar scale. The Olmo 3 family is the best collection of fully open base models, outperforming Stanford
Marin (Hall et al., 2025), Apertus (Apertus Team, 2025), and LLM360 (Liu et al., 2025c). Finally, we introduce
Olmo 3 RL-Zero with RL training on top of our base model to enable researchers with RL benchmarking with
open pretraining data.
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Figure 2 Depiction of Olmo 3’s model flow. Development is divided into major pretraining and post-training stages,
each further divided into sub-stages with their own recipes (i.e., training data and method).

The Olmo 3 family is the strongest collection of fully open base models, outperforming Stanford Marin (Hall
et al., 2025), Apertus (Apertus Team, 2025), and LLM360 (Liu et al., 2025c). To achieve these results, we
construct new cutting-edge datasets for every stage of the model training pipeline. This includes Dolma 3,
our fine-grained pretraining data mix encompassing heavily deduplicated natural data from the web, our
midtraining mix of high-quality data designed to jump-start reasoning, and our new long-context training mix.
We also introduce Dolci, a post-training data suite that advances step-by-step reasoning during supervised
finetuning, provides high-quality contrastive data for preference tuning, and offers challenging general and
reasoning prompts for reinforcement learning.

In addition, we develop a set of new algorithmic and infrastructure advances across data processing, evaluation,
pretraining, and reinforcement learning. This includes OlmoBaseEval, a suite of benchmarks specifically for
making base model development decisions at compute-efficient scales, and OlmoRL, our RL training approach
that features algorithmic and infrastructural improvements targeted in particular at training our thinking
models. To design these training recipes and coordinate targeted improvements across a wide range of
capabilities at each stage of the model training pipeline, our development framework balances distributed
innovation with centralized evaluation.

2 Model Flow for Olmo 3
In this section, we provide a brief overview of all of the components of the Olmo 3 model flow, highlighting our
methodology in targeting reasoning and tool use capabilities in ways that advance beyond OLMo 2 (OLMo
et al., 2024) and other open weight models. Subsequent sections will then provide deep dives on each of the
model flow components. Olmo 3 training is divided into major stages of pretraining and post-training, each
of which is further divided into sub-stages as outlined in Figure 2.

2.1 BaseModel Training
We develop Olmo 3 Base in three stages of pretraining for up to 5.9T tokens (Section 3), mid-training for
100 billion tokens (Section 3.5.1), and the newly-added long-context extension for 50 (Olmo 3 7B) or 100
(Olmo 3 32B) billion tokens (Section 3.6).

Evaluation We develop OlmoBaseEval, a collection of benchmarking suites to support decision-making
during base model development (pretraining and midtraining). Our goal is to be compute-efficient by making
development decisions based on models trained at a small scale. The challenge is that such models can exhibit
random-chance performance on certain tasks, with small differences in scores that are hard to distinguish
from benchmark noise. To address this, we (1) aggregate scores over clusters of tasks that assess similar
capabilities (§3.3.1); (2) develop proxy metrics for evaluating small-scale models (§3.3.2); and (3) improve
overall signal-to-noise ratio by evaluating on more examples from noisy tasks or even removing them entirely
(§3.3.3).
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Data Curriculum We curate specialized datasets for each training stage, with increasing focus on core
capabilities that enable enabling downstream elicitation of target capabilities, like thinking, instruction-
following, and others:

• Pretraining: We first train Olmo 3 Base on Dolma 3 Mix, our 6T token pretraining data mix. While
Dolma 3 Mix is comprised of largely the same types of data sources used in other open pretraining
recipes (Soldaini et al., 2024; Bakouch et al., 2025; OLMo et al., 2024), we demonstrate three key novelties:

– New tooling for fast and scalable global deduplication at the trillion-token scale,
– Two new methods for optimizing selection of training tokens: token-constrained mixing and quality-aware

upsampling,
– A novel source of academic PDFs—olmOCR Science PDFs—converted to linearized plain text using

olmOCR (Poznanski et al., 2025a) (§3.4.2),

• Midtraining: We continue training on Dolma 3 Dolmino Mix (§3.5), our 100B data curated to boost
target capabilities across code, math, and general knowledge QA domains through the introduction of:

– A new two-part methodological framework combining 1) lightweight, distributed feedback loops on
individual data sources, with 2) centralized integration tests to assess candidate mixes on base model
quality and post-trainability.

– More intentional inclusion of data types—instruction data and thinking traces—to lay groundwork for
supporting post-trainining.

• Long-context extension (Dolma 3 LongminoMix): We curate high-quality data, including a large collection
of scientific PDFs processed with our state-of-the-art OCR tool, olmOCR (Poznanski et al., 2025a,b).
These PDFs are incorporated throughout all stages of base model training but form an especially important
component of our long-context extension training data; with over 4.5 million documents with length above
32K totaling over 380 billion tokens, this collection is the largest openly available for long-context researchers.
Olmo 3 is our first model with long-context capabilities, supporting up to 64K context after extension.

Open Artifacts We release all our intermediate checkpoints as well as the final models at the end of each
stage of training. We release not just our training data, but also release both data pools, 10T tokens of
cleaned source tokens, and datamixes, which are the actual tokens used for base model training.1 For data
mixes, we release both our actual training mix for Olmo 3 Base as well as a smaller sample for accessible
experimentation with less compute (e.g., both 5.9T mix and 100B mixes for Dolma 3 Mix).

2.2 Post-training
Figure 2 shows our post-training pipeline for the Olmo 3 model flow tracking three pathways. This pipeline
support the training of Olmo 3 Think (§4), and Olmo 3 Instruct (§5), each of which consists of a
three-stage training pathway, as well as training of Olmo 3 RL-Zero (§6), which applies reinforcement
learning training directly following the base model training. For post-training, we introduce Dolci, a new
state-of-the-art dataset with tailored data at each stage of post-training to address thinking and function
calling, and Olmo 3-RL, our new algorithmic advances to RLVR with long thinking traces.

• Olmo 3 Think (§4) is trained for reasoning by generating extended thinking before producing a final
answer. To achieve this, we employ a three-stage post-training process comprising Supervised Fine-Tuning
(SFT), Preference Fine-Tuning via Direct Preference Optimization (DPO), and then Reinforcement Learning
with Verifiable Rewards (RLVR). We observe consistent gains across all three stages, demonstrating the
impact of careful data curation, algorithmic refinement, and infrastructure engineering.

– We introduce Dolci Think SFT (§4.2), Dolci Think DPO (§4.3), and Dolci Think RL (§4.4),
new cutting-edge post-training datasets designed to target a broad range of key capabilities such as
math, coding, instruction following, and general conversation. The dataset includes synthetic examples
with long thinking traces for supervised fine-tuning, high-quality contrastive data following the insights
from Delta Learning Geng et al. (2025), and challenging prompts for reinforcement learning across both

1A data mix may involve upsampling or repeating data from a data pool.
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verifiable and non-verifiable domains. Notably, our new approach to curate contrastive instances for
preference tuning expands the reasoning frontier of the model beyond what SFT alone can provide and
primes the model for effective reinforcement learning.

– We introduce algorithmic and infrastructure advances in reinforcement learning with verifiable rewards
(§4.4). This approach generalizes verifiable reasoning to multiple domains, expanding beyond the settings
explored in OLMo 2 to include code and general chat. Our improvements enable longer and more stable
RL runs across diverse domains and increase the overall efficiency of training cycles, leading to a 4x
speedup in RL training.

• Olmo 3 Instruct (§5) is trained to produce efficient and helpful responses to user queries without
generating internal thinking traces. This model prioritizes typical user needs, such as avoiding excessive
verbosity for easy user understanding and function-calling for user information seeking. In such settings,
thinking traces are unnecessary and inference-time efficiency matters more than inference-time scaling.
We introduce Dolci Instruct SFT, our new dataset enriched with data specifically created for function
calling (Section §5.2.1). To directly optimize model interactivity on top of capabilities, we extend our
Delta Learning preference pipeline in Dolci Instruct DPO, incorporating multi-turn preference data
and targeted data length interventions that encourage concise responses (Section §5.3.1). Finally, we
use reinforcement learning with verifiable rewards (Section §5.4) to further refine core capabilities, where
preference tuning synergizes with RL to improve model performance while maintaining learned brevity.

• Olmo 3 RL-Zero (§6) To date, all leading open RLVR benchmarks and algorithms train on top of
open-weights models that do not reveal their pretraining or mid-training data (Chu et al., 2025; Yang et al.,
2025a). This limits the ability for the community to study the role of pretraining data on RLVR performance.
It can lead to a myriad of issues with benchmark evaluations being contaminated e.g. mid-training data
containing the evaluation which makes spurious rewards as effective as true reward (Shao et al., 2025; Wu
et al., 2025c) or improvements from fixing prompt templates outweighing the improvements from RL (Liu
et al., 2025b).
We therefore release a fully open dataset Dolci RL-Zero, an algorithmic RL zero setup for Olmo 3, and
open-source OlmoRL code to enable clear benchmarking for the ecosystem. We perform RLVR from Olmo
3 Base over four benchmarking domains to create the Olmo 3 RL-Zero family: math, code, precise
instruction following (IF) and a general mix. In all cases, we further decontaminate Dolci RL-Zero from
pretraining and midtraining data to guarantee our setup carefully studies the effect of RLVR without data
leakage confounding our conclusions.

2.3 Results
Table 13 demonstrates a snapshot of our evaluation for Olmo 3 Think compared to other open-weight and
fully open models. Refer to Section §3.1 for evaluation of Olmo 3 Base, Section §5.1 for Olmo 3 Instruct,
and Section §4.1 for details about Olmo 3 Think.

Olmo 3 Think is the strongest fully open thinking model we are aware of. It is better than Qwen2.5-Instruct,
Gemma 2 and 3 27B, DeepSeek R1 Distilled Qwen 32B; it is also close to Qwen 3 and Qwen 3 VL 32B models.
narrowing the gap to the best open-weight models of similar scale – such as Qwen 3 32B – while training on
roughly 6x fewer tokens.

3 Olmo 3 Base
The goal of Olmo 3 Base is to establish a strong foundation that supports a diversity of general capabilities
while enabling downstream capabilities like thinking, tool-use, and instruction-following to be easily elicited
during post-training. In this section, we describe our recipe for Olmo 3 Base, organized as follows:

• Modeling (§3.2) Olmo 3 Base closely follows OLMo 2 in that it is a dense model at 7B and 32B sizes, with
largely identical hyperparameters. Apart from engineering improvements that enable better throughput, we
focus on enabling a larger context window. We lay out the details in §3.2.

• Evaluation (§3.3) To guard against overfitting the base model to any one capability, we greatly expand on
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Benchmark Olmo 3 Think
32B SFT

Olmo 3 Think
32B DPO

Olmo 3 Think
32B Qwen 3 32B Qwen 3 VL 32B

Thinking Qwen 2.5 32B Gemma 3 27B
Instruct

Gemma 2 27B
Instruct

Olmo 2 32B
Instruct

DeepSeek-R1-
Distill-Qwen-

32B

Math

MATH 95.6 95.9 96.1 95.4 96.7 80.2 87.4 51.5 49.2 92.6

AIME 2024 73.5 76.0 76.8 80.8 86.3 15.7 28.9 4.7 4.6 70.3

AIME 2025 66.2 70.7 72.5 70.9 78.8 13.4 22.9 0.9 0.9 56.3

OMEGA 43.1 45.2 50.8 47.7 50.8 19.2 24.0 9.1 9.8 38.9

Reasoning

BigBenchHard 88.8 89.1 89.8 90.6 91.1 80.9 82.4 66.0 65.6 89.7

ZebraLogic 70.5 74.5 76.0 88.3 96.1 24.1 24.8 17.2 13.3 69.4

AGI Eval English 85.9 87.8 88.2 90.0 92.2 78.9 76.9 70.9 68.4 88.1

Coding

HumanEvalPlus 90.0 91.6 91.4 91.2 90.6 82.6 79.2 67.5 44.4 92.3

MBPP+ 66.7 67.2 68.0 70.6 66.2 66.6 65.7 61.2 49.0 70.1

LiveCodeBench v3 75.8 81.9 83.5 90.2 84.8 49.9 39.0 28.7 10.6 79.5

IF

IFEval 83.9 80.6 89.0 86.5 85.5 81.9 85.4 62.1 85.8 78.7

IFBench 37.0 34.4 47.6 37.3 55.1 36.7 31.3 27.8 36.4 23.8

Knowledge &QA

MMLU 85.3 85.2 85.4 88.8 90.1 84.6 74.6 76.1 77.1 88.0

PopQA 33.1 37.0 31.9 30.7 32.2 28.0 30.2 30.4 37.2 26.7

GPQA 55.7 57.6 58.1 67.3 67.4 44.6 45.0 39.9 36.4 61.8

Chat

AlpacaEval 2 LC 69.1 78.6 74.2 75.6 80.9 81.9 65.5 39.8 38.0 26.2

Safety 64.8 65.3 68.8 69.0 82.7 81.9 68.6 74.3 83.8 63.6

Table 1 Results on our flagshipmodel Olmo 3 Think-32B on our Olmo 3 Eval suite. Olmo 3 Think-32B is the best
fully open model at 32B.

our evaluation suite from OLMo 2 to include more benchmarks. We also improve our ability to rely on
small scale experiments by improving how we select and use benchmarks throughout development. We
discuss this more in §3.3.

• Data We introduce Dolma 3, a collection of data to support multiple stages of base model development:
1. Pretraining (§3.4) We train on Dolma 3Mix, 5.9T tokens of diverse, natural data including sources like

web pages, academic PDFs, code repositories, and more. We trained on 1024 H100s.2 Our training
throughput achieves 7.7K tokens / device / second for Olmo 3 Base-7B.

2. Midtraining (§3.5) We train on Dolma 3 Dolmino Mix, 100B tokens combining our highest-quality
pretraining data with substantial task data for math and code problems, instruction following, reading
comprehension, and more. We trained on 128 H100 GPUs.3

3. Long-context extension (§3.6) We train on Dolma 3 LongminoMix, 50B / 100B tokens combining long
documents with our midtraining data. We trained on 256 H100s.4 Long-context extension required
special training considerations, which we detail in §3.6.

3.1 Main Results for Olmo 3 Base
Tables 2 and 3 compare Olmo 3 Base with leading open base models, demonstrating both the effectiveness
of our evaluation design and Olmo 3 Base ’s strong performance across a broad set of capabilities.

Olmo 3 Base is the best fully open model at 32B parameter, outperforming Stanford Marin 32B. For the
32B scale, in Math and Code performance we see that Olmo 3 Base soundly outperforms other fully open
models and remains closely on par with the most open weight models. In MCQA performance Olmo 3 Base
is on par with other open models in Non-STEM areas, and with fully open models in STEM areas. Finally, in
GenQA tasks, Olmo 3 Base outperforms most of the listed open models. As for the 7B scale, Olmo 3 Base

2We ran on 128 nodes with 8× NVIDIA H100 (80GB HBM3) per node, connected via TCPXO (200 Gbps/GPU). We used
Hybrid-Sharded Data Parallelism (HSDP) via PyTorch FSDP2 (Zhao et al., 2023), with 8-way sharding so each node hosted a
single model replica. Communication-intensive collectives were therefore restricted to within-node, improving efficiency.

3Same 8-way HSDP configuration but on 16 identical nodes.
432 nodes with 8-way context parallelism, 32-way data parallelism, and activation checkpointing.
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Fully-open Models Open-weight Models
Olmo 3
32B

Marin
32B

Apertus
70B

OLMo 2
32B

Qwen
2.5 32B

Gemma
3 27B

Mistral
3.1 24B

Seed
36B

Gemma
2 27B

Llama
3.1 70B

OlmoBaseEval Math 61.6 49.3 39.7 53.9 64.7 63.2 59.5 15.3 57.5 62.0
GSM8k 80.5 69.1 63.0 77.6 81.1 81.3 79.3 26.9 76.3 81.2
GSM Symbolic 61.0 42.0 38.6 53.1 56.2 61.2 59.1 10.3 57.3 64.6
MATH 43.4 36.8 17.4 31.0 56.7 47.0 40.1 8.7 38.8 40.2
OlmoBaseEval Code 40.0 30.8 23.3 20.5 48.3 41.6 42.4 54.9 41.0 36.3

BigCodeBench 43.9 34.5 24.0 22.2 48.1 44.0 46.4 50.7 43.4 43.4
HumanEval 66.5 52.3 32.5 29.4 65.6 62.1 65.5 71.3 57.5 57.4
DeepSeek LeetCode 1.9 1.3 1.2 0.8 8.0 5.8 0.1 13.0 4.7 0.2
DS 1000 29.7 26.3 17.8 20.4 43.3 34.3 36.3 44.0 29.7 29.5
MBPP 60.2 52.1 37.6 37.1 69.8 60.0 61.9 72.0 61.7 55.5
MultiPL HumanEval 35.9 18.5 18.4 10.5 49.7 37.7 39.0 69.2 40.3 32.2
MultiPL MBPPP 41.8 30.5 31.3 23.2 53.6 47.2 47.7 63.8 49.7 35.9
OlmoBaseEval MC STEM 74.5 75.9 70.0 75.3 82.2 80.2 81.5 83.4 75.6 80.1

ARC MC 94.7 93.4 90.7 94.4 97.0 95.8 96.2 97.3 94.1 95.2
MMLU STEM 70.8 68.4 57.8 64.7 79.7 74.9 76.1 82.8 65.8 70.0
MedMCQA MC 57.6 61.8 55.9 60.2 68.8 64.7 68.8 69.6 61.8 67.8
MedQA MC 53.8 60.8 52.4 62.2 68.4 68.7 70.4 70.1 61.0 72.3
SciQ MC 95.5 95.1 93.3 95.1 97.1 96.8 96.3 97.1 95.1 95.4
OlmoBaseEval MCNon-STEM 85.6 84.5 78.5 84.2 89.3 86.7 87.9 89.0 83.2 86.1

MMLU Humanities 78.3 78.9 74.1 79.7 85.0 80.5 82.7 85.7 79.3 83.4
MMLU Social Sci. 83.9 83.7 79.2 84.5 88.4 86.2 88.6 90.1 85.8 87.4
MMLU Other 75.1 75.4 70.1 75.6 81.2 80.2 81.9 82.4 76.9 79.4
CSQA MC 82.3 80.1 76.9 81.2 89.9 79.0 80.5 81.1 78.1 79.0
PiQA MC 85.6 90.5 79.0 87.7 93.3 90.3 91.0 92.5 89.0 91.5
SocialIQA MC 83.9 82.4 79.3 82.3 86.6 81.2 81.0 84.9 81.0 83.5
CoQA Gen2MC MC 96.4 93.9 87.5 94.4 96.8 95.8 94.9 96.9 94.3 95.1
DROP Gen2MC MC 87.2 71.0 56.5 68.6 86.6 84.6 86.5 90.1 66.6 70.3
Jeopardy Gen2MC MC 92.3 95.3 93.2 96.6 97.0 95.9 97.2 96.2 92.0 97.1
NaturalQs Gen2MC MC 78.0 81.0 71.9 78.6 79.9 82.0 84.6 81.4 74.5 82.4
SQuAD Gen2MC MC 98.2 97.6 95.7 97.4 97.9 97.7 97.9 98.1 97.5 97.7
OlmoBaseEval GenQA 79.8 80.3 75.0 79.1 68.5 73.5 78.0 76.0 72.9 81.6

HellaSwag RC 84.8 87.2 84.5 87.5 86.3 86.0 86.2 84.8 86.7 88.4
Winogrande RC 90.3 90.5 87.7 89.4 87.5 91.3 90.8 89.3 90.8 91.7
Lambada 75.7 76.7 74.8 77.0 76.2 77.5 79.3 76.1 76.9 79.6
Basic Skills 93.5 91.1 87.5 88.7 94.2 94.9 91.9 96.0 93.2 92.4
DROP 81.0 76.5 56.3 76.3 53.7 75.9 74.9 76.1 73.2 78.3
Jeopardy 75.3 80.5 77.2 79.1 74.0 82.1 80.3 77.4 80.7 84.0
NaturalQs 48.7 55.1 43.1 51.4 39.3 49.2 45.1 30.7 47.1 53.1
SQuAD 94.5 94.4 90.7 94.0 64.9 92.4 92.6 89.1 93.0 92.9
CoQA 74.1 70.7 72.8 68.7 40.4 12.4 61.1 64.4 14.9 73.9
OlmoBaseEval HeldOut - - - - - - - - - -

BBH 77.6 70.1 58.8 64.6 81.1 77.4 81.4 85.0 74.8 80.8
MMLU Pro MC 49.6 48.1 39.6 46.9 61.1 53.1 58.9 62.2 47.6 50.4
Deepmind Math 30.1 26.7 20.1 22.0 40.7 30.4 35.3 31.3 27.6 40.3
LBPP 21.7 17.3 8.1 8.2 40.3 17.7 30.3 42.6 19.7 11.8

Table 2 Results comparing Olmo 3 Base 32B to other base models using the OlmoBaseEval Main suite (details in
§3.3). Olmo 3 was not evaluated on held-out benchmarks prior to release.

dramatically outperforms other fully open models in Math and Code performance, and is outperformed only
by Qwen models in Math, and Qwen and Nemotron in Code. In MCQA, Olmo 3 Base is on par with the
strongest fully open models in both STEM and Non-STEM areas. Finally, in GenQA tasks Olmo 3 Base
outperforms all but Marin among listed fully open models, and outperforms all but the larger Gemma 2 9B
and Llama3.1 8B among listed open weight models.

3.2 Modeling and Architecture
Olmo 3 modeling and training largely follows that of OLMo 2. We focus this section on the key differences
and refer to the appendix for further details.

Architecture. We adopt a decoder-only transformer architecture based on Vaswani et al. (2017). Details of
the architecture are presented in Table 30 in Appendix A.1. Compared to OLMo 2:

• We train with a context window of 8192 instead of 4096 tokens during pretraining and midtraining stages.
• To support scalable pretraining at longer sequence lengths, and to keep inference costs manageable, we
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Fully-open Models Open-weight Models
Olmo 3
7B

Marin
8B

Apertus
8B

OLMo 2
7B

Qwen3
8B

Nemo.
Nano9B

Gemma
2 9B

Qwen
2.5 7B

Llama
3.1 8B

Granite
3.3 8B MiMo 7B

OlmoBaseEval Math 54.7 39.6 29.2 41.7 67.2 49.8 48.8 60.7 36.9 41.5 54.3
GSM8k 75.5 60.9 48.2 67.1 84.5 82.3 68.5 79.9 56.4 61.0 74.3
GSM Symbolic 48.6 33.6 26.3 38.8 65.4 62.7 45.1 56.2 35.1 35.5 53.3
MATH 40.0 24.3 13.1 19.1 51.6 4.5 32.9 45.9 19.2 27.9 35.2
OlmoBaseEval Code 30.7 21.4 19.0 10.4 46.1 43.1 30.2 41.0 21.2 18.0 35.7

BigCodeBench 34.1 21.5 20.9 8.8 42.5 43.2 30.9 39.7 30.7 0.4 38.3
HumanEval 49.1 31.6 21.6 16.3 71.7 71.7 40.0 66.1 40.4 0.0 57.0
DeepSeek LeetCode 1.4 0.5 0.6 0.2 8.3 6.8 1.9 5.1 0.1 0.0 1.2
DS 1000 20.2 16.5 11.8 10.1 33.1 30.3 23.4 35.2 22.2 22.6 28.1
MBPP 43.6 36.5 33.5 21.2 66.2 62.3 49.1 55.4 12.1 48.5 48.3
MultiPL HumanEval 28.7 15.6 15.5 4.2 52.3 40.0 27.9 40.3 14.5 22.3 34.5
MultiPL MBPPP 38.2 27.6 29.2 12.2 48.4 47.5 38.2 45.4 28.3 32.3 42.5
OlmoBaseEval MC STEM 66.4 68.1 66.3 64.6 78.8 73.5 72.8 74.7 69.0 65.0 71.6

ARC MC 89.2 89.2 87.9 85.7 95.4 94.1 92.7 93.4 86.4 86.2 91.7
MMLU STEM 59.7 58.1 52.4 53.2 76.7 71.1 62.8 67.6 55.7 55.6 63.5
MedMCQA MC 48.3 52.7 51.7 49.2 63.5 54.5 58.9 60.3 56.5 49.6 56.2
MedQA MC 41.8 47.3 47.6 43.8 62.1 53.5 55.4 56.6 53.7 43.0 53.0
SciQ MC 92.8 93.2 91.9 90.9 96.1 94.3 94.4 95.4 92.7 90.8 93.5
OlmoBaseEval MCNon-STEM 78.2 78.8 74.2 75.2 84.8 81.3 81.3 82.9 76.1 76.9 80.5

MMLU Humanities 68.9 71.4 67.8 67.9 78.6 78.0 74.5 76.2 70.1 67.6 73.6
MMLU Social Sci. 75.0 77.4 74.7 73.1 84.8 82.2 82.9 83.0 75.5 71.8 80.8
MMLU Other 66.9 68.3 66.1 65.2 76.8 73.8 74.2 74.4 69.1 64.5 72.7
CSQA MC 75.3 75.3 72.1 72.0 84.1 74.4 75.3 85.0 72.9 82.3 76.1
PiQA MC 80.2 85.7 80.5 80.1 89.9 86.0 85.7 88.5 78.3 81.5 87.2
SocialIQA MC 80.3 79.8 76.3 77.5 83.3 78.7 80.3 82.9 77.0 83.1 80.7
CoQA Gen2MC MC 92.5 86.2 82.8 85.0 93.7 92.2 92.7 93.5 89.9 87.6 91.4
DROP Gen2MC MC 67.3 63.7 47.5 55.6 78.3 70.0 65.8 69.1 53.3 55.0 64.1
Jeopardy Gen2MC MC 86.9 90.8 90.3 89.5 92.3 90.7 92.8 92.1 88.9 88.4 89.5
NaturalQs Gen2MC MC 69.4 71.5 66.7 66.3 74.1 71.1 72.5 70.5 68.0 69.2 72.2
SQuAD Gen2MC MC 96.9 96.5 91.3 95.3 97.5 97.4 97.3 96.4 94.4 94.5 96.7
OlmoBaseEval GenQA 72.5 75.9 69.0 72.4 71.1 71.8 75.6 67.5 73.1 67.8 71.4

HellaSwag RC 77.7 84.0 81.0 82.2 80.5 80.2 81.8 81.0 81.5 83.7 80.6
Winogrande RC 85.7 88.6 85.8 87.4 86.4 86.2 88.8 86.0 87.3 89.4 86.5
Lambada 68.9 73.9 70.9 70.5 73.0 67.9 76.3 70.3 75.5 76.0 73.1
Basic Skills 89.5 85.6 83.8 82.2 93.5 91.4 89.3 91.4 88.0 88.7 89.7
DROP 71.5 73.0 37.1 61.5 57.2 71.4 68.2 56.7 59.5 38.4 69.3
Jeopardy 60.4 72.7 70.1 70.8 65.1 64.9 75.1 63.0 70.9 69.7 65.6
NaturalQs 32.6 42.6 35.0 37.4 33.8 31.2 40.4 31.2 36.7 37.0 33.1
SQuAD 93.5 93.4 89.6 91.5 89.2 92.3 88.8 87.0 89.2 89.6 90.3
CoQA 72.8 69.5 67.4 68.3 61.6 60.4 71.5 40.5 69.0 37.8 54.4
OlmoBaseEval HeldOut - - - - - - - - - - -

BBH 63.5 55.6 48.1 49.6 76.5 77.0 68.8 54.7 63.0 61.5 75.1
MMLU Pro MC 37.3 38.8 33.9 33.1 50.3 50.2 44.7 48.1 37.4 33.9 44.3
Deepmind Math 23.7 20.2 17.1 16.3 47.7 31.4 23.0 32.8 24.1 32.2 25.4
LBPP 17.1 5.8 7.1 3.1 25.7 31.7 12.4 22.1 9.1 18.5 21.5

Table 3 Results comparing Olmo 3 Base 7B to other base models using the OlmoBaseEval Main suite (details in
§3.3). Olmo 3 was not evaluated on held-out benchmarks prior to release.

introduce a sliding window attention (SWA) pattern (Beltagy et al., 2020) in which each token can attend
to previous tokens in a window of size 4096. We added SWA at three out of every four layers, and ensure
that the last layer always uses full attention.

• During long-context extension, we extend our context window from 8k to 64k over 50B / 100B tokens using
YaRN (Peng et al., 2023). For more details, check Section 3.6.4.

Training. Olmo 3 Base was trained using the OLMo-Core codebase. Using this codebase, we can train a 7B
model at 7700 tokens per second per GPU, and a 32B at 1900 tokens per second per GPU, at a sequence
length of 8192, and with bfloat16 precision throughout. This is equivalent to roughly 43% and 41% MFU
respectively. We achieve this performance by relying on PyTorch’s built-in torch.compile(), custom kernels
for operations such as attention and language modeling head, asynchronous and batched gathering of metrics,
and asynchronous writing of checkpoints, and others. OLMo-core supports pretraining, mid-training, and
SFT, along with auxiliary tools for checkpoint conversion to and from Huggingface format, and tools for
merging model checkpoints. Support for DPO and RL is planned but incomplete. Further details and the
code itself are available at github.com/allenai/OLMo-core.

Parameters for training Olmo 3 Base-7B and 32B are presented in Tables 31 and 32 in Appendix A.1. As in
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Figure 3 Learning rate schedule and loss for Olmo 3 Base 7B. The first half of the learning rate schedule is a cosine
schedule over 5T tokens. We stretch the second half of the schedule to reach a target length of one epoch (5.93T
tokens). Warm-up is 2000 steps, the peak learning rate is 3 × 10

−4, and the final learning rate is 10% of the peak LR.

Figure 4 Learning rate schedule and loss for Olmo 3 Base 32B. The learning rate schedule is a cosine schedule over
one epoch (5.93T tokens), truncated at 5.5T tokens. Warm-up is 2000 steps, and the peak learning rate is 6 × 10

−4.
The schedule targets a final learning rate of 10% of the peak. Due to the truncation, the real final learning rate
is 6.210 × 10

−5. Unintuitively, the learning rate for the 32B is higher than the learning rate for the 7B, but this is
somewhat compensated for by the larger batch size of the 32B (8M tokens vs. 4M tokens per batch).

OLMo 2, we train in stages defined by data curriculum and learning rate schedule (more details in Appendix
Tables 31 and 32).

Tokenizer. We process data for each stage using the same tokenizer as OLMo 2, which is derived from
OpenAI’s cl100k (OpenAI, 2023a,b).

3.3 Experimental Design and Evaluation
Model development requires many iterative data and training decisions. However, benchmarks are not perfect
decision-making tools: different evaluations are only sensitive for making development decisions across specific
ranges of scale and capability (Magnusson et al., 2025). Models trained at small compute scales are known to
exhibit random-chance performance on math, code and multiple-choice question answering (MCQA) tasks (Wei
et al., 2022; Gu et al., 2024b) and benchmark noise can reduce the ability to trust small differences in scores
(Heineman et al., 2025). To address these problems, we develop OlmoBaseEval, a collection of benchmark
suites to support decision-making during base model development. OlmoBaseEval features the following
improvements:

• We aggregate scores over task clusters that group benchmarks by assessed capability (§3.3.1),
• We develop proxy metrics for evaluating small-scale models by identifying when capabilities “emerge”

during training (§3.3.2), and
• We improve the overall signal-to-noise ratio by evaluating on more examples from noisy tasks or even
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Figure 5 Task clustering for OlmoBaseEval. Using a set of 23K benchmark results, the clustering method iteratively
merges tasks which rank models similarly, until arriving at a stop condition. To arrive at OlmoBaseEval, we move
tasks in the same format into the same cluster and split MC into STEM and Non-STEM tasks.

removing them entirely (§3.3.3).

We started by targeting a high coverage of capabilities, we selected benchmarks to prioritize science knowledge,
medical/lab knowledge, math and code tasks. Because our data interventions are targeted to a core capability
rather than a specific benchmark (e.g, “Code” rather than “DS-1000”), we group tasks into clusters, where we
expect the benchmarks within a cluster to behave similarly to particular data changes. To handle abilities
where models trained to using small compute budgets (e.g. up our largest experiment scale of 1B parameters
at 100B tokens), we perform a scaling analysis to determine which benchmarks show signal at a small scale,
and find proxy metrics which we use to make decisions. Finally, we analyzed the signal-to-noise ratio of
each benchmark – we selected benchmark metrics to improve SNR, removed benchmarks that were too noisy
for making decisions, and moved benchmarks out of the average if the noise of one particular benchmark
dominated the aggregate scores.

3.3.1 Clustering Tasks
To handle the large number of tasks, we cluster similar tasks into macro-averages. We aim for task clusters to
match the granularity at which we perform data interventions, and for tasks within each cluster to behave
similarly. Our clustering procedure requires a process to determine the similarity of two evaluations—we do
this by collecting a pool of 23K benchmark scores from 70 external, open-weight models.

Using our dataset of evaluation results, we assume that two benchmarks evaluate similar constructs if they
rank models similarly. We perform hierarchical clustering using Ward’s variance-minimization (Ward Jr,
1963), which iteratively merges evaluation scores to minimize the variance of scores between benchmarks
within a cluster. Figure 5 shows the result of the clustering procedure, where we manually select a threshold to
balance the amount and granularity of clusters. Importantly, we do not use the exact result of the clustering
procedure – we manually move a few tasks to ensure the format of the task is the same within each cluster
(e.g. tasks requiring code execution all occur in the same cluster). The resulting task clusters are: MCSTEM,
MCNon-STEM, GenQA, Math, Code and Code FIM.

3.3.2 Scaling analysis

We evaluate open-weight models across compute scales from 10
18 to 10

25 training FLOPs to determine the
compute scale at which particular metrics and tasks are useful for development decisions. On some evaluation
benchmarks it is too difficult to see signal when training models at small scales (Wei et al., 2022), and other
benchmarks ‘saturate’ near the labeling error of the benchmark (Vendrow et al., 2025). However, while many
tasks appear emergent, continuous proxy metrics have been shown to be a better decision making tool for
model performance before we exit the noise floor (Schaeffer et al., 2023; Huang et al., 2024b; Magnusson
et al., 2025). We propose a Base Easy task suite which measures bits-per-byte over tasks from the Base Main
suite which have gold labels or human-written answers, calculated as the negative log-likelihood of the answer
divided by the number of UTF-8 bytes in the answer string, as described in Gao et al. (2020).

We evaluate on the suite of 25 OLMo 2 scaling law models from (Bhagia et al., 2024) to understand the
scaling behavior in the low-compute regime, and 70 open-weight models to understand scaling behavior in the
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small scale OlmoBaseEval Easy suite as a proxy-metric for making data decisions.

0B 20B 40B 60B 80B 100B
# train tokens

0.10

0.15

0.20

pa
ss

@
1

SNR = 54.4/17.1 = 3.2

HumanEval

0B 20B 40B 60B 80B 100B
# train tokens

0.06

0.08

0.10

0.12

pa
ss

@
1

SNR = 28.9/4.8 = 6.0

7-task Code

0B 20B 40B 60B 80B 100B
# train tokens

0.14

0.16

0.18

0.20

0.22

0.24

pa
ss

@
1

SNR = 16.1/1.6 = 10.0

Base Main Code

Aggregate into
multi-task average,

filter noisy tasks

Tune genration
configuration

Midtrain Run
Round 1 @ 6T
Round 1.5 @ 7T
Round 1.5 @ 6T
Round 2 @ 7T
Round 2 @ 8T

Midtrain Run
Round 1 @ 6T
Round 1.5 @ 7T
Round 1.5 @ 6T
Round 2 @ 7T
Round 2 @ 8T

Midtrain Run
Round 1 @ 6T
Round 1.5 @ 7T
Round 1.5 @ 6T
Round 2 @ 7T
Round 2 @ 8T

Figure 7 OlmoBaseEval signal-to-noise analysis on the code multi-task average using intermediate checkpoints from
midtraining. First, we aggregate into multi-task averages and remove tasks with high noise, such as CruxEval (left →

center). Then, we tuned generation parameters to improve SNR, e.g. by increasing the n in pass@k (center → right).

high-compute regime. Figure 6 shows the scaling behavior for our resulting Base Main benchmarks. For each
task family, the Base Easy task suite showed signal at the small data ablation scale, and the BaseMain task
suites were not saturated at the large scale, leaving headroom for data experiments in midtraining.

3.3.3 Signal-to-Noise Analysis
When reporting a macro-average, we aimed to exclude tasks from each cluster that were too noisy to be
helpful for development. We calculate the signal-to-noise ratio of each benchmark following the method from
Heineman et al. (2025), where we evaluate the final 50 checkpoints of OLMo 2 13B training, and 10 external
base models trained at roughly the same compute scale (4 ⋅ 1023 FLOPs). From our findings, we transition
from using 1K instance subsets to full evaluation sets when available. We remove some benchmarks from our
evaluation suite entirely, particularly binary benchmarks such as BoolQ (Clark et al., 2019), as we found that
models usually oscillate between predicting the majority and minority class.

We repeat the same analysis for midtraining, instead using intermediate checkpoints from 5 preliminary
pretraining runs. One important finding was to separate some benchmarks from the macro-average, like
CruxEval (Gu et al., 2024a), which measures a relevant and unique capability (code input/output prediction),
but would introduce too much noise into the macro-average. We show an example of the SNR of three
individual benchmarks compared to the base main task averages across intermediate checkpoints during
midtraining in Figure 7.

3.3.4 OlmoBaseEval
The resulting OlmoBaseEval consists of a Base Easy suite for making development decisions using small
compute budgets (e.g. less than 1B parameters) and a Base Main suite for development decisions for the
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final pretraining run and midtraining. We provide detail on the Chat suite later in §4.1. OlmoBaseEval
contains 43 tasks, 4x more benchmarks than OLMo 2 including tracking math and code benchmarks in
pretraining. To prevent overfitting on the development suite, we include a Held-out set of 4 benchmarks –
MMLU Pro, Deepmind Math, LBPP and BBH – each benchmark matching one broad capability we targeted
during pretraining.

This includes four new benchmarks: BasicSkills, a set of 6 tasks to isolate the development of skills during
pretraining (e.g. basic arithmetic, reasoning, and coding); Gen2MC, a multiple-choice version of 5 short-form
generative tasks; and MTMBPP, a translated BPB set for MBPP in 17 code languages; Masked Perplexity,
a new evaluation method by applying token masking and calculating perplexity only on tokens that are
difficult to learn. We evaluate with masked perplexity using UltraChat and WildChat, which provides a wide
coverage of real user interaction evaluation in pretraining. Additional design and implementation details for
OlmoBaseEval are included in Appendix A.3.

3.4 Stage 1: Pretraining

Source Type 9T Pool 6T Mix 150B Mix
Tokens Docs Tokens Docs Tokens Docs

Common Crawl Web pages 8.14T 9.67B 4.51T (76.1%) 3.15B 121B (76.9%) 84.5M
olmOCR Science PDFs Academic documents 972B 101M 805B (13.6%) 83.8M 19.9B (12.6%) 2.25M
StackEdu (Rebalanced) GitHub code 137B 167M 409B (6.89%) 526M 11.1B (7.06%) 14.3M
arXiv Papers with LaTeX 21.4B 3.95M 50.8B (0.86%) 9.10M 1.29B (0.82%) 247K
FineMath 3+ Math web pages 34.1B 21.4M 152B (2.56%) 95.5M 4.10B (2.60%) 2.57M
Wikipedia & Wikibooks Encyclopedic 3.69B 6.67M 2.51B (0.04%) 4.24M 64.6M (0.04%) 119K
Total 9.31T 9.97B 5.93T (100%) 3.87B 157B (100%) 104M

Table 4 Composition of Dolma 3 including our 9T pool of data, the 6T mix we used for final model training, and
the 150B mix we used for experimentation.

We first train Olmo 3 Base on Dolma 3Mix, our 6T token pretraining data mix. While Dolma 3 Mix is
comprised of largely the same types of data sources used in other open pretraining recipes (Soldaini et al.,
2024; Bakouch et al., 2025; OLMo et al., 2024), we demonstrate three key novelties:

• New tooling for fast and scalable global deduplication at the trillion-token scale,
• Two new methods for optimizing selection of training tokens: token-constrainedmixing and quality-aware
upsampling,

• A novel source of academic PDFs—olmOCRSciencePDFs—converted to linearized plain text using olmOCR
(§3.4.2) (Poznanski et al., 2025a) .

Table 4 summarizes our data sources, pool sizes, and final training mix.5 As developing a base model is
the most compute-intensive part of our development process, requiring training over trillions of tokens and
consuming over 90% of overall compute, we adhere to two major principles to guide our data strategy:

1. We consider a source of data for pretraining if it has potential to yield enough tokens to impact model
capabilities at pretraining scale. Valuable data sources that are small may not be impactful in pretraining
and are better reserved for midtraining.

2. While we embrace exploration of structured “task” data (e.g. QA pairs, chat instances) for training
base models, we reserve their use only for later stages of midtraining (§3.5) and long-context extension
(§3.6). Task data often does not meet the pool size needed to impact our pretraining phase, even
with synthetic generation, and task data also tends to have an outsized impact on evaluation results,
potentially confounding data ablations for other sources.

5The training mixes that we release represent reconstructions of the data sampled during our actual training runs. Tokens
included in these reconstructions represent all of the tokens trained on for the training run, while included documents represent a
union of all unique documents that contributed at least one token during training.
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Figure 11 summarizes the pipeline steps for creating Dolma 3 Mix pretraining data. We describe them in
more detail in the remainder of this section.
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Figure 8 Data curation flow of sources in Dolma 3 Mix.

3.4.1 Preparing ourWebData Pool
We took the following steps to curate pretraining data from CommonCrawl (Common Crawl Foundation),
which constituted the majority of our pretraining corpus.

Text extraction We started with 104 dumps from the CommonCrawl corpus, with a cutoff date of December
31, 2024. Following DCLM (Li et al., 2024a), we removed HTML artifacts and extracted the semantic text
from WARC files using Resiliparse (Bevendorff et al., 2018). Where applicable, we directly leveraged the raw
Resiliparse-extracted data from DCLM-pool (Li et al., 2024a)6 and applied Resiliparse extraction on dumps
not contained with the DCLM-pool.

Heuristic Filtering We applied a pipeline of heuristic filtering steps to prune our initial collection of 252.6B
documents to a size amenable for pretraining. Our process closely followed that of DCLM (Li et al., 2024a)
with minor modifications to improve data quality and computational efficiency. We first applied URL filtering
to remove spam and adult-content from an expanded blocklist. We then removed documents that were either
too short or too long, followed by filtering documents that contained excessive symbols or insufficient quantities
of alphabetic characters. Next we removed documents containing large amounts of internal repetition and
applied filtering to remove common spam phrases, fully removing any documents that were eviscerated by such
filtering. We then used a fastText classifier to identify the language of each document, keeping only documents
that contained English text. As a final step, we applied sentence-level heuristics from Madlad400 (Li et al.,
2024a). In aggregate, this process reduced the size of our data pool by 84.6%, yielding a corpus of 38.8B
documents. More details are provided in §A.1.

Deduplication The web data collected from CommonCrawl naturally contains an abundance of duplicated
documents. This duplication arises from repeated crawls of the same website, near-copies of documents

6https://data.commoncrawl.org/contrib/datacomp/DCLM-pool/index.html
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appearing across multiple web pages, and highly-repeated boilerplate text. Our deduplication strategy was
motivated by three observations from prior work: i) deduplication generally leads to more token-efficient
training (Lee et al., 2022); ii) duplicate count serves as a weak signal of data quality, with higher duplicate
counts indicating higher quality (Fang et al., 2025a); iii) repeating documents more than a handful of times
provides rapidly diminishing returns (Muennighoff et al., 2025a).

Given these observations, we designed our deduplication strategy to enable a future quality-based upsampling
step (Section 3.4.4). We aggressively deduplicate our dataset at multiple granularities, targeting the removal of
exact replicas, near-duplicates, and repeated filler text. While this necessarily discards the quality signal from
duplicate counts, it produces a clean base dataset from which we can later selectively reintroduce repetition
for high-quality documents. Our goal is a final dataset with minimal repetition overall, with any duplication
concentrated in high-quality data. We implemented our deduplication procedure in three distinct stages:

1. Exact Deduplication: We applied global deduplication based on document text hashes to remove all
exact copies. This step identified 67% of the pool as duplicates, reducing the dataset from 38.7B to
12.8B documents.

2. Fuzzy Deduplication: We applied MinHash-based deduplication to identify and remove near-identical
documents, such as documents copied across multiple domains that differ only in headers or footers.
We partitioned the dataset into 32 shards, ran MinHash deduplication on each shard, then performed
exhaustive pairwise Jaccard similarity checks within each identified cluster. From each cluster, we
retained the most recent document by crawl date. This procedure identified 23% of the pool as duplicates,
yielding 9.8B documents.

3. Substring Deduplication: The previous steps removed whole duplicate documents but did not address
repeated content within individual documents. Many documents contain substantial boilerplate text
or HTML artifacts (e.g., headers and footers) of limited training value. To remove these repeated
substrings, we applied a novel fuzzy suffix-array-based deduplication procedure. We partitioned the
dataset into 57 shards and applied this procedure to each, marking any substring of 500 or more bytes
that occurred multiple times. Unlike previous suffix-array methods, we preserved at least one occurrence
of each repeated substring in the corpus. We then merged the intervals marking repeated substrings to
also remove short substrings sandwiched between longer repeated segments. This procedure removed
14% of text bytes, yielding 9.7B documents totaling 36.5T bytes of uncompressed text.

This three-stage procedure reduced the web corpus from 38.7B to 9.7B documents—a 75% reduction in
document count. The resulting aggressively deduplicated dataset can then be partitioned by topic and quality
and controllably upsampled for training.

To scale our deduplication strategy, we develop the Duplodocus tool7, a native-rust toolkit for large-scale
distributed execution of both hash-based exact deduplication and MinHash fuzzy deduplication.

Topic and Quality Classification We used our WebOrganizer tool (Wettig et al., 2025a) to partition the
deduplicated corpus into 24 topics (e.g., "Science and Technology", "Politics"). We also trained and applied
a fastText-based quality classifier to assign each document a quality score. Following DCLM (Li et al.,
2024a), we used OpenHermes-2.5 (Teknium, 2023) and ELI5 (Fan et al., 2019) as positive training examples,
supplemented with UltraChat-200k (Ding et al., 2023) and WildChat-1M (Zhao et al., 2024a). Negative
training examples consisted of 30GB sampled from DCLM-RefinedWeb.

We applied both the topic and quality classifiers to the full deduplicated corpus in order to partition the
dataset. Documents were first partitioned by topic, then within each topic partition, we computed quality
score percentiles and subdivided documents into vigintile buckets (5-percentile intervals). This two-stage
partitioning yielded 480 disjoint subsets (24 topics × 20 quality tiers), enabling fine-grained control over the
topic and quality distribution of our pretraining mixture.

FinalWebDataPool The above steps resulted in an 8T-token pool of annotated data, partitioned into buckets
according to topic and text quality. This pool serves as the foundation for our pretraining mixture, though

7https://github.com/allenai/duplodocus
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additional processing is required to construct the final training data. Specifically, we apply quality-based
filtering and topic reweighting to generate a balanced, high-quality mixture, as discussed in §3.4.4.

3.4.2 Preparing our PDF Data Pool
We curated a novel dataset of academic PDFs, replacing our previous use of peS2o (Soldaini and Lo, 2023).
These documents were crawled “politely”: with a disclosed user agent, adhering to robots.txt, and respecting
paywalls. The crawler was seeded with a focus on academic sites and paper repositories. We processed all
PDFs using olmOCR (Poznanski et al., 2025a). Ultimately this crawl generated a collection of 238M unique
PDF documents with a cutoff date of December 2024.

OlmOCRText Extraction To convert PDFs to a format usable by our trainer, we applied pre-filtering and
text extraction. If a document contained born-digital text, we used the Lingua language detector to retain
only English documents and removed documents where spam or SEO-optimization keywords exceeded 0.4% of
total words. We then extracted text using olmOCR (Poznanski et al., 2025a) (versions 0.1.49-0.1.53). When
olmOCR failed, we used Poppler’s pdftotext as a fallback; documents requiring this fallback for more than 1
in 250 pages were excluded from the corpus. This yielded a dataset of 160M PDF documents.

Deduplication We then identified and removed any fuzzy-duplicates using a MinHash algorithm. This
differed slightly from MinHash step applied to the web text corpus in §3.4.1: we used the MinHash parameters
as in FineWeb (Penedo et al., 2024), which targeted document pairs with at least 75% similarity; and we
omitted an exhaustive pairwise Jaccard similarity check. After this deduplication step, we were left with a
corpus of 156M documents for a removal rate of 2.3%.

PII Filtering Next we removed documents containing PII from the pool of PDFs. We wanted to remove
documents that contained sensitive standalone PII, such as government IDs and login information. We
also wanted to remove documents that linked biographical, medical, location, employment, or educational
information to a specific individual, but specifically wanted this filtering to be context aware. Some documents
such as public meeting minutes, contain PII identifiers such as names linked to addresses, but are meant
for public dissemination, and we did not want to remove these. After experimenting with use of human
annotators to identify and remove PII, we developed a multi-stage model-based PII-identification pipeline.

First we classified documents using a prompt to gemma-3-12B (Gemma 3 Team, 2025) on the first page of
each document to determine if they contained any sensitive standalone PII, or linked sensitive information
to an individual. Next, we used gemma-3-4B on the first 5,000 characters of each document to arrive at a
set of flags describing the type of document. From these classification results we developed a set of rules to
identify which types of documents containing PII should be publicly available and which should be filtered.
Ultimately this removed 4.9% of the remaining pool and yielded a pool of 148M documents. See Poznanski
et al. (2025a) for more details regarding PII removal.

Heuristic Filtering After PII removal, we applied a round of heuristic filtering to further remove low-quality
documents. Filters applied in this step included checking for: non-English documents not originally caught
by the Lingua filter; documents that were more than 30% tables; and documents that contained more than
20% numbers. Next we applied modifications that converted markdown tables to HTML and removed URL
references. Finally, for legal purposes, we removed documents that did not contain permissive licenses. The
combination of these filtration steps yielded a corpus of 108M documents. This corpus was then into partition
into 24 topical buckets, according to the WebOrganizer topic classifier (Wettig et al., 2025b), and passed off
to the mixing phase.

3.4.3 Preparing Code, Math, and other sources
Code For code data, we used StackEdu (Allal et al., 2025), an improved curation of GitHub repositories
from the-stack-v2 dataset (Lozhkov et al., 2024) with additional filtering for educational programming content.
We partitioned the data by programming language for subsequent mixing.
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Math As in OLMo 2, we include arXiv documents from the Proof-Pile-2 dataset (Azerbayev et al., 2023),
which in turn are from RedPajama dataset (Together AI, 2023) and have a cutoff date of April 2023. We
use this source primarily because it preserves the original LaTeX notation, enabling the model to learn both
mathematical content and how to properly format it.

Furthermore, we replaced our previous use of OpenWebMath (Paster et al., 2023) with FineMath (Allal et al.,
2025), a subset of Common Crawl documents that contain mathematical educational content and have been
reprocessed to preserve proper mathematical notation. We include all documents that have a quality score of
at least 3 (out of 4), according to the FineMath classifier. This data has a cutoff date of September 2024.

Other Finally, we include the Wikipedia and Wikibooks sources from Dolma1.7 (Soldaini et al., 2024) as
base sources of encyclopedic knowledge. These are both the "English" and "Simple" editions of Wikipedia
and Wikibooks with a cutoff date of March 2023. These sources were processed using WikiExtractor (Attardi,
2015) to remove markup formatting, and all documents with 25 or fewer words were filtered out to exclude
templated pages or pages that encountered XML parsing errors.

3.4.4 Sampling andMixing over Data Pools
The data sources described above collectively provide over 9 trillion tokens of diverse text data. Transforming
this collection into a training dataset requires a mixing and sampling pipeline to prescribe exactly how much
of each source to include in a final training mix, and how much, if any, upsampling to apply to each source.
We apply a mixing strategy that draws on swarm-based methods to train and evaluate many smaller proxy
models, using these results to inform an optimal mix. Further, we apply a novel conditional mixing procedure
to account for the fact that our data sources were being constantly refined and updated throughout the
development cycle. In this section, we describe how we arrived at the mixing ratios for each source; for web
text, we only optimize ratios at the WebOrganizer category level and apply quality-aware upsampling to
obtain the final mix.

Constrained Data mixing We applied data mixing across all pre-training sources, as well as across the
WebOrganizer topics within the web data and PDF sources, and the StackEdu programming languages.
Our mixing procedure (Chen et al., 2025a), consists of two components: a base procedure that constructs
a high-quality mix over a fixed set of data domains, and a meta-procedure called conditional mixing that
efficiently updates an existing mix when domains change. Together, these allow us to iteratively build an
optimal mix and adapt to data refinements or additions without starting from scratch.

The base procedure follows a swarm-based approach inspired by RegMix, Data Mixing Laws, and CLIMB, (Liu
et al., 2024a; Ye et al., 2025; Diao et al., 2025), and proceeds in three stages:

1. Swarm construction. We sample the space of possible mixes by training many small proxy models,
each with a different mixing ratio. Specifically, we trained 30M-parameter models following the Olmo 3
architecture for 3B tokens (5x Chinchilla), sampling each mix from a Dirichlet distribution centered
on the natural (no-mixing) distribution. As a rule of thumb, we launch a swarm of size 5x that of the
number of domains. We then evaluate each proxy model on the Base Easy suite.

2. Per-task regression. Each proxy model provides a data point mapping mixture weights to task
performance (measured in BPB) for each task. We fit a separate generalized linear model for each task,
enabling us to predict how any candidate mix will perform.

3. Mix optimization. We find the mixture that minimizes the average task BPB, as predicted by
the per-task regression models. Since we ultimately seek a corpus with a 6T token budget, and we
avoid repeating any domain more than approximately 4 − 7 times, this naturally imposes maximum
ratio constraints on certain domains based on their available token counts. We solve this constrained
optimization using a guided search initialized from a prior or natural distribution.

The base procedure assumes fixed domains, but real preprocessing workflows evolve continuously as we refine
filters, add domains, or discover and mitigate quality issues. Rather than recomputing an entire swarm each
time domains change, we introduce a new procedure called conditional mixing to efficiently adapt the base
method to an evolving data landscape. The key idea is to treat the existing optimized mix as a single virtual
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Figure 9 (a), (c) Comparison of the natural distribution of data source in the Dolma 3 pool versus our learned data
mixture in Dolma 3 Mix. (b), (d) The improvement on downstream evaluations resulting from training our data mix
compared to the natural distribution.

domain with frozen mixing ratios, then re-run the base procedure over this virtual domain plus any new or
modified domains. This effectively restricts the base mixing procedure to a lower-dimensional subspace of the
mixture weight space, reducing swarm size and computational cost. Further details and justification of this
procedure can be found in Chen et al. (2025a).

To construct the Dolma 3 Mix weights, we performed three rounds of our conditional mixing procedure, with
each stage building incrementally on frozen mixtures from prior stages. We first obtained optimized mixture
weights over the 24 WebOrganizer categories within the DCLM-Baseline mix8 as well as the source-level mix.
Web text served as the starting point because it constitutes the largest data pool and because we used it to
develop the base mixing methodology. Since the bespoke web data pool we crafted in Section REF was still
under construction while performing these initial mixing rounds, we performed this first round of mixing on
DCLM-Baseline, expecting that learned preferences would transfer to our final web data.

Having frozen a mixture across WebOrganizer categories over web text, we turned our attention to mixtures
of programming languages from StackEdu. Diverging slightly from the conditional mixing procedure, we fixed
the web text ratio to be 75% of the pool and forced a 25% mixture of StackEdu data and only optimized
over the composition of programming languages within this 25%. Finally, we performed one more round of

8https://data.commoncrawl.org/contrib/datacomp/DCLM-baseline/index.html
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conditional mixing to integrate the 24 WebOrganizer categories of the PDF data, conditioned on the DCLM,
StackEdu, and source-level mixes. This incremental approach towards mixing proved essential: PDF curation
finished substantially later than other sources, and conditional mixing enabled us to incorporate late-arriving
data while reusing prior optimization results rather than restarting the expensive swarm-based base procedure.

Figure 9 presents mixing outcomes and their performance results relative to the natural data distribution. For
web text (top panels), the optimized mixture dramatically upweights STEM domains (e.g. “Science, Math, and
Technology” and “Software Development”). On 1B-parameter models trained for 5x Chinchilla, this mixture
obtains an average improvement of 0.056 and max of 0.209 (in BPB), while only 13 out of 54 tasks showed
degradations, none of which exceeded 0.035. For rebalancing of programming languages in StackEdu (bottom
panels), the optimized mix favors Python over Java and Markdown, yielding modest improvements in all but
two coding benchmarks. Table 35 further demonstrates our method’s adaptability: swapping development
suites to emphasize QA, math, or coding produces mixtures that preferentially optimize these respective
capabilities.
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Figure 10 An example of a quality-aware upsampling curve compared to a flat upsampling curve. The x-axis denotes
quality of data in terms of percentiles and the y-axis denotes how much the data is repeated. In this instance, the
bottom 40% of data is discarded, and the top 5% of data is resampled 7 times.

Quality-Aware Upsampling The data mixing procedure described in the previous section determines optimal
proportions across different data sources and topics, but does not account for quality variations within each
topic. For web text sources like CommonCrawl, we initially derived these proportions from DCLM, which
applies only flat filtering based on quality classifier scores. However, in a separate set of experiments, we
found that quality-aware upsampling improves performance in data-constrained settings (see Appendix). For
example, when constructing a 250B token mix from a 1T token pool, flat quality-filtering (as in DCLM) would
simply select the top quartile. We achieved better results by upsampling the highest-quality data: including
multiple copies of the top 5% and single copies of the remaining data to reach the target token count.

We formalize this approach using upsampling curves, as in Figure 10. The x-axis represents data quality
in percentiles, while the y-axis shows the upsampling factor. Flat filtering corresponds to a step function
on this plot, and quality-based upsampling would correspond to a monotonically increasing curve. For the
purposes of generating a training data corpus, we generate separate upsampling curves for each of the 24
WebOrganizer-defined topics in our web text pool. The integral of each curve determines the total tokens
extracted from that topic: for example, an integral of 2.0 indicates an average upsampling rate of 2x, yielding
twice the token count from that data bucket.

To define an upsampling curve for each web text topic bucket, we leverage three constraints: i) the optimal
topic proportion, as determined by the mixing experiments; ii) the total desired training duration in terms
of tokens; and iii) a maximum upsampling factor of 7. The first two of these constraints control the target
integral (average upsampling rate) for each topic bucket. The third constraint dictates an upper bound on the
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upsampling curve. Given these constraints, we can search over the space of curves to find a parametric curve
that meets these constraints, which becomes the upsampling curve for this topic-bucket. In practice, our data
is organized into discrete quality buckets that partition the quality percentile range. For each quality bucket,
we compute its upsampling rate by integrating the upsampling curve over the corresponding percentile interval
and dividing by the interval width. More details regarding this procedure can be found in Appendix §A.1.

Evaluation During Pretraining It can be difficult to obtain a reliable estimate of model performance in the
middle of a pretraining run since the quality of a run is highly influenced by the learning rate (see OLMo et al.
(2024), Section 4.1). For a 7B model, we can anneal the learning rate to zero at regular intervals throughout
training to assess progress, but this is prohibitively expensive for a 32B model. To monitor performance of
our 32B model during the training run, we use the technique from Li et al. (2025), and average the weights
from four checkpoints, chosen 1,000 steps apart at regular intervals.

3.5 Stage 2: Midtraining

Type Source 2T Pool 100B Mix
Tokens Docs Tokens Docs

Math (synth) TinyMATH Mind** 899M 1.42M 898M (0.9%) 1.52M
Math (synth) TinyMATH PoT** 241M 729K 241M (0.24%) 758K
Math (synth) CraneMath* 5.62B 6.55M 5.62B (5.63%) 7.24M
Math (synth) MegaMatt* 3.88B 6.79M 1.73B (1.73%) 3.23M
Math (synth) Dolmino Mathˆˆ 10.7B 21M 10.7B (10.7%) 22.3M

Code StackEdu (FIM)ˆ 21.4B 32M 10.0B (10.0%) 16.2M
Python (synth) CraneCode* 18.8B 19.7M 10.0B (10.0%) 11.7M

QA (synth) Reddit To Flashcards** 21.6B 370M 5.90B (5.9%) 101M
QA (synth) Wiki To RCQA** 4.22B 22.3M 3.0B (3.0%) 16.3M
QA (synth) Nemotron Synth QAˆ 487B 972M 5.0B (5.0%) 10.6M

Thinking (synth) Math Meta-Reasoning** 1.05B 984K 381M (0.38%) 401K
Thinking (synth) Code Meta-Reasoning** 1.27B 910K 459M (0.46%) 398K
Thinking (synth) Program-Verifiable** 438M 384K 159M (0.16%) 158K
Thinking (synth) OMR Rewrite FullThoughtsˆ 850M 291K 850M (0.85%) 394K
Thinking (synth) QWQ Reasoning Tracesˆ 4.77B 438K 1.87B (1.87%) 401K
Thinking (synth) General Reasoning Mixˆ 2.48B 668K 1.87B (1.87%) 732K
Thinking (synth) Gemini Reasoning Tracesˆ 246M 55.2K 246M (0.25%)) 85.1K
Thinking (synth) Llama Nemotron Reasoning Tracesˆ 20.9B 3.91M 1.25B (1.25%) 368K
Thinking (synth) OpenThoughts2 Reasoning Tracesˆ 5.6B 1.11M 1.25B (1.25%) 402K

Instruction (synth) Tulu 3 SFTˆˆ 1.61B 1.95M 1.1B (1.1%) 1.45M
Instruction (synth) Dolmino 1 Flanˆˆ 16.8B 56.9M 5.0B (5.0%) 14.8M

PDFs OLMOCR Science PDFs (High Q.)ˆ 240B 28.7M 4.99B (5.0%) 1.20M
Web pages STEM-Heavy Crawlˆ 5.21B 5.16M 4.99B (5.0%) 5.53M
Web pages Common Crawl (High Q.)ˆ 1.32T 965M 22.4B (22.5%) 18.3M

Total 2.19T 2.52B 99.95B (100%) 236M

Table 5 Composition of the mid-training data (Dolma 3 Dolmino Mix). Here we show the full composition
of the mid-training data mix. **=newly-introduced synthetic dataset. *=novel recreation of existing data. ˆˆ=reuse
of previously-introduced data. ˆ=filtering or light transformation of existing external data.

The next training phase for Olmo 3 Base was the 100B-token midtraining phase, for which we curated
Dolma 3 Dolmino Mix. This midtraining data significantly expands and improves upon the OLMo 2
Dolmino Mix, through the introduction of the following:
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Figure 11 Methodological flow for midtraining data curation. We employ a distributed system of lightweight feedback
loops to explore datasets for targeted boosts across capabilities, and combine these with centralized integration tests
and SFT training for assessment of candidate mix quality (discussion in Section 3.5.1). Finally, we incorporate a
newly-developed decontamination method, to ensure that our mix is not contaminated with evaluation data (discussion
in Section 3.5.1).

• A new two-part methodological framework combining 1) lightweight, distributed feedback loops on
individual data sources, with 2) centralized integration tests to assess candidate mixes on base model quality
and post-trainability.

• Expansion to targeted data curation efforts across code, math, and general knowledge QA
domains (broadening from the math-focused efforts in OLMo 2 Dolmino Mix).

• More intentional inclusion of data types—instruction data and thinking traces—to lay groundwork for
supporting post-training of Olmo 3 Think, Olmo 3 Instruct, and Olmo 3 RL-Zero models.

The resulting midtraining data is a diverse mixture that combines novel synthetic sources with quality-filtered
and rewritten existing data, achieving improvements across the board in our target capability domains, as
well as improvements in performance resulting from subsequent SFT training.

3.5.1 Methodological framework
Targetedcapabilityboosts We aimed in the midtraining phase to make targeted improvements to capabilities
spanning a wide range of domains: prioritizing significant gains in code and math, but also aiming for focused
improvements in QA and general knowledge access capabilities, and to lay groundwork for instruction and
thinking capabilities in post-training. This required a lightweight, distributed framework for dataset testing,
to allow us to investigate many domains of datasets efficiently and in parallel.

For lightweight testing we used the microanneal methodology introduced with OLMo 2, which we further
modified for more systematic baselining. For a standard microanneal we used the following setup: 1) select a
target dataset, 2) sample 5B tokens, 3) match this with 5B web tokens, 4) anneal on the resulting 10B mix.
We then compared the performance of the resulting checkpoint against that of a baseline microanneal on 10B
web-only data, for a cheap and efficient assessment of the impact of the dataset on base model performance,
over and above the impact of continued training on web data alone.9

This methodology allowed us to make rapid, targeted assessments of the quality of datasets being considered
for the midtraining mix, and to iterate on many data domains in parallel. Our workflow operated as follows:
for each capability that we target for improvement (in categories of math, code, QA, instruction, and thinking),
new datasets were generated or collected as candidates to boost performance for this capability, and were
assessed via microanneals—if the results were promising, these new datasets were incorporated into the larger
integration tests described next.

Integration tests In parallel with the microanneal process, we conducted integration tests involving full
annealing runs on candidate mixes for the 100B-token midtraining mix. These integration tests allowed us to

9The microanneal framework allows for flexibility to test small datasets, and as a result the specifics of our microanneals
varied based on dataset needs. Variants of the above included some 5B microanneals for datasets that could only support
2.5B tokens, some microanneals that tested the target dataset as a smaller percentage of a more diverse 10B mix, and certain
microanneals—for large numbers of comparisons between variable-size datasets—that used the original microanneal methodology
omitting compute-matched baseline comparisons and assessing based on the individual gains directly.
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evaluate how candidate data sources performed in combination and at 100B scale, and additionally allowed
us to run post-training experiments to test the comparative post-trainability of checkpoints trained on the
candidate mixes.

We ran these integration tests periodically as we reached a critical mass of microanneal results for new
candidate data sources. For each integration test, new sources that showed promise in microanneals were
incorporated into an updated 100B mix (retaining strong sources from previous iterations), and we trained
the base model for a full 100B midtraining run on this updated mix.

We carried out five major rounds of integration tests. The fourth and fifth rounds of integration tests folded
in the newly-developed decontamination process (Section 3.5.3). For each mix we then evaluated the resulting
midtrained model on our Base Main eval suite, and additionally ran the midtrained model through SFT for
post-training assessment.

3.5.2 Capability improvements for final datamix
The final Dolma 3 Dolmino Mix reflects in-depth efforts aiming at improvements across math, code, and
general knowledge QA capabilities, as well as improvements in post-trainability via a foundation of instruction
and thinking capabilities. Table 5 outlines the composition of the final mix, which includes a combination
of newly-introduced synthetic data and refinements of existing data. Below we give an overview, for each
capability category, of our curation efforts and final selected data. Additional details are provided in Appendix
Section A.2.10

Math Capabilities We continued the targeted math improvement efforts from OLMo 2 Dolmino Mix,
performing over 80 microanneal training runs, considering candidacy of over 25 data sources, and ultimately
settling on a combination of 5 top math-specific sources, 4 of which were newly synthesized. For high-
performing existing datasets without permissive licensing, we synthesized new data modeled after those
datasets.

We will outline and briefly summarize the math-targeted data sources that were included in the final mix.
More details about data generation procedure and microanneal results can be found in the Appendix.

• Dolmino-1 Math We included the entirety of the 10.7B-token OLMo 2 Dolmino Mix Math subset.
The version we use differs from the original only in additional filtering for decontamination. This set was
generated to lift general-purpose math capabilities, with a particular focus on the GSM-8K test set. A
10B microanneal, using 5B of the available 10.7B tokens in isolation, demonstrated a lift in 10.4 points in
MATH and 38.2 points in the GSM-8K benchmark.11

• TinyMATH For each of the 7500 examples in the MATH training set, we generated 100 new, similar
problems. Then we generated python code solutions to the newly generated problems (TinyMATH-PoT),
and two flavors of conversational English discussing these solutions (TinyMATH-MIND). In aggregate, this
yielded 1.14B tokens of novel, synthetic data targeted to improve performance on the MATH benchmark.
A microanneal consisting of all of these new tokens in a 50/50 ratio with web data yielded 13.2 points of
improvement in the MATH benchmark and 13.9 points in GSM-8K.

• CraneMath The recently published SwallowMath dataset (Fujii et al., 2025) demonstrates the potential
of rewriting already finely-curated naturally-occurring mathematical web data—in this case, FineMath4+
(Allal et al., 2025). We corroborated this strong performance with a microanneal over SwallowMath
that showed a lift of 16.0 points in MATH and 24.5 points in GSM-8K using only 3.6B high quality
tokens. Because SwallowMath was not permissively-licensed—having been generated with the Llama suite
of models—we generated an independent reproduction of SwallowMath by rewriting FineMath4+ with
the SwallowMath prompt, using Qwen3 (Yang et al., 2025a) for generation. We denote this new mix as
CraneMath, which yields 5.6B tokens of high-quality math: microanneals demonstrated a lift of 18.5 points
in MATH and 27.4 points in GSM-8K.

10Further details and replication resources, such as prompts for synthetic data generation, are provided in the Dolma3 repo:
https://github.com/allenai/dolma3

11Performance benefits seen in Math microanneals are stated in terms of improvement relative to a pre-anneal baseline.
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• MegaMatt Similar to SwallowMath, Megamath-Web-Pro-Max (Wang et al., 2025) applies Llama rewrites
to naturally-occurring mathematical web text—in this case a filtered version of MegaMath-Web (Zhou et al.,
2025). Our microannealing procedure demonstrated that MegaMath-Web-Pro-Max was able to improve
MATH by 7.0 points and GSM-8K by 13.3 points using only 5B tokens of high-quality data. However, in
order to use this dataset, it was necessary that we regenerate it with permissive licensing. We collected the
Megamath-Web-Pro data occurring after June 2023 and applied filtering as in Megamath-Web-Pro-Max,
then applied rewrites using Qwen3 (Yang et al., 2025a). This yielded 3.88B tokens of high-quality data,
which we refer to as MegaMatt. In microanneals, this data yielded a lift of 8.0 points in MATH and 13.0
points in GSM-8K.

Code Capabilities Our efforts for improving code capabilities included two major threads: 1) curation
of higher-quality general code data, and 2) introduction of fill-in-the-middle (FIM) code capabilities. The
top-performing datasets included in the final mix were the following:

• Stack-Edu (FIM) We include a modified version of Stack-Edu, in which 50% of documents reflect
fill-in-the-middle (FIM) transformation via the infilling procedure from StarCoder2 (Lozhkov et al., 2024).
This transformation splits code documents into prefix, middle, and suffix segments in order to train on
prediction of the concealed middle segment. To further improve the quality of this code data, we applied
quality filtering by performing reservoir sampling and bucketing of documents based on educational value
score,12 followed by weighted random sampling of the upper 20% of buckets from each language subset.
Microanneals validated that this quality filtering combined with the sampling procedure improved code
benchmark performance over both the natural distribution of stack-edu and more naive sampling procedures
such as sampling the top document per language based on classifier score.

• CraneCode As with our math datasets, we found strong performance from the SwallowCode dataset (Fujii
et al., 2025), and generated a permissively-licensed recreation for use in our midtraining. As in the original
paper, we sourced data from the Python subset of the-stack-v2-smol (Lozhkov et al., 2024), then filtered for
syntax errors and filtered based on linter outputs—then we applied the paper’s two-stage rewriting pipeline,
with one stage to augment style, and another to optimize the code itself. This yielded 18.8B tokens of
high-quality python code. In a microanneal using 5B tokens of high-quality data, CraneCode resulted in a
lift in HumanEval of 5.0 points relative to pre-anneal baseline, compared to the 10.3 seen for SwallowCode.
When using a larger microanneal with 12.5B tokens of CraneCode, the lift in HumanEval improves to 13.5.

QA and Knowledge Access Capabilities We targeted improvements in question-answering and general
knowledge access capabilities through synthesis of two novel datasets focused on particular QA capabilities,
as well as inclusion of high-quality existing QA data. The final datasets included for these capabilities were
the following:

• Reddit-to-Flashcards We synthesized this dataset in response to the need to handle diverse content
categories and question structures in multiple-choice QA tasks. We first identified a subset of academically-
relevant subreddits, and then used GPT 4o-mini to rewrite the content of those subreddits into diverse
structures of multiple-choice QA pairs. Microanneals showed that inclusion of 5B tokens of this data in a
10B-token microanneal resulted in over 2 points of improvement in the MCNon-STEM task cluster—relative to
a 10B-token web-only baseline microanneal—with 3 points of improvement in MMLU.

• Wiki-to-RCQA We synthesized this dataset in response to the need for improvements in passage-based
reading comprehension QA. We collected Wikipedia passages and prompted Qwen2.5-32B-Instruct to
generate QA pairs based on these passages, meeting a range of constraints inspired by instructions given to
annotators of reading comprehension QA datasets. Microanneals showed that 4.2B tokens of this data in a
10B microanneal results in nearly 2 points of improvement in the GenQA task cluster relative to a 10B
web-only baseline, with improvements focused on the DROP, SQuAD and CoQA reading comprehension
QA benchmarks.

• Nemotron We include the “diverse QA pairs” synth subset of the subset of the Nemotron CC dataset Su
et al. (2025a), as, in microanneals, it improved GenQA tasks by 1.5 points, MCNon-STEM by 1.9 points, and

12For educational value score we use language-specific classifiers provided by Hugging Face Smol Models Research, e.g.
https://huggingface.co/HuggingFaceTB/stack-edu-classifier-php.
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it had equal MCSTEM performance compared to a microanneal run of web documents from the top quality
(5%) bucket. The other synth subsets (“distill”, “extract knowledge”, “knowledge list”, and “wrap medium”)
all performed worse than natural data, so we do not use them.

Cross-Capability Instruction Data To lay the groundwork for post-training, we included cross-domain
instruction datasets to prime models for instruction-tuning.

• Tulu3 SFT data The first instruction dataset that we included was the SFT set from Tulu3 (Lambert
et al., 2024). The data we included had minor adjustments relative to the original Tulu3 SFT data: 1) it
represented an expanded set of examples that were created and subsequently filtered out for the final Tulu3
data, 2) we concatenated all the <system|user|assistant> messages using double newlines, only taking the
message content and excluding any special role tags. The specific format that we chose for this data was
informed by performance in microanneals: see discussion of special tokens in §3.5.4.

• Flan We also found in microanneals that the Flan dataset improved performance in QA tasks, and as a
result include a subset of the Flan dataset in the final mix.

Cross-Capability Thinking Traces We also curated a diverse collection of thinking traces across a variety of
domains, to lay the foundation for Olmo 3 Think and Olmo 3 RL-Zero. This included two novel synthetic
datasets, as well as rewritten and filtered versions of existing thinking trace datasets.

• Meta-Reasoning Our first novel synthetic dataset was created to target seven core cognitive capabil-
ities from Kargupta et al. (2025) that are foundational to mathematical and programming expertise:
self-awareness (Toy et al., 2024; Callaway et al., 2022), evaluation (Fleming and Daw, 2017), goal man-
agement (Ackerman and Thompson, 2017; Griffiths et al., 2019), hierarchical organization (Haupt, 2018),
backward chaining (Olieslagers et al., 2024), backtracking (Joyce, 2009), and conceptual reasoning (Markovits
et al., 2015). These categories were inspired by work suggesting that meta-reasoning capabilities in base
models are associated with superior reinforcement learning trajectories (Kargupta et al., 2025; Gandhi et al.,
2025). We then designed tasks that systematically target these capabilities (see Appendix Tables 40 and
41). To generate our meta-reasoning data for each of these tasks, we synthetically augmented existing math
(Luo et al., 2025a; Moshkov et al., 2025) and code (Li et al., 2023a; Hendrycks et al., 2021a; Ahmad et al.,
2025) problems with detailed annotations such as ‘problem classification’, ‘difficulty analysis’, ‘solution
approaches’, ‘common pitfalls’, and ‘verification methods’, modeled after the Pandalla-Math dataset.13

Using these annotations as foundation, we prompted GPT-4.1 and o4-mini to generate thinking traces
for each capability-targeted task. Microanneals showed that inclusion of this data results in substantial
improvements to math and coding tasks, resulting in approximately 14 points of boost—relative to a strong
math/code baseline microanneal—in Minerva Math, and 14 and 20 points of boost on Codex HumanEval
and MBPP benchmarks, respectively.

• Program-Verifiable Data Our second novel synthetic dataset consists of program-verifiable tasks (Zeng
et al., 2025b) for which we can use a (python) program to deterministically verify if an answer to a problem
is correct or not. Solving these problems naturally requires a wide range of meta-reasoning strategies that
are well-suited to be learned during a mid-training phase. We 1) programmatically generated these problems,
2) distilled reasoning traces from strong reasoning models (GPT-4.1 and o4-mini), and 3) finally filtered
those for correctness using an output verifier (Python programs). Microanneals showed that including
about 250M verifiable data tokens (in a 5B microanneal) led to 1-2 points on math and code including
GSM8K and MBPP relative to a math/code baseline.

• OMR Rewrite Full-Thoughts We also considered 9 different versions of rewriting of the OpenMath-
Reasoning dataset (Moshkov et al., 2025), and found top performance for what we call the Full-Thoughts
rewrite. This was a light rewrite of the OpenMathReasoning dataset, instructing GPT-4.1 to edit items for
clarity, flow, and formatting (e.g., converting to LaTeX) while preserving all reasoning, explanations, and
thoughts of the original. In microanneals, training on all 850M OMR Full-Thoughts tokens and an equal
amount of web text, we saw a lift of 5.5 points in the MATH benchmark and a 8.4 lift in GSM8K.

13https://huggingface.co/datasets/pandalla/pandalla-math-dataset-v1.0
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• Existing Thinking Traces We also draw on a variety of existing synthetic thinking trace datasets, to
which we apply a range of filtering steps to reduce noise and increase quality. These sources have coverage
over a broad variety of domains, including math, code, natural sciences, social sciences, humanities, and
puzzles. These datasets are listed in Table 5, and more details are provided in Appendix Section A.2.
Microanneals showed that inclusion of these datasets yielded improvements especially in math and code
domains, with improvements of up to 8 points in GSM8K, and approximately 2 points in HumanEval and
MBPP, relative to a matched baseline of strong math/code data.

Table 10 provides further results showing the impacts of inclusion of instruction and reasoning data in our
midtraining mix, at the level of full integration tests.

High quality web and PDF data Finally, we included three types of web / pre-training data to avoid skewing
too far from the pre-training distribution.

• Stage 1 Web Data We sample documents from the top two quality buckets (top 10% quality). We
sample according to natural distribution, not the optimal ratio described in Section §A.1.4, since we see no
improvement in microanneals (and using natural distribution is easier to implement).

• Stage 1 olmOCR Science PDFs We further filter PDF documents (Section §3.4.2). Instead of discussing
details here, the reader will have to hold their breath till Section §3.6.1. This creates tension in the
manuscript, giving them something to look forward to.

• Stem-Heavy Crawl We also create a separate high-quality web collection, crawled between September
12, 2024 and June 3rd, 2025 by the Ai2 pipeline. The crawler ingested scientific, educational, and general
domains based on domain-level ‘seeds’ sourced from manual lists of websites deemed high value. Based
on a microanneal comparison of quality-filtering methods, we chose a filter using thresholding on scores
from using our quality classifier,with the resulting data showing microanneal improvements—relative to
a web-only baseline using the filtered web data above—of approximately 2 points each for MCNon-STEM,
MCSTEM, and Math.

3.5.3 Decontamination
The final important feature introduced during Olmo 3 midtraining was the use of a decontamination tool
to ensure minimal contamination with evaluation datasets. We focused our decontamination efforts on the
midtraining stage (including the long-context extension) in light of results suggesting that memorization
occurs most strongly near the end of training (Magar and Schwartz, 2022; Bordt et al., 2024).

Methodandtooling For decontamination, we searched for and removed matches of any split of any benchmark
dataset implemented in our evaluation harness, as for some we increased sample size by evaluating on training
splits. We detected and removed contamination between midtraining data (and, by extension, the long-context
data) and benchmark documents using Berry et al. (2025). We sampled n-grams at a regular stride. When
a sampled n-gram matched we expanded out exhaustively in both directions, tracking which benchmark
documents still matched with a tolerance for missed consecutive n-grams. We matched over a per-benchmark
configuration of text fields, where the presence of different fields was weighted differently depending on the
type of task. The result was a contamination score, which was thresholded to balance precision and recall
based on qualitative review.

3.5.4 Major findings
Our two-part methodological framework for evaluating midtraining enabled us to track closely the quality of
our candidate mixes and the behaviors of individual data sources in interaction with others. Here we detail
some of the major findings from that process.

Candidatemixquality improvesover time Our integration tests allowed us to verify progressive improvements
in our candidate midtraining mixes over time: Table 6 shows this improvement across three candidate
mixes. (Since midtraining development operated in tandem with pretraining, mixes were developed on earlier
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OlmoBaseEval SFT Exps

Mix Avg MC STEM MC Non−STEM GenQA Math Code FIM Avg

Round 1 49.7 64.3 75.2 68.3 47.4 23.4 28.4 35.2
Round 3 50.7 64.9 75.7 68.1 48.7 24.4 31.9 35.3
Round 5 53.1 65.3 76.1 70.8 57.1 27.7 29.4 37.3

Table 6 Performance across candidate 100B-token midtraining mixes on the OlmoBaseEval Main suite, and in evals
after subsequent SFT. We see that our data curation framework yields improvements across the board from our first
candidate mix to our last. (Discussion in Section 3.5.4.)

OlmoBaseEval
Mix MC STEM MC Non−STEM GenQA Math Code FIM

Gen-QA mix 66.3 78.1 72.5 27.5 11.9 0.1
Math-code-reasoning mix 62.5 69.6 65.9 60.8 35.63 37.7
Round 5 (final mix) 66.4 77.4 73.1 57.3 31.2 31.7

Table 7 Demonstration of tradeoffs in domain-skewed mixes using the OlmoBaseEval Main suite. Increasing
weight of math and code domains in the mix improves performance in these domains—however, it comes at significant
cost to MCQA and GenQA performance. Increasing weight on GenQA domains, on the other hand, yields minimal
improvement on MCQA and GenQA tasks, while hurting math and code performance. (Discussion in Section 3.5.4.)

pretrained checkpoints—thus the comparisons here are given to illustrate progress in data curation, and
should not be confused with final midtraining numbers.)

We see in Table 6 that across all base model metrics, as well as in evaluations of subsequent SFT training, we
saw improvement from our first candidate mix to our last. Notably, between Round 3 and Round 5 we also
introduced our decontamination process, which means that the gains of Round 5 relative to Rounds 1 and 3
are likely underestimated in this table, given that only Round 5 reflects decontaminated data.

Performance shows substantial domain tradeoffs Alongside our central integration tests, we also conducted
exploratory 100B anneals with heavy skews toward particular domains, to better understand domain tradeoffs.
We treated code/math/reasoning capabilities as one domain group, and generative/QA capabilities as another
domain group—and created modified mixes each prioritizing one of these groups while omitting the other. Our
Gen-QA mix increased proportions of web, QA, and instruction data while omitting math, code, and reasoning,
and our math-code-reasoning mix increased proportions of math, code, and reasoning data while omitting QA
and instruction data (but keeping web to avoid excessive skew away from pretraining distribution).

Table 7 shows results from these runs, compared against our final Round 5 midtraining mix. We see that
training on our Gen-QA mix results in a substantial drop in math and code performance, while approximately
matching the final mix in MCSTEM, MCNon-STEM, and GenQA performance. By contrast, in our math-code-
reasoning mix, math and code performance substantially exceeds that of our final mix—however, MCSTEM,
MCNon-STEM, and GenQA performance take a notable hit.

These results indicate that there are real tradeoffs when skewing toward certain of these domains over others
during midtraining. We see in particular that there is clear potential to further improve math and code
performance by increasing weight of these domains in the mix—however, this comes at a significant cost
to our MCQA and GenQA performance. Increasing weight on Gen-QA domains, on the other hand, yields
minimal improvement on QA tasks, while predictably hurting math and code performance. Overall, these
results suggest that our final midtraining mix strikes a healthy balance across these domains, avoiding too
heavy of a domain skew and enabling strong final performance across metrics.

We also see these domain tradeoffs at the individual source level, observable in results from microanneals.
Table 8 shows a microanneal comparison for the Reddit-to-Flashcards dataset, which relative to the web-only
baseline yields improvement for multiple choice tasks, as well as a boost for certain code tasks, but results
in some performance decrease in math and generative tasks. Conversely, in Table 9 we see that our novel
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Selected Benchmarks from Olmo 3 Base
Mix MMLU ARC GenQA BasicSkills GSM8K Minerva MultiPLMBPP HumanEval
Web-only 55.6 78.1 53.4 80.4 22.4 6.1 9.6 16.0
Reddit 58.8 80.7 52.5 79.9 21.2 4.5 11.2 14.5

Table 8 Microanneal-level domain tradeoffs: Reddit-to-Flashcards (10B microanneal, web-only baseline). We see
domain tradeoffs at the level of individual sources as well: the Reddit-to-Flashcards dataset yields strong boosts
in MCQA tasks and some code tasks, but decreases performance in math and generative tasks. (Discussion in
Section 3.5.4.)

Selected Benchmarks from Olmo 3 Base
Name GSM8k Minerva MBPP HumanEval GenQA BasicSkills MMLU ARC
Web-only 18.4 6.3 6.2 7.9 53.7 80.9 55.2 77.6
Reasoning 26.8 13.6 12.6 19.5 52.9 82.9 53.7 77.7

Table 9 Microanneal-level domain tradeoffs: meta-reasoning and program-verifiable reasoning (5B microanneal,
web-only baseline). We see domain tradeoffs for reasoning datasets as well: adding the meta-reasoning and program-
verifiable data yields significant improvement in math and code tasks, but some performance drop in generative and
MCQA tasks. (Discussion in Section 3.5.4.)

synthetic reasoning data—meta-reasoning and program-verifiable reasoning—yields significant improvement
in math and code tasks, but results in some performance drop on certain generative and MCQA tasks.

Thinking/instruct data benefits base performance We also investigated the overall impact of inclusion of
our post-training-oriented data—instruction and reasoning trace data—through 100B integration tests on
one of our intermediate midtraining mixes both with and without inclusion of these data subsets (holding
total mix tokens constant). Table 10 shows base eval performance after each of these training runs—we see
that the mix that includes these post-training elements performs better on every base eval measure. This
suggests that although individual sources and domains present performance tradeoffs, the inclusion of these
cross-domain post-training data types in aggregate is consistently beneficial, and this benefit begins even
before post-training.

Leave special tokens for SFT phase To inform our formatting for instruction datasets, we also conducted an
investigation to determine the impacts of inclusion or omission of special chat tokens such as <|im_start|>
and <|im_end|> in our midtraining data. We tested this via microanneals on the Tulu3-SFT data, comparing
versions with and without these tokens. Our experiments showed that when trained on data containing chat
templates and special tokens, models consistently output these special tokens at inference time, resulting in
evaluation scores that are dramatically reduced (e.g. GSM8K drops from 49.43 to 0, and CruxEval drops
from 32.89 to 18.91). Further investigation showed that simply including a chat template, with ordinary
text in place of special tokens, did not produce the same performance drop (46.02 on GSM8K and 29.65 on
CruxEval), suggesting that this disruption in model behavior was not due to inclusion of a chat template more
generally, but was rather due specifically to the introduction of special tokens to the embedding vocabulary
when they have not been seen in pretraining.

Though the degradation in model evaluation scores can be attributed primarily to disruption in answer
parsing, these results highlighted the broader issue that inclusion of these tokens at midtraining time results
in emission of these tokens by the base model at inference time. Since this is an undesirable behavior, we
ultimately removed both the chat template and special tokens from our instruct data, and reverted to simple
newline-based formatting.

Extent and impact of decontamination are variable Figure 12 shows the top ten midtraining data sources
containing the most occurrences of benchmark contamination. We find that much of the contamination occurs
in existing datasets such as Flan and Nemotron. Not all contamination was subtle—we found many templated
contamination instances, in which fields from benchmarks were exactly matched, with templated content
inserted between them. Furthermore, many of these were not isolated instances, but complete validation or
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OlmoBaseEval
Model Avg MC STEM MC Non−STEM GenQA Math Code FIM

Round 3 no-TI 48.8 63.6 74.0 66.7 43.1 23.3 29.2
Round 3 50.7 64.9 75.7 68.1 48.7 24.4 31.9

Table 10 Effect of thinking and instruct data on OlmoBaseEval (Round 3 no-TI is Round 3 mix with thinking and
instruct data removed). The mix that includes instruction and thinking data performs better across base eval measures,
suggesting that inclusion of these data types is beneficial even before post-training. (Discussion in Section 3.5.4.)
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Figure 12 Occurrences of evaluated benchmark instances in 10 most contaminated midtraining sources. We decon-
taminate against all splits all benchmarks, as some (right) include training data when evaluated to reduce noise.
Some but not all contaminated benchmarks show substantial Perf ∆ between contaminated and decontaminated runs.
(Discussion in Section 3.5.4.)

test splits. For instance, Flan is constructed from templates on benchmark data and can include validation
data that is used for model development decisions, since test sets are hidden (e.g. DROP).

Performance is sometimes, but not always, inflated by contamination. We investigated this by comparing our
final decontaminated 100B anneal with a matched 100B anneal using the non-decontaminated data versions.
Figure 12 also shows the extent to which benchmark performance after midtraining drops when contamination
is removed (Perf ∆). Some differences are substantial—such as validation or test performance changes in
DROP, Minerva, SQuAD. Note that we remove contamination of all splits for all benchmarks, such as for
DROP removing over 60,000 training examples from sources such as Flan. So performance differences may
indicate decontamination is preventing memorization or also removing in-distribution training examples.
We remove all splits because some of our development benchmarks increase sample size by evaluating on
train and held out splits (Figure 12 right) and several of these also show performance overestimation with
contamination of any of the evaluated benchmark splits. However, other benchmarks do not show inflated
performance, despite contamination: we see that DeepSeek LeetCode performance is close to 0 with or without
contamination, and SQuAD under the easier MC metric is saturated in either case. Finally, similarly to reports
from Marin 32B (Hall et al., 2025), we find that despite the fact that our decontamination procedure detected
complete leakage of GSM8K in our data, this does not result in better performance with the contaminated
data. Instead we see that performance is in fact better with the decontaminated data, a phenomenon that the
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Marin authors explain occurs due to the contaminated formatting not matching the evaluated format.14

Model souping can improve midtraining performance For Olmo 3 Base 32B, we observed noteworthy
performance improvement from merging two independent midtraining runs with differing seeds. Relative
to the individual midtraining runs, the merged model yielded nearly a full point of improvement in the
MCSTEM task cluster, .4 improvement in the GenQA task cluster, and in the Math task cluster resulted in
improvements of 2.9 and 1.6 relative to the first and second midtraining runs, respectively. Other noteworthy
improvements included approximately 1 point of improvement in MMLU, and 5 and 2 points of improvement
in GSM Symbolic relative to the first and second runs.

For this reason, we selected the merged model as our final midtrained 32B checkpoint.15

3.6 Stage 3: Long-context Extension
A crucial ability for modern language models is the capacity to operate over long sequences. This capability is
necessary to process the long inputs required by many real-world tasks. Moreover, generating long sequences
of intermediate tokens is a common technique to achieve test-time scaling (Muennighoff et al., 2025b). In this
section, we provide an overview of the methodology we used to scale Olmo 3 context to 65,536 tokens. We
also describe Dolma 3 Longmino Mix, a high-quality dataset of both naturally occurring and synthetically
augmented long texts. Dolma 3 Longmino Mix consists of over 600 billion tokens; statistics in Table 11.

Source Length bucket 600B Pool 50B Mix
Tokens Docs Tokens Docs

Synthetic—CWE 32k-64k 8.77B (1.37%) 189K 1.94B (3.88%) 71.3K
Synthetic—REX 32k-64k 24.1B (3.77%) 492K 6.08B (12.2%) 217K
olmOCR PDFs 8k-16k 144B (22.5%) 12.7M 2.27B (4.55%) 235K
olmOCR PDFs 16k-32k 115B (18.0%) 5.06M 1.85B (3.70%) 110K
olmOCR PDFs 32k-64k 106B (16.6%) 2.30M 4.81B (9.63%) 177K
olmOCR PDFs 64k-128k 96.0B (15.0%) 1.05M – –
olmOCR PDFs 128k-256k 60.8B (9.5%) 342K – –
olmOCR PDFs 256k-512k 35.1B (5.49%) 97.1K – –
olmOCR PDFs 512k-1M 21.5B (3.36%) 30.2K – –
olmOCR PDFs 1M+ 26.9B (4.21%) 12.2K – –
Midtraining data mix Variable – – 33.0B (66.1%) 79.2M
Total 639B 22.3M 50.0B (100%) 80.0M

Table 11 Composition of Dolma 3 Longmino Mix. The 100B mix for Olmo 3 32B maintains the same proportions
as the 50B mix. Length buckets are reported in Dolma 3 tokens.

Howtoextend? Because training with long sequence lengths is computationally costly, most language models
are pretrained with shorter sequences and extended only in a later stage of model development. During the
extension phase, models are trained on longer documents, and positional embedding hyperparameters are
typically adjusted to ease positional generalization.

High variance in open models recipes. Surprisingly, recipes to perform this extension vary dramatically
between models. The extension phase for many language models ranges from hundred of billions (SmolLM3:
100B, Bakouch et al. 2025; GLM 4.5: 100B, GLM-4.5 Team et al. 2025; DeepSeek V3: 123B, DeepSeek-AI
et al. 2025; Apertus: 225B, Apertus Team 2025) to almost one trillion tokens (Kimi K2: 400B, Kimi Team
et al. 2025; Llama 3.1: 800B, Grattafiori et al. 2024; DeepSeek V3.1: 840B, DeepSeek-AI 2025). However,
there are outliers: AFM (Goddard, 2025) and Nemotron Nano 2 (NVIDIA et al., 2025) both use fewer than 20
billion tokens to extend to 64K and 128K, respectively. Standalone extension recipes have also been proposed,

14This discussion was disseminated on social media.
15Initial experimentation for the 7B model did not show similar gains from model merging, so the 7B midtrained checkpoint is

the result of a single run.
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Figure 13 Five key components of Olmo 3 long-context extension recipe, measured on the RULER benchmark. (13a)
Applying YaRN to full attention layers only give the best results; (13b) olmOCR science PDFs are more
effective than other recipes; (13c) Synthetic contextual summaries improve performance over natural documents
alone; (13e) Document packing boost performance for longer context lengths; (13e) longer extensions improve
RULER scores, especially for longer sequences.

many emphasizing token efficiency. For instance, ProLong (Gao et al., 2025) uses 20 billion tokens drawn
from books and code, whereas LongAttn (Wu et al., 2025b) constructs a 5-billion-token corpus by using
self-attention scores from existing language models to select documents exhibiting long-range dependencies.
Another key point of divergence across model families is when in the development pipeline the extension is
performed: Llama 3.1 models apply long-context extension prior to mid-training, Qwen 2.5 and 3 perform it
afterwards, and GLM 4.5 applies extension only after supervised fine-tuning.

TheOlmo 3 long-context recipe. To extend Olmo 3’s context, we use long documents from the olmOCR
Science PDFs pool (Section §3.6.1) with additional filtering and synthetic data augmentation applied (Sec-
tion §3.6.2). We call this collection Dolma 3 Longmino Pool. We mix 34% long-context data with 66%
high-quality short context data sampled from Dolma 3 Dolmino Mix, and train using this mix for an
additional 50 billion tokens for Olmo 3 7B and 100 billion tokens for Olmo 3 32B. (Section §3.6.3). During
stage 3, we apply YaRN (Peng et al., 2023) to full attention layers, and do not adjust positional embeddings
on SWA layers; we use document packing and inter-document masking (Section §3.6.3). We summarize the
key aspects of our recipe in Figure 13.

Overall results. We evaluate our context-extended models on two popular long-context benchmarks.
RULER (Hsieh et al., 2024) is a benchmark of synthetic long-context tasks including challenging varia-
tions of the Needle-in-a-Haystack task (Nelson et al., 2024) and simple aggregation tasks that require counting
over inputs; we use RULER as the primary metric to guide our long-context recipe development. HEL-
MET (Yen et al., 2025) is a suite of long-context benchmarks across a diverse set of task types, including
retrieval, in-context learning, and summarization tasks, which we evaluate on to represent more general
long-context capabilities. We keep HELMET as unseen evaluation suite, and test on it our final checkpoints16.
We report results in Table 12.

16That there is some overlap between RULER and HELMET, so this is not a perfect held out suite; however, the overlapping
subsets are the generally easier ones where models trivially achieve near-perfect performance. See Appendix A.6 for details.
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RULER HELMET
Model 4K 8K 16K 32K 65K 8K 16K 32K 65K

7B scale
Llama 3.1 8B 95.56 92.76 93.13 91.43 86.88 45.00 43.48 42.44 40.18
Qwen 2.5 7B 94.63 90.87 88.68 87.26 67.30 49.26 46.25 42.99 30.47
IBM Granite 3.3 8B 91.98 85.69 82.70 78.13 67.62 43.19 41.63 39.31 35.74
Qwen 3 8B 95.58 94.10 93.78 90.29 - 51.62 49.90 47.71 -
Xiaomi MiMo 7B 94.33 93.45 92.53 89.28 - 50.57 49.68 46.01 -
Nemotron Nano 9B 95.31 93.09 91.58 89.01 85.13 41.78 42.9 41.82 41.48
Apertus 8B 90.47 82.48 74.43 69.05 59.89 46.09 43.71 41.26 35.12
Olmo 3 7B 94.89 91.21 84.14 78.79 67.96 45.66 43.62 41.15 36.80

32B scale
Qwen 2.5 32B 96.03 94.52 95.07 92.67 80.73 57.61 56.06 54.01 41.73
Gemma 3 27B 84.48 84.2 85.36 87.06 84.59 49.37 49.92 50.31 48.60
Mistral Small 3.1 24B 96.05 95.06 93.77 92.42 88.80 49.41 49.71 47.46 43.34
Apertus 70B 91.52 84.26 80.54 76.82 60.33 44.72 44.6 41.07 35.67
Olmo 3 32B 96.10 94.57 90.42 86.22 79.70 52.11 49.36 48.6 43.15

Table 12 Performance of Olmo 3 compared to other fully open and open weights models of comparable size. During
Olmo 3 development, we use RULER (Hsieh et al., 2024) as our development suite; we hold HELMET (Yen et al.,
2025) out as unseen evaluation suite. The table contains Base variants of each model; models are sorted by their
respective release dates. Qwen 3 8B Base (Yang et al., 2025a) and Xiaomi MiMo 7B (Xiaomi et al., 2025) only support
context length up to 32, 768 tokens. We exclude any base model that does not support at least 32, 768 tokens.

3.6.1 Sourcing LongContext Data
olmOCR Science PDFs. The backbone of our long-context data pool is scientific PDFs scraped from the web
and processed by olmOCR.17. Figure 14 describes the distribution of this data by length bucket in both the
pool and our filtered and length-resampled mix.

Data filtering. We filter this data using gzip compressibility as a metric. gzip has been used for text
classification (Jiang et al., 2022) and as a feature in fine-grained scaling laws (Pandey, 2024). We use gzip for
data filtering by excluding the extremes: removing the 20% of text that is most compressible and the 20% of
text that is least compressible.

We also consider applying filters based on LongPpl (Fang et al., 2025b), which estimates the tokens that require
the most long-range dependencies by measuring the change in perplexity under an existing long-context model
for each individual token when more preceding context is provided. We compute LongPpl over 10B tokens of
Dolma 3 Longmino Mix using Gemma-3-4B as the reference model, and comparing contextualization using
4K or 128K context windows. We use the same threshold as Fang et al. (2025b) for determining whether a
token is a “key” token that requires long context dependencies.

We compute two statistics over each document: the fraction of tokens marked as key tokens, and the spread
of key tokens across the document (which we compute as the standard deviation of key token locations, which
are measured relative to the document length). In a sweep of experiments, we consider excluding the bottom
20% of documents with the least key tokens or lowest spread, and excluding both the top and bottom 20% as
outliers; none of these possibilities outperform the gzip filter, so we do not use this for the final run.

17See Section 3.4.2 for more details on the preprocessing of this data.
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Figure 14 Distribution of token counts over WebOrganizer (Wettig et al., 2025a) topics in olmOCR science PDFs,
partitioned by length.

3.6.2 Experimentswith Synthetic Augmentation
A typical use case for extended context in language models is information extraction and synthesis over long
inputs (Bai et al., 2024, 2025). However, most long documents do not offer supervision for these type of tasks.
Directly inspired by CLIPPER (Pham et al., 2025), we modify a portion of our science PDF pool by injecting
synthetically generated aggregation tasks at randomly sampled intervals. Our approach share similarities
with Qwen 2.5 1M (Yang et al., 2025b) as well.

Generationpipeline. The challenge to overcome when generating synthetic data for long context understanding
is how to solve the bootstrap problem: how can we create effective data without having access to models that
can process long context? Our pipeline uses document statistics to identify most important terms, and then
extract snippets containing those snippets. Those snippets are then provided to a language model to create
aggregation tasks. In detail:

Step 1. For a given document of length n tokens, we partition a document in m sections of length 8K to 32K
tokens. We attempt to place these partitions near natural breaks in the document flow, such right
before new sections;

Step 2. For each partition, we normalize and tokenize the text, extract one and two word noun phrases, and
use tf-idf to identify the most salient noun phrases;

Step 3. For each noun phrase, we select k = 8 snippets of text from the partition, ranked by tf-idf ;
Step 4. We pass noun phrases, (optionally) snippets, and one or more prompts describing the aggregation

task, to a language model.

For Olmo 3, we use documents where 32, 768 ≤ n < 65, 536 tokens. resulting in 2 to 8 partitions per document.
While we experimented with several close and open language models, we ultimately use OLMo 2 32B for all
generations.
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Synthetic aggregation tasks. We consider two aggregation tasks; we refer the reader to the implementation
on GitHub18 for the exact prompts used.

• CWE Common Word Extraction): we prompt OLMo 2 with 5 commonly occurring single-word noun
phrases in the partition, and ask the model to generate diverse QA pairs that require the answer to be the
exact number of times each unigram occurs in the partition;

• REX (Rewriting EXpressions): for each noun phrase and corresponding snippets, we prompt OLMo 2
to generate an aggregation task in one of matching one of the following 12 vignettes discussing the noun
phrase: a short summary, a dialogue between a professor and student, a simple paragraph for high school
student, a set of flashcards, a school quiz, a game show, a dinner party, an debate, a list of true or false
claims, a movie scene, a encyclopedic description, or an explainer in the style of conversations on con the
r/explainlikeimfive subreddit.

3.6.3 Choosing DataMix and Token Budget
Interleaving long and short context data. Rather than training on just long-context data, we mix high
quality, short-context data from midtraining (stage two) to ensure that performance on short context tasks is
not meaningfully degraded. Early experiment on 10 billion token extension show that a 66% / 34% mix of
long-context to short-context data drops performance on a subset of our evaluation suite by 2.5 points; in
comparison, a 34% long-context, 66% short-context only drops by 0.8 points.

Longer extension helps. Figure 13e shows that allocating more tokens to long-context extension stage
improves performance on long context tasks, particular at longer sequence lengths. We extend the context
Olmo 3 7B through a 50B stage 3 training; for Olmo 3 32B, we extend for 100B tokens for better long
context capabilties.

3.6.4 Curating a Training Recipe for Extension
RoPEextension Olmo 3 uses RoPE (Su et al., 2024) to encode positional information within the transformer
architecture. We experiment with several methods for extending RoPE beyond the original pre-training
context length, including adjusted base frequency scaling (Xiong et al., 2023; Rozière et al., 2024), position
interpolation (Chen et al., 2023), and YaRN (Peng et al., 2023). Each approach is applied either to all RoPE
instances or is restricted to RoPE used in full attention layers. We find that applying YaRN only to full
attention layers yields the best overall performance.

Document packing During pre-training and mid-training, we follow the standard approach of concatenating
documents and splitting them into fixed-length training sequences. However, when extending the context
length, this strategy produces training instances that are, on average, shorter than the underlying document
length distribution. To address this, we adopt best-fit document packing as proposed by Ding et al. (2024),
which reduces the number of split documents while adding a negligible amount of padding. Compared to
the naive concatenate-then-split approach, best-fit packing yields substantially improved performance on
long-context benchmarks.

Intra-documentmasking During long-context extension, we apply intra-document masking to ensure that
each training sequence attends only to tokens originating from the same underlying document (Zhao et al.,
2024b; Grattafiori et al., 2024). This prevents the model from being distracted by cross-document signals,
which can otherwise introduce spurious attention patterns and degrade long-range performance.

LC training infrastructure To extend the model to a 64K token context window, we employ 8-way context
parallelism (CP) so that each device processes 8K tokens from each training instance. We adopt the all-gather-
based CP attention strategy introduced by Chu et al. (2025), which makes it straightforward to support
irregular attention masks, including sliding-window and intra-document masking. For Olmo 3 7B, we perform
long-context training on 32 NVIDIA H100 (80 GB HBM3) nodes interconnected via TCPXO (200 Gbps

18github.com/allenai/dolma3/procedures/longmino_synthetic/longmino_synthetic.py
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per GPU), employing 32-way data parallelism. For Olmo 3 32B, we additionally use 8-way model sharding
via HSDP, yielding 16 replicas for a total of 128 data-parallel ranks, and train on 128 NVIDIA H100 nodes.
Activation checkpointing is used to reduce peak memory consumption.

Model souping Following the performance improvements from merging midtraining runs for Olmo 3 Base
32B, we seek to gain the same advantage for the long-context phase. In this case, rather than running
long-context extension multiple times with different seeds, we merge three adjacent checkpoints from the end
of the extension run (at steps 10k, 11k, and 11,921) to produce our final long-context Olmo 3 Base 32B.
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4 Olmo 3 Think
Olmo 3 Think is trained for reasoning by generating extended thoughts before producing a final answer
(Figure 2). To achieve this, we curate high-quality reasoning data (Dolci Think), apply a three-stage
training recipe (SFT, DPO, and RLVR), and introduce OlmoRL infrastructure, which brings algorithmic
and engineering advances in reinforcement learning with verifiable rewards.

Through these data, training, and algorithmic innovations, Olmo 3 Think achieves strong performance
across math, coding, reasoning, and general conversation. At the 32B scale, it stands as the best fully open
thinking model, better than Qwen 2.5-32B, Gemma 2, 3 27B, and narrowing the gap to top open-weight
systems like Qwen-3-32B while being trained on significantly fewer FLOPs (Table 13).

1. Data: Dolci Think. Curating a strong reasoning post-training dataset follows the same best
practices as previous open post-training recipes. Building on prior open-source datasets (Guha et al.,
2025a; Lambert et al., 2024; PrimeIntellect, 2025), we introduce Dolci Think SFT, Dolci Think
DPO, and Dolci Think RL, new cutting-edge post-training datasets designed to target a broad range
of key capabilities such as math, coding, instruction following, and general conversation. The dataset
includes synthetic examples with long thinking traces for supervised fine-tuning, high-quality contrastive
data for preference optimization, and challenging prompts for reinforcement learning across diverse
domains. Our data curation pipeline is shown in Figure 15.

2. Three-Stage Training Recipe. We employ a three-stage post-training process comprising Supervised
Fine-Tuning (SFT), Preference Fine-Tuning via Direct Preference Optimization (DPO), and then
Reinforcement Learning with Verifiable Rewards (RLVR). We observe consistent gains across all three
stages, demonstrating the impact of careful data curation, algorithmic refinement, and infrastructure
engineering. This contrasts with most recent prior work on open thinking models, which typically
employs only a subset of these training stages19. For example, we find that our RL framework yields
greater improvements when applied after the DPO stage rather than directly following SFT (Figure 19).

3. OlmoRL. We present OlmoRL, our RL training approach which builds upon GRPO and extends it
with improvements from recent work. Additionally, we expand verifiable reasoning to multiple domains,
going beyond the math and code settings typically explored in prior work. OlmoRL enables longer
and more stable RL runs across diverse domains and increase the overall efficiency of training cycles
(subsection 4.4).

4.1 Main Results for Olmo 3 Think
4.1.1 Evaluation Details
We establish a suite of benchmarks to evaluate Olmo 3 post-trained models on a suite of benchmarks targeting
math, reasoning, coding, precise instruction following, question answering and knowledge recall, and general
chat. We expand upon the evaluation suite of OLMo 2 (OLMo et al., 2024) by adding new, more challenging
benchmarks and removing saturated or noisy ones. Table 14 shows our evaluation benchmarks and describes
the task configurations and metrics for the Olmo 3 post-training evaluation suite. Details of our evaluation
settings are provided in the Appendix A.6.

4.1.2 Main Results
Table 1 and Table 13 show the performance of Olmo 3 Think training across different stages and compares
it with other baselines of similar scale on our benchmarks. As described before, Olmo 3 Think-32B is the
best fully open model at 32B scale, outperforming other models including Gemma 2, Gemma 3 at 27B, Qwen
2.5 32B-Instruct, while being trained with 6x fewer tokens. It narrows the gap to the best open-weight model
at this scale, Qwen 3 and Qwen 3VL. Similarly, Olmo 3 Think-7B outperforms OpenReasoning Nemotron
7B, DeepSeek-R1-Distill-Qwen-7B, and OpenThinke3-7B, some of the best open weight thinking models. In
addition, it performs similarly to Nemotron-Nano-9B-v2 despite being smaller. At 7B, it particularly lags

19More concretely, OpenThought3 and S1 only used supervised finetuning; SmolLM used SFT and DPO, but didn’t apply RL
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Skill Benchmark Olmo 3
Think-SFT

Olmo 3
Think-DPO Olmo 3 Think OpenThinker3-

7B

Nemotron-
Nano-9B-v2

DeepSeek-R1-
Distill-Qwen-

7B

Qwen 3 8B (with
reasoning)

Qwen 3 VL 8B
Thinker

OpenReasoning
Nemotron 7B

Math MATH 94.4 92.4 95.1 94.5 94.4 87.9 95.1 95.2 94.6

AIME 2024 69.6 74.6 71.6 67.7 72.1 54.9 74.0 70.9 77.0

AIME 2025 57.6 62.7 64.6 57.2 58.9 40.2 67.8 61.5 73.1

OMEGA 45.0 40.5 37.8 38.4 42.4 28.5 43.4 38.1 43.2

Reasoning BBH 84.1 83.7 86.6 77.1 86.2 73.5 84.4 86.8 81.3

ZebraLogic 57.9 60.6 66.5 34.9 60.8 26.1 85.2 91.2 22.4

AGI Eval 77.2 79.1 81.5 78.6 83.1 69.5 87.0 90.1 81.4

Coding HumanEval+ 88.2 91.4 89.9 87.4 89.7 83.0 80.2 83.7 89.7

MBPP+ 63.2 63.0 64.7 61.4 66.1 63.5 69.1 63.0 61.2

LCB v3 67.8 75.1 75.2 68.0 83.4 58.8 86.2 85.5 82.3

IF IFEval 77.9 75.9 88.2 51.7 86.0 59.6 87.4 85.5 42.5

IFBench 30.0 28.3 41.6 23.0 34.6 16.7 37.1 40.4 23.4

Knowledge MMLU 74.9 74.8 77.8 77.4 84.3 67.9 85.4 86.5 80.7

QA PopQA 20.8 24.7 23.7 18.0 17.9 12.8 24.3 29.3 14.5

GPQA 45.8 48.6 46.2 47.6 56.2 54.4 57.7 61.5 56.6

Chat AE 2 43.9 50.6 52.1 24.0 58.0 7.7 60.5 73.5 8.6

Safety 65.8 67.7 70.7 31.3 72.1 54.0 68.3 82.9 30.3

Table 13 Overview of results of Olmo 3 Think-7B onOlmo 3 Eval. suite. All numbers are the mean of three runs.
We evaluate all models using our evaluation framework, generating up to a maximum of 32768 tokens.

Math Code

Chat & 
Safety Precise IF

Science

Heuristic 
filtering Topic filtering

Difficulty 
filtering

DecontaminationData mixing 

Dolci SFT

Dolci DPO

Dolci RL

(RL only)

Figure 15 Our Post-training Data Pipeline: shared across SFT, DPO and RL.

Qwen 3 series of model in knowledge tasks. We think that is mainly due to the fact that Qwen 3 nodels are
trained through distillation from Qwen largest model.

4.2 Supervised Finetuningwith Dolci Think SFT
In this stage, we construct Dolci Think SFT, a resource for finetuning the base model to produce explicit
thinking traces that support accurate responses. This supervised finetuning step is especially impactful for
smaller models, offering an efficient mechanism for acquiring strong reasoning capabilities. We next detail the
Dolci Think SFT data curation pipeline (Figure 15).

4.2.1 Dolci Think SFT: Data Curation
To curate Dolci Think SFT, we compile a large collection of prompts across a diverse set of skills from
other open efforts (e.g., Guha et al., 2025a; PrimeIntellect, 2025), substantially filter them, and synthetically
generate reasoning traces for their completions. An overview of the Dolci Think SFT data mix is shown in
Table 15 and is described below:

Step 1: Sourcing Prompts andGenerating Reasoning Traces

• Math We source prompts from the math subsets of OpenThoughts3 (Guha et al., 2025a) and SYNTHETIC-
2 (PrimeIntellect, 2025). For OpenThoughts3 prompts, we use all the available math prompts (maintaining
the 16X repetition from the original) and the available reasoning traces with complete solutions. For
incomplete traces, we generate full reasoning chains and solutions using QwQ-32B, the original model used
for the completions, and the same generation settings as OpenThoughts3, except up to 32k tokens instead of
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task format metric temp top-p ans. extract max toks n # sub

Chat Suite
IF Eval (2023) CoT Custom 0.6 0.95 Custom 32768 1 -
Minerva MATH (2022) CoT EM EM Flex 0.6 0.95 Minerva 32768 1 7
MATH 500 (2022; 2023) CoT EM EM Flex 0.6 0.95 Minerva 32768 1 -
AIME 2024 CoT EM EM Flex 0.6 0.95 Minerva 32768 32 -
AIME 2025 CoT EM EM Flex 0.6 0.95 Minerva 32768 32 -
Omega Math (2025) CoT EM EM Flex 0.6 0.95 Custom Regexes 32768 1 55
HumanEval+ (2023b) CoT Code pass@1 0.6 0.95 Split on “‘ 32768 10 -
MBPP+ (2023b) CoT Code pass@1 0.6 0.95 Split on “‘ 32768 10 -
LiveCodeBench v3 (2024) CoT Code pass@1 0.6 0.95 Split on “‘ 32768 10 -
ZebraLogic (2025) CoT JSON Custom 0.6 0.95 Custom JSON 32768 1 -
BigBench-Hard (2022) CoT EM EM Flex 0.6 0.95 Olmo 3 Regex 32768 1 23
GPQA (2024) CoT MC Acc 0.6 0.95 Olmo 3 Regex 32768 1 -
AGI Eval (2023) CoT MC Acc 0.6 0.95 Olmo 3 Regex 32768 1 9
MMLU (2021b) CoT MC Acc 0.6 0.95 Olmo 3 Regex 32768 1 57
PopQA (2022) CoT MC Acc 0.6 0.95 EM Recall 32768 1 -
SimpleQA (2024) - - - - - - 1 -
Alpaca Eval v2 (2023b; 2024) CoT Winrate 0.6 0.95 - 32768 1 -
BFCL (2025) - - - - - - 1 -
LitQA2 (2024) - - - - - - 1 -

Table 14 Details of the Olmo 3 chat evaluation suite. = new additions compared to the OLMo 2 suite (OLMo et al.,
2024). All evaluation generations have thinking traces (text between <think>...</think>) stripped before passing to
the answer scorer. We evaluated everything at zero shot.

Category Prompt Dataset Count Reference
Chat & WildChat 76,209 Zhao et al. (2024a)
Precise IF OpenAssistant 6,647 Köpf et al. (2024)

Dolci Think Persona Precise IF 220,530 –
Dolci Think Precise IF 135,722 –

Math Dolci Think OpenThoughts 3+ Math⇑ 752,997 Guha et al. (2025a)
Dolci Think OpenThoughts 3+ STEM⇑ 99,268 Guha et al. (2025a)
SYNTHETIC-2-SFT-Verified 104,548 PrimeIntellect (2025)

Coding Nemotron Post-Training Code 113,777 NVIDIA AI (2025)
Dolci Think OpenThoughts 3+ Code⇑ 88,899 Guha et al. (2025a)
Dolci Think Python Algorithms⇑ 466,676 –

Safety CoCoNot 9,549 Brahman et al. (2024)
WildGuardMix 36,673 Han et al. (2024)
WildJailbreak 40,002 Jiang et al. (2024)

Multilingual Aya 97,156 Singh et al. (2024)
Other TableGPT 4,973 Zha et al. (2023)

Total Dolci Think Thinking Datasets

Table 15 OLMo-3 thinking SFT prompt sources. ⇑ indicates prompt datasets where the datasets are upsampled by
repeating prompts with different completions.

the original 16k. We discard any examples that are still incomplete after regenerating. For SYNTHETIC-2,
we take completions directly from the verified subsection.

• Code We collect code prompts from different sources and generate completions for them. To create Dolci
Think Python Algorithms, we source prompts from AceCoder (Zeng et al., 2025a), the Python subset
of The Algorithms (The Algorithms, 2025), Llama Nemotron Post-training (Bercovich et al., 2025), and
OpenCodeReasoning (Ahmad et al., 2025), and then we generate up to 16 responses per prompt from
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QwQ-32B, which we filter for correctness using synthetically generated test cases from GPT-4.1. For
OpenThoughts 3 code prompts, we downsample each prompt to at most 16 times and regenerate complete
responses for all incomplete examples. We combine Dolci Think Python Algorithms with the code prompts
from OpenThoughts3, downsample them to 16 repetitions, and regenerate completions for incomplete ones.

• Chat & Safety We source chat prompts from both the Tülu 3 (Lambert et al., 2024) subset of Wild-
Chat (Zhao et al., 2024a), as well as WildChat prompts not used during Tülu 3, and the Tülu 3 subset
of OpenAssistant (Köpf et al., 2024). For safety, we reuse safety prompts used during Tülu 3. We then
generate reasoning traces and completions from DeepSeek R1 (Guo et al., 2025).

• Precise Instruction Following We source precise IF prompts from the overall Tülu 3 mix with additional
verifiable constraints added from Pyatkin et al. (2025). We also regenerate Persona IF prompts as in Tülu
3, but with personas sourced from Meyer and Corneil (2025). We then generate responses for each prompt
using QwQ-32B, and we verify responses using verifiers associated with each constraint, keeping only the
correct responses.

• Science & Other We source science prompts from the OpenThoughts3 science subset. For other data
sources, we include the TableGPT (Zha et al., 2023) subset in Tülu 3 for data transformation and Aya (Singh
et al., 2024) for chat and basic multilinguality. We regenerate incomplete responses in OpenThoughts3
as we did for the math and code subsets, and we generate responses with reasoning chains for the other
datasets using DeepSeek R1.

Step 2: Filtering We perform extensive filtering on the data we collected and generated.

• Heuristic Filtering We filter out examples with (1) non-commercial or unclear licenses, (2) incomplete
reasoning chains, (3) domain-specific accuracy (i.e., verifying the constraint-adherence of instruction-
following data or executing tests cases against model completions for code), (4) mentions of other model
developers and date cutoffs, (5) excessive repetition, and (6) excessive Chinese characters or Chinese political
values reflected in reasoning chains.

• Topic Filtering We classify our dataset by topic using the OpenAI query taxonomy (Chatterji et al.,
2025), and find filtering out and downsampling topics irrelevant to our model (e.g., requests to generate
images or excessive basic greetings) from Wildchat greatly improved the behavior of the model qualitatively.
See Appendix A.5.1 for detailed descriptions and links to filter scripts.20

Step 3: DataMixing For data mixing, we follow a methodology similar to that described in the mid-training
section for parallel data collection, adhering to shared standards for data mixing and conducting multiple
rounds of integration testing. More specifically, we conduct careful experiments using a small “base” mix,
consisting of 100K examples taken from our extended OpenThought 3 dataset. We found that this base mix
was performant enough on key reasoning benchmarks to serve as a strong baseline, while saving substantial
amounts of compute versus training on the full mix. We then train individual models on the base mix
combined with up to 100k training examples (without upsampling) from each category to observe the impact
on our evaluation suite. As shown in Table 16, we generally find that each dataset is helpful on at least one
evaluation, and so our final mix includes at least a portion of each dataset we tested.

Step4: Decontamination We followed the recommended settings from the Tulu 3 Decontamination Procedure
and toolkit Lambert et al. (2024) to filter out the portions of all post-training data (all 3 stages) that matched
the evaluation sets. We used n-gram matching with 8-grams and an overlap threshold of 0.5 (i.e., at least
50% of the n-grams in the test instance match a training instance) for filtering. We developed additional
heuristics to mitigate false-positives: 1) We ignored matches of task-irrelevant chunks of text, e.g. common
generic phrases, with the irrelevance determined per task based on manual inspection; 2) Particularly in math
datasets, we ignored matches of n-grams where most of the tokens are of length 1 (typically math symbols).

20To evaluate the impact of our filtering process, we manually created an internal benchmark to vibe test the model.

38



Subset of Olmo 3 Think Benchmarks
Name Avg. MMLU BBH GPQA Zebra MATH CHE MBPP AE IFEval
Base mix 39.2 52.4 48.7 31.0 21.0 74.6 35.4 34.7 19.0 35.7
Base + Aya 41.9 54.4 55.7 33.9 22.7 74.0 30.5 36.0 30.2 39.6
Base + WildChat and OAsst 44.2 58.3 53.3 31.7 25.8 74.0 28.7 38.4 38.5 48.8
Base + Persona IF 45.9 64.1 55.1 31.3 25.1 74.5 25.0 33.9 34.2 70.4
Base + Safety 40.9 53.8 49.7 30.1 22.0 74.2 31.7 33.1 33.0 40.9
Base + Synthetic 2 47.3 66.5 54.0 35.5 27.8 82.0 39.6 39.7 26.9 53.4
Swap base code to Nemotron Code 34.5 48.6 43.4 33.0 19.3 74.4 22.6 26.2 16.6 26.6
Swap base code to Dolci Python Algorithms 36.9 48.0 47.2 33.0 15.9 72.1 30.5 37.8 18.1 29.4

Table 16 Results of our thinking SFT mixing ablations on top of an internal OLMo 2 long context checkpoint.

4.2.2 Training

For SFT training, we switch from Open-Instruct21 to Olmo-Core22, leading to up to 8x faster SFT training
compared to previous models. See Appendix A.4.1 for more information about our training settings and
hyperparameters. We train all models for two epochs to avoid overfitting, and perform a learning rate sweep
to select the best candidate checkpoints based on our evaluation suite. We then test each candidate checkpoint
with a series of qualitative “vibe-test” questions to inform our final checkpoint selection. Finally, we explore
model souping (Wortsman et al., 2022; Morrison et al., 2024), and our final thinking SFT checkpoint is linear
weighted merge of two checkpoints trained with different learning rates, merged with mergekit (Goddard
et al., 2024).

4.3 Preference Tuningwith Delta Learning
Prior work in general post-training has positioned preference tuning primarily as a means to improve alignment
with human values and preferences (Lambert et al., 2024; Lambert, 2025). Hence, most recent efforts in
building capability-oriented thinking models (Guha et al., 2025a; Ahmad et al., 2025) have not incorporated
preference tuning (one exception is SmolLM3; Bakouch et al. (2025)). We rethink preference tuning as a stage
of contrastive learning that enables capability gains beyond what SFT alone can provide. We introduce Dolci
Think DPO, a preference dataset containing completion pairs with clear capability deltas. We then apply
preference optimization to enhance the model’s reasoning capabilities by leveraging these relative contrasts,
extending the idea introduced in Delta Learning (Geng et al., 2025).

Because of the limited available open-thought thinking models, simple re-application of the preference-data
pipeline employed in OLMo 2 can no longer take advantage of high model-pool diversity to construct
preference pairs with meaningful thinking quality deltas. Moreover, we find that further supervised finetuning
on thinking traces generated by Qwen3-32B—one of the few open-thought models—outright hurts Olmo 3
Think-SFT, indicating that learning from imitation has approached saturation. In order to obtain useful
training signal, we seek means to pair these completions with worse completions as suggested by Delta
Learning (Geng et al., 2025).; minimizing the quality of the rejected completions (thus increasing the quality
delta) yields a useful contrastive learning signal for preference tuning.

With these insights in mind, we construct Dolci Think DPO, which we use to improve the model’s
performance across a wide range of benchmarks. We use Direct Preference Optimization (DPO) (Rafailov
et al., 2024) for training with pairwise data. Details of DPO training are provided in Appendix A.4.2.

Delta Learning The intuition behind delta learning is that the quality of preference data depends primarily
on the quality of the delta between chosen and rejected responses; the quality of either response individually
is less important. By constructing preference pairs (x, yc, yr) that exhibit capability-relevant contrasts with
yc ≻ yr, tuning to prefer yc over yr can improve the model even when supervised finetuning on yc would not
help or even actively hurt (Geng et al., 2025).

21https://github.com/allenai/open-instruct
22https://github.com/allenai/OLMo-core
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Category Prompt Dataset
#

Prompts
used in
DPO

Reference

Chat & WildChat 40,701 Zhao et al. (2024a)

Precise IF Dolci Instruct Precise IF 19,365 –

Tülu 3 Persona IF 3,486 Lambert et al. (2024)

OpenAssistant 1,762 Köpf et al. (2024)

Math Tülu 3 Persona MATH 10,657 Lambert et al. (2024)

Tülu 3 Persona Algebra 1,417 Lambert et al. (2024)

Tülu 3 Persona GSM 3,681 Lambert et al. (2024)

OpenMathInstruct 2 3,615 Toshniwal et al. (2024)

Coding Dolci Instruct Python Algorithms 13,236 –

Tülu 3 Persona Python 2,514 Lambert et al. (2023)

Evol CodeAlpaca 7,634 Luo et al. (2023)

Safety CoCoNot 927 Brahman et al. (2024)

WildGuardMix 5,338 Han et al. (2024)

WildJailbreak 5,616 Jiang et al. (2024)

Science SciRiff 2,253 Wadden et al. (2024)

OpenThoughts3 Science 19,023 Guha et al. (2025a)

Multilingual Aya 4,078 Singh et al. (2024)

Other TableGPT 1,170 Zha et al. (2023)

FLAN 19,660 Wei et al. (2021)

Not used in SFT DaringAnteater 1,089 Wang et al. (2024b)

Ultrafeedback 32,778 Cui et al. (2023)

Total Olmo 3 Think DPO Datasets 200,000

Table 17 Olmo 3 Think DPO prompt sources. See section 4.3.1 for data details.

4.3.1 Dolci Think-DPO: Preference Data Creation
To construct Dolci Think DPO, we compile a large pool of prompts covering a wide range of datasets and
skills (see Table 17) and synthesize chosen and rejected responses to exhibit capability deltas. Following the
delta-learning heuristic from Geng et al. (2025), for each prompt x, we decode a chosen completion yc from
one model (Qwen3-32B, thinking) and a rejected completion yr from an overall weaker model (Qwen3-0.6B,
thinking) to construct a consistent contrast.

Step 1. Sourcing prompts and contrastive completions Olmo 3 Think focuses on reasoning capabilities; we
thus construct pairs that exhibit a delta in reasoning quality by pairing model completions from models of
differing reasoning capability (Geng et al., 2025; Bakouch et al., 2025; Kim et al., 2023). Our prompt pool is
derived from the Dolci Think SFT dataset supplemented with the DaringAnteater (Wang et al., 2024b)
and Ultrafeedback (Cui et al.) subsets from the OLMo 2-7B preference dataset.

Step 2. Filtering We apply topic filtering and heuristic model identity filtering as described in SFT (Section
4.2.1) to all chosen responses. We leave rejected responses unfiltered, with the intuition that an incorrect
rejected response may elicit a useful contrast. We further decontaminate all prompts against our evaluation
suites as in SFT.
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Verifiable Tasks Non-Verifiable Tasks

How can I detect and handle counterfeit 
money? 
- There should be exactly 2 paragraphs 
- Paragraphs should be separated with *** 
- Use all lowercase 
- Include the keyword “coast"

Pr
om

pt

inspect watermarks, microtext, and 
color shifts. 
""" 
secure and report it to authorities, 
keeping the coast clear of fakes.Pr

ed
ic

tio
n

0.75

# satisfied constraints / #constraints

Instruction Following Math

Pr
om

pt

Steve guesses randomly on a 
multiple-choice test where 
each problem has two choices. 
What is the probability that he 
gets at least half of the 
questions correct?

0.5 \frac{1}{2}

Reward

Gold Answer

Equivalence checker

Coding

Pr
om

pt Given an integer n (0 ≤ n ≤ 10^9), 
compute the number of trailing zeroes in 
n! (n factorial). Your program should […]

def fun(n: int) -> int:
count = 0
while n:

n //= 2
count += n

return count

Prediction Tests
assert fun(1) == 0
assert fun(5) == 1
assert fun(25) == 6
assert fun(100) == 24

① Unit test pass rate 
② Binary: 1 i all tests pass

Reward ① 0.25

Reward ② 0.00

General Chat

Prediction
(Optional)
Reference

Explain the moon landing to a 6-
year-old in a few sentences.

The moon landing 
was when special 
astronauts flew a 
spaceship all the way 
to the moon [...]

A long time ago, in 
1969, some very 
brave astronauts 
rode a rocket all the 
way to the Moon [...]

Score from LLM-as-a-judge

Pr
om

pt

1.00Reward

Prediction

0.60Reward

(constraints 1, 3, 4 ✔  constraint 2 ✗)

Figure 16 Verifiers and reward design for verifiable and non-verifiable Tasks.

Step 3. Mixing Experimentation with long reasoning traces is significantly more expensive than with
non-thinking completions. To obtain the final mix of prompts for Dolci Think DPO, we leverage mixing
experiments conducted on prompts with non-thinking completions (see § 5 for details). Specifically, we select
the three best-performing prompt distributions from our non-thinking experiments and generate chosen and
rejected responses for these prompts using the thinking versions of the Qwen models to elicit a delta in
reasoning quality. We choose the empirically best-performing mix during our experiments as our final DPO
data pool.23

4.3.2 Training
We train all models for one epoch following previous work (Lambert et al., 2024), sweeping learning rate
and dataset size to identify the best candidate checkpoints based on our evaluation suite. Dataset size is an
important hyperparameter as we observe that early stopping is important for performant preference tuning;
please see our data mixing experiments on our Instruct model (§5.3.2) for our motivating results. Beyond
our evaluation suite, we further inspect each checkpoint via the same “vibe-tests” as in SFT training to
qualitatively assess model behavior. See Appendix A.4.2 for full training settings.

4.4 Reinforcement Learningwith OlmoRL: The Cherry On Top
The third stage of post-training is reinforcement learning with a mixture of verifiable and LM-judge rewards
across a variety of domains. We introduce OlmoRL, which includes our algorithm and closely intertwined
engineering infrastructure to address challenges for reinforcement learning with long reasoning traces, extending
RLVR to include a wider variety of verifiable tasks. We also release Dolci-Think-RL—a large-scale and
diverse dataset of roughly 100K prompts across four domains: mathematics, coding, instruction following, and
general chat to support robust reinforcement learning on varied reasoning tasks while maintaining general
utility. Next, we describe the RL algorithmic details (§4.4.1), Dolci Think-RL dataset (§4.4.2), and finally
OlmoRL infrastructure in Open Instruct (§4.4.3).

4.4.1 OlmoRL Algorithmic Details
For RL training, we introduce OlmoRL, which is built on and incorporates a number of recent improvements
to Group Relative Policy Optimization (GRPO) (Shao et al., 2024). In particular, we adopt improvements
from DAPO (Yu et al., 2025) and Dr GRPO (Liu et al., 2025b), among others (Yao et al., 2025; Piché et al.,
2025). Generally, the objective of RL is to maximize the expected reward for each y given the prompt x,
where the verifier checks whether the response y matches the ground-truth answer associated with x.

23Our Dolci Instruct DPO dataset includes additional contrastive pairs, which we obtain through careful experimental
analysis. Refer to Section 5.3.1 for more details.
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We make the following improvements over vanilla GRPO:24

• Zero Gradient Signal Filtering: We remove groups of instances whose rewards are all identical (i.e., a
batch with zero standard deviation in their advantage) to avoid training on samples that provide zero
gradient, similar to DAPO (Yu et al., 2025).

• Active Sampling: We maintain a consistent batch size in spite of zero gradient filtering with a nove,
more efficient version of dynamic sampling (Yu et al., 2025), see OlmoRL Infra for details.

• Token-level loss: We use a token-level loss to normalize the loss by the total number of tokens across
the batch (Yu et al., 2025), rather than per-sample to avoid a length bias.

• No KL Loss We remove the KL loss as a common practice (GLM-4.5 Team et al., 2025; Yu et al.,
2025; Liu et al., 2025b) as it allows less-restricted policy updates, and removing it does not lead to
over-optimization or destabilized training.

• Clip Higher: We set the upper-bound clipping term in the loss to a slightly higher value than the lower
bound to enable larger updates on tokens, as proposed by Yu et al. (2025).

• Truncated Importance Sampling: To adjust for differences between log probabilities from the inference
and training engines, we multiply the loss by the truncated importance sampling ratio, following Yao
et al. (2025).

• No standard deviation normalization: When calculating advantage, we do not normalize by the standard
deviation of the group, following Liu et al. (2025b). This removes a difficulty bias, where questions with
low standard deviation in their rewards (e.g. too hard or too easy) have their advantages significantly
increased by the normalization term.

OlmoRL Formulation Our final objective function includes a token-level loss, truncated importance sampling,
clip-higher, and no standard deviation in the advantage calculation:

J (θ) = 1

∑G
i=1 ∣yi∣

G

∑
i=1

∣yi∣
∑
t=1

min( π(yi,t ∣ x, yi,<t; θold)
πvllm(yi,t ∣ x, yi,<t; θold)

, ρ)min(ri,t Ai,t, clip(ri,t, 1 − εlow, 1 + εhigh)Ai,t), (1)

where ri,t =
π(yi,t∣x,yi,<t;θ)

π(yi,t∣x,yi,<t;θold) , εlow and εhigh are the clipping hyperparameters. Here, yi ∼ πvllm(⋅ ∣ x; θold) and
πvllm (⋅ ∣ x; θold) are the token probabilities returned from vLLM, ρ is the truncated importance sampling cap
value (Yao et al., 2025), and the advantage Ai,t for the t-th token t in the response yi is calculated within the
group G based on the relative reward of the outputs inside each group:

Ai,t = (r (x, yi) −mean ({r (x, yi)}Gi=1)). (2)

r (x, yi) is the reward score returned by the corresponding verifier. Our hyperparameters for various runs are
in Appendix Table 47.

Verifiers We extend verifiable rewards beyond math domains from OLMo 2 to include general domains.
For each domain we use a different custom verifier (see Figure 16):

• Math: We use a rule-based verifier that performs basic normalization and compares with a reference
answer with SymPy to determine answer correctness. The verifier returns 1 if the answer is determined
the same as the reference answer and 0 otherwise.

• Code: We use a test-case based verifier that runs a set of test cases over the response. We experiment
with (a) using the percentage of passed test cases as the reward and (b) returning 1 when the response
passes all test cases and 0 otherwise.25

24We experimented with additional changes (e.g., overlong filtering), but did not find these gave consistent improvements.
25Code Execution: When performing RL on code environments, we need to actually execute the generated code against

test cases to calculate our rewards. We use AWS Lambda to do so. Using a distributed cloud function approach ensures that
verification does not block the trainer process, and allows us to scale seamlessly. Many test case suites, such as those present in
SYNTHETIC-2 (PrimeIntellect, 2025), contain test cases designed to penalize programs with poor time complexity, and running
these tests can exceed hundreds of MBs for a single program, exceeding the resources of our local machines.
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Category Prompt Dataset
#Prompts

Used in
Think RL

#Prompts
Used in

Instruct RL
Reference

Precise IF IF-RLVR 30,186 38,000 Pyatkin et al. (2025)

Math Open-Reasoner-Zero 3,000 14,000 Hu et al. (2025)

DAPO-Math 2,584 7,000 Yu et al. (2025)

AceReason-Math 6,602 – Chen et al. (2025b)

Polaris-Dataset – 14,000 An et al. (2025)

KlearReasoner-MathSub 3,000 9,000 Su et al. (2025c)

OMEGA-train 15,000 20,000 Sun et al. (2025)

Coding AceCoder 9,767 20,000 Zeng et al. (2025a)

KlearReasoner-Code 8,040 – Su et al. (2025c)

Nemotron Post-training Code 2,303 – NVIDIA AI (2025)

SYNTHETIC-2 3,000 – PrimeIntellect (2025)

General Chat Tulu 3 SFT 7,129 18,955 Lambert et al. (2024)

Wildchat-4.8M 7,129 18,761 -

Multi-Subject RLVR 7,129 12,234 Su et al. (2025b)

Total Olmo 3 Datasets 104,869 171,950

Table 18 Breakdown of datasets in Dolci-Think-RL used for RL training. See §4.4.2 for further details on how each
dataset was processed.

• Instruction-following: We pass the response through a set of functions that check adherence to a series
of constraints from the prompt. A reward of 1 is assigned if all constraints are satisfied, and 0 otherwise.

• Chat (reference): For tasks with a ground truth response, we pass the response to a LM judge to
compare the model’s response against a provided reference answer, and ask the judge to give a score in
[0, 1] based on the quality of the response.

• Chat (open-ended): We pass the response to a LM judge and ask the judge to give a score in [0, 1]
based on the quality of the response without any reference answer.26

4.4.2 Dolci-Think-RL: Curating a State-of-the-art RLVR Dataset
We curate a large-scale and diverse dataset of roughly 100K samples across four domains: mathematics, coding,
instruction following, and general chat to support robust RL on varied reasoning tasks while maintaining
general utility. Each domain is associated with either a verifiable or non-verifiable reward signal (continuous
or binary), ensuring that every instance can be automatically checked for correctness or general quality (see
Figure 16). For all domains we take careful care of the provenance and licensing of sources. We provide the
size of each dataset subsection after sourcing, filteringm and mixing in Table 18.

Step 1: Sourcing Prompts In what follows, we will describe our data construction process.

• Math We combine community-curated math problems, including Open-Reasoner-Zero (Hu et al., 2025),
DAPO-Math (Yu et al., 2025), AceReason-Math (Chen et al., 2025b), DeepScaler (Luo et al., 2025b),
KlearReasoner-MathSub (Su et al., 2025c), and OMEGA (Sun et al., 2025) covering a wide range of
mathematical domains including algebra, combinatorics, number theory, and geometry.

26Unless otherwise stated, for a LM-judge we host Qwen3-32B (Yang et al., 2025a) with thinking mode turned off using
vLLM (Kwon et al., 2023), and allow a max input prompt of 32768 tokens while only allowing a response length of 2048 tokens.
We provide the judge prompts in Figure 34 in the appendix. We additionally experimented with puzzle problem (checking if a
puzzle solution is correct relative to a reference answer) and length-control (Aggarwal and Welleck, 2025) verifiers, but did not
find it useful for downstream performance.
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• Coding To construct reinforcement learning (RL) data for code, we required pairs of (problem, test cases).
We curate a diverse set of prompts for coding problems, including AceCoder (Zeng et al., 2025a), Klear-
Reasoner Code (Su et al., 2025c), Nemotron Post-training Code (NVIDIA AI, 2025), SYNTHETIC-2 code
(PrimeIntellect, 2025), and Open-Code Reasoner (Ahmad et al., 2025). We use the Klear-Reasoner and
SYNTHETIC-2 test cases directly. For the other datasets, we run prompts through the following synthetic
data pipeline: (1) problem rewriting, (2) solution generation, and (3) test case generation. After generating
these triplets (problem, solution, test cases), we executed all model-generated or rewritten test cases against
the corresponding solutions and kept examples with solutions that passed more than 80% of test cases while
removing failed test cases. The resulting filtered dataset provided high-quality (problem, test cases) pairs
suitable for training and experimentation with RL methods for code. We use the AceCoder prompts in
function completion format, while all other datasets are in stdio format. Details of each step in code data
synthesis pipeline can be found in Appendix A.5.3.

• Instruction Following We use the prompts from IF-RLVR (Pyatkin et al., 2025) with up to 5 constraints,
which are sampled from IFEval (Zhou et al., 2023) and IFBench-Train (Pyatkin et al., 2025).

• General Chat We sample our general chat instances from three sources: (a) Tulu 3 SFT (Lambert et al.,
2024); (b) the new Wildchat-4.8M data27 containing a broad spectrum of user-chatbot interactions on
ambiguous requests, code-switching, topic shifts, political debates, and more; and (c) Multi-subject-RLVR
dataset (Su et al., 2025b) consisting of college-level English questions and objective answers written by
domain experts for examination purposes. For Wildchat, we only sample from instances that are English,
and do not require reasoning (such as math, and code). For Tulu 3, we first rewrote samples using GPT-4.1
for better clarity and to extract reference answers from the SFT set. We then generated 8 samples per
prompt with a Qwen 2.5 7B model finetuned on OpenThoughts 2, and computed the F1 score between the
reference answer and each response. We then remove all samples with average F1 score < 0.1 and > 0.8.
This removes both noisy and difficult samples. Wildchat particularly has a high prevelance of role-playing
and other character-based data. In order to balance the data, we filter any mention of a single character
down to a maximum of 10 instances.28 We then finally did some post-hoc manual filtering to remove code
and math-centric prompts.

Step 2: Offline Difficulty Filtering As stated previously, to improve the sample efficiency of RL for our
reasoner model, we generate eight rollouts for each prompt from the initial checkpoint of the model we train
(e.g., if starting from the DPO-trained model, we generate from the DPO checkpoint). We then remove all
samples that the model easily solves (that is, those with a pass rate greater than 62.5%). We sample with a
temperature of 1.0 and top-p of 1.0, matching how we sample during RL training. We used offline filtering for
the 7B Olmo 3 Think, instead relying on active sampling and re-using the 7B DPO-filtered data for the 32B
model due to compute and time constraints.

Step 3: DataMixing When developing our data mixture and overall recipe, we found RL experiments were
both long and compute-expensive, preventing us from ablating the full space of datasets and algorithmic
choices. Instead, we established a pipeline in which: (a) we performed dataset-specific runs on an intermediate
SFT checkpoint and observed downstream evaluation trends over the first 500-1000 RL steps; (b) focused on
math domain training when testing new algorithmic changes; (c) periodically ran overall mixture experiments
to ensure mixing was stable. When setting up our final run, we then took the most promising datasets,
performed offline filtering, and carefully mixed them to ensure higher-quality datasets were upweighted, and
roughly equal amounts of data were used for each domain (with slightly more focus on math and instruction
following, as training on these domains seemed the most effective in per-dataset runs). Additionally, we
downsample certain subtasks from OMEGA that the model especially struggled with based on offline filtering
results.29 We used this pipeline to development an RL mixture for the 7B model, and then simply used the
same data mixture for the 32B due to compute and time constraints.

27https://huggingface.co/datasets/allenai/WildChat-4.8M
28In our intermediate general dataset of 57,819 samples, we found the top characters were 1. Natsuki: 1284 appearances, 2.

Monika: 1243. 3. Sayori: 1076, 4. Yuri: 957, 5. Sakura: 453, and 6. MC: 424. All others were at 60 or lower before filtering.
29In particular, we downsample the following tasks by 50% after filtering: trans_integrations, logic_gridworld_rookmove,

logic_puzzles_grid_chip, comp_grid_chips, comp_n_gon, arithmetic_matrix_svd, comp_parametric_intersection, comp_-
vertex_color.
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For our Olmo 3 Think 7B training run, we used an initial version of our infrastructure without pipelineRL
or truncation importance sampling, which took approximately 15 days. We later replicated the same run with
our newer infrastructure, achieving similar performance in just 6 days of training.

4.4.3 OlmoRL Infrastructure in Open Instruct
We made substantial improvements on our reinforcement learning infrastructure to handle longer sequences
and faster overall throughput. In RL, the key technical challenge for finetuning models that generate long
sequences is managing inference – also called the rollouts. For our final models, we performed RL rollouts
that were up to 32k tokens in length, and on average over 10k tokens (for the reasoner models). Inference
dominated our costs, using 8 H100 nodes for training and 20 nodes for inference for the 32B OlmoRL reasoner
model. Given the cost of autoregressive inference, our learner spends 75% of the time waiting for data, so
in terms of GPU utilization, we use approximately 5x as much for inference vs training. In fact, we use the
minimal possible sharding configuration to fit the learner in memory, and don’t prioritize speed at all, unlike
in the supervised learning setting. For the 7B reasoner model, where we have less memory pressure on the
learner, the situation was more dramatic, as we used 7 nodes for inference and only 2 for the learner. Given
the similarly low utilization of the learner, we used approximately 14x as much compute for inference vs
training. We suspect that we have a suboptimal sharding configuration for the 32B learner, and expect that
we could do better in future work.

Fully Asynchronous Training Shown in Figure 17a, we employ an off-policy asynchronous RL setup
(Noukhovitch et al., 2024) featuring a centralized learner distributed across multiple nodes via Deep-
Speed (Rasley et al., 2020) and a large pool of actors, each running an independent vLLM (Kwon et al., 2023)
instance. The learner produces prompts that are queued and dispatched to the actors, which execute the
prompts, interact with the environment, and return results through a results queue that the learner uses to
update the model parameters.30 Due to the variance in completion length, a long time delta can emerge
between completions in an individual batch of RLVR. The guiding principles to mitigate this issue is to make
efficient use of resources (avoiding idling) and make processes asynchronous.31

Continuous batching We employ continuous batching to constantly enqueue new generations as each one
finishes to remove the compute waste for long generations (see Figure 17). This is in contrast to static batching,
in which a batch of prompts are split over N actors, and each actor generates the entire batch32, return the
generated responses to the learner, and a new batch of data would be sent to each learner. Static batching is
inefficient, as when one generation finishes that “slot” of the batch will remain empty until we get a new batch.
The exact wasted compute can be calculated as the maximum sequence length minus the average sequence
length divided by the maximum sequence length. With OLMo3, at a 32k generation length, we see a mean
generation length of 14628 and a maximum of 32k, which means that up to 54% of our compute would have
been wasted with static batching. See Figure 17 for an illustrated example.

ActiveSampling To compensate for filtered instances, our fully asynchronous framework enables continuously
pulling completions from the actor and resampling prompts into the queue. We actively sample and filter
until we reach our desired batch size of non-zero gradient completions. Previously Yu et al. (2025) dynamic
sampling would oversample and generate three times the number of prompts used in each training batch. This
was to reasonably guarantee that the batch has enough completions with non-zero standard deviation. In
contrast, our active sampling more efficiently uses the infrastructure. As demonstrated in section 6, we find
this significantly stabilizes training and prevents batch size reducing over the course of training (a common
issue with vanilla GRPO).

30For the 7B training runs, we use a single GPU for each actor and scale generation via data parallelism. The RL setup would
be familiar to readers of Horgan et al. (2018) or Silver et al. (2017). For 32B, we use one node per actor and then similarly
further scale via data parallelism.

31For one of our main RL runs, for instance, each training step averaged 1000 seconds, of which 125 seconds was spent
running training. Each batched completion generation took 1000 seconds. As we overlap generation and training (Noukhovitch
et al., 2024), the bottleneck is entirely generation. Consequently, significant engineering resources were spent improving the
way generation is handled, where we could continue to use the training code used in OLMo 2, as we would need to speed up
generation by > 8× for that to be a bottleneck.

32calling llm.generate in vLLM
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Figure 17 (a) Distributed reinforcement learning architecture. (b, c) Static vs. continuous batching. Static batching
wastes compute when generations have variable sequence lengths. Pink cells are prefilled tokens, green cells are decoded
tokens, with dark green representing EOS. Grey indicates that sequence is not doing anything, so continuous batching
backfills finished rows immediately (no wasted compute).

Inflight updates A common goal of RL training for LLMs is to minimize the degree of difference between
the actor policy and the learner policy, i.e. minimize being off-policy (Van Hasselt et al., 2018). This can
be achieved by synchronizing the weights after every training step as follows: each actor finishes all of their
ongoing generations, dump the KV cache, and update their copy of the weights. However, this causes GPUs
to be idle, and hurt training efficiency. Instead, we follow Piché et al. (2025) to immediately update the
weights without pausing the engine, relying on the generation framework to be thread-safe, and continue
generating, without invalidating the KV cache. This enables a significant increase in throughput: up to 4x
faster with the same resources, without hurting accuracy.

Better Threading and Engineering Theses changes are primarily around handling the weight synchronization
after each training step to make actors more efficient. Our new setup decouples the actors, allowing each one
to start and stop by itself, without waiting for the rest of the actors to finish their syncs as well. Similarly,
we make a large number of optimizations that were not machine learning specific, and were centered around
efficiently using the CPU. For example, our initial implementation of continuous batching, for instance, was
slower than static batching before adding a prefetch thread to our actors that constantly refilled the inference
queue to see a throughput improvement.

Our final RL run ended up mixing carefully-filtered data from all domains roughly equally and running on
top of the DPO checkpoint.

4.5 Key Findings
DPO yields gains where SFT on the same data cannot. Continued supervised fine-tuning directly on the
chosen responses from Dolci Think DPO outright hurts the initial SFT model (Table 19), dropping all
evaluation tasks. We conjecture that this is because the chosen responses (generated by Qwen3-32B Thinking)
are weaker relative to data the model has already seen in Dolci Think SFT, and hence they are no longer
useful targets for imitation. However, by pairing these chosen responses with rejected responses generated by
an even weaker model, we construct a useful contrast, enabling preference tuning to drive strong gains beyond
the initial SFT model (Table 19). Promisingly, these gains are not merely converting pass@k into pass@1 but
rather expanding the reasoning frontier of the model (e.g., improved pass@k on AIME evaluations; Figure 20).
These findings highlight contrastive learning with preference tuning as a useful stage for improving capabilities
even when imitation is saturated.
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Subset of Olmo 3 Think Benchmarks
Name Avg. MMLU BBH GPQA Zebra AGI AIME25 AIME24 CHE LCB IFEval
Qwen3 32B (chosen) 83.2 88.8 90.6 64.7 78.2 90.2 71.0 80.3 90.9 89.6 87.4
Qwen3 0.6B (rejected) 35.1 55.8 41.5 27.22 29.8 59.2 15.2 11.2 14.8 34.4 62.3

Development 7B SFT 70.3 76.1 83.9 45.1 56.5 76.4 58.8 71.0 88.1 67.0 79.7
Cont. SFT on chosen 64.5 72.6 80.2 40.2 49.8 73.9 52.8 61.0 83.4 55.1 76.0
Delta learning 72.9 75.5 82.8 48.4 60.9 79.7 66.3 75.7 91.5 72.6 75.2

Development 32B SFT 77.7 85.1 89.2 57.8 71.8 85.5 66.7 73.4 89.5 75.3 83.0
Delta learning 79.6 85.1 89.3 57.1 74.6 88.2 71.7 75.3 91.6 82.2 81.3

Table 19 The delta between chosen and rejected responses is critical. Supervised finetuning directly on the
chosen responses generated by Qwen3-32B Thinking hurts the Initial SFT model. In contrast, DPO tuning to prefer
the 32B responses over weaker Qwen3-0.6B Thinking responses yields strong gains across math and code reasoning.

Subset of Olmo 3 Think Benchmarks
Name Avg. MMLU BBH GPQA Zebra AGI AIME25 AIME24 CHE LCB IFEval
SFT 70.1 74.9 84.1 45.8 57.9 77.2 57.6 69.6 88.2 67.8 77.9
SFT + RLVR 71.8 77.1 82.5 44.6 61.6 78.4 60.3 71.0 87.9 69.4 85.2
SFT + DPO 72.7 74.8 83.7 48.6 60.6 79.1 62.7 74.6 91.4 75.1 75.9
SFT + DPO + RLVR 73.8 78.0 85.3 48.0 62.4 79.7 63.5 73.2 90.6 75.2 82.4

Table 20 Delta learning provides a stronger initialization for subsequent RLVR than SFT alone. We show the
effect of conducting RLVR for 1000 steps after DPO and SFT on our 7B model on a subset of our evaluation suite.
Note that here evaluations are from one run only. Preference tuning with delta learning first, followed by RLVR, yields
the best overall performance. For RLVR, we use data offline-filtered by the corresponding starting point (SFT only or
SFT + DPO).

DPO and SFT benefit similarly fromRL, but DPO remains a better starting point. Table 20 shows that running
our final RL mix on the DPO model consistently yields better performance than running it on the SFT model.
We find three primary differences, highlighted in Figure 19: for evaluations which RL does not improve, the
DPO model often performs better and maintains its advantage during RL training (e.g., AlpacaEval). For
evaluations explicitly targeted by RL (e.g., Omega), both the DPO and SFT models achieve similar end
performance. For evaluations targeted by RL but hard to improve further from DPO (e.g. AIME 2025), the
SFT model improves to get close to DPO performance. In no situation does the SFT model improve over
the DPO model after RL, and as such we opt to focus on applying RL over our DPO model. Curiously, we
find that the SFT model performs similarly when trained either with the data offline-filtered using the SFT
or DPO model, suggesting that the additional samples filtered out (i.e., solved) by the DPO model do not
provide additional signal for improving the SFT model. Further investigating this, we find that while the
DPO model does display lower entropy, it in fact has higher Pass@K performance on AIME evaluations, as
shown in Figure 20. This suggests that the DPO model remains a strong starting point for RL relative to the
SFT model, since RL tends to convert Pass@K performance into Pass@1 performance (Yue et al., 2025).

Rewards steadily increase across all domains during RL. Figure 18 plots per-verifier reward curves along
with average output length. We find that reward steadily increases across all domains , albeit at differing
rates (with instruction-following data increasing most steadily, and code reward increasing most slowly). We
plot more RL curves in the appendix (Figure 35). Interestingly, we find that sequence lengths first slightly
dip, and then slowly increase over time. This is likely due to the reasoning SFT and DPO already training
the model to produce length reasoning traces of up to the maximum response length of 32k tokens.

Mixing RL data from varied domains can prevent over-optimization. Figure 20 (left) demonstrates that
training on specific domains can lead to over-optimization, in which its performance on evaluations outside
that domain drops, while training on a mix keeps steady improvements across different domains. For example,
we observe a trade-off when performing OlmoRL on IFEval alone, wherein higher IFEval scores correlate
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Total tokens (Mtok) Tokens/second MFU (%) MBU (%)
OLMo 2 6.34 881 0.30 12.90
+ continuous batching 7.02 975 0.33 14.29
+ better threading 9.77 1358 0.46 19.89
+ inflight updates (Olmo 3) 21.23 2949 1.01 43.21

Table 21 Effect of core infrastructure improvements to OlmoRL. We ablate the effect of each component by
measuring the training speed (tokens/second) and utilization metrics as we add each component in turn from the
original OLMo 2 RL infrastructure. Inflight updates has the most drastic improvement.
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Figure 18 Reward curves during training of Olmo 3 Think 7B. Average, math, code, and IF reward over RL training
for the final RLVR training run of Olmo 3 Think. Reward steadily grows across domains, suggesting smooth training.
See Figure 35 for further RL curves.

with lower lower AlpacaEval scores. However, when we perform our final mixed training, we are able to
maintain high AlpacaEval scores without compromising IFEval performance, as the LM judge reward ensures
that the model continues to produce well-formed chat responses.

Mixing data yields lower train reward, but not lower downstreamperformance. While Figure 20 demonstrates
that our final mixture run achieves downstream performance similar to or greater than RL training runs on
single domains, we find that we observe lower train reward across each domain when training on mixed data
as opposed to single-domain data, as seen in Figure 21. This suggests that mixing data may in fact reduce the
model over-optimizing during training, preventing some degree of reward-hacking, and thus generalizing better
to downstream evaluations. This may explain why RL training on broader data mixtures can outperform
domain-specific mixtures (Cheng et al., 2025).

Continuous batching and inflight updates are crucial to training speed. Using a reasoner SFT or DPO as a
starting point stresses RL training to its limits, as the model starts with extremely long average generation
lengths. Table 21 demonstrates how using continuous batching and inflight updates is crucial to training
speed, allowing us to achieve two times faster training on half as many GPUs, making experimentation and
long RL runs more tractable.33 To carefully benchmark this, we ablate the changes to our RL infrastructure
between OLMo 2 and Olmo 3. See Table 21. For each ablation, we ran a benchmark experiment for 2
hours using 2 8x A100 nodes. One node was used for training, and one for inference. Since inference is our
bottleneck, we report Model FLOPs Utilization (MFU) and Model Bandwidth Utilization (MBU) based solely
on the single node used for inference. A typical full-scale experiment would use many more nodes for inference,
typically with a 8:1 ratio (or more) of inference nodes to training nodes. The benchmark experiment generates
a batch of 128 completions for each training step, using 64 prompts, each sampled twice, with a maximum
output length of 32000, and a maximum input length of 2048, leading to a context length of 2048.34

33While an initial checkpoint took 14 straight days of training across 9 nodes to achieve 1 epoch, with continuous batching and
inflight updates, we could achieve 1 epoch on 5 nodes in 7 days.

34Script can be found in the https://github.com/allenai/open-instruct, at scripts/benchmarking/olmo3_infra.sh.
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Figure 19 UsingDPOas a starting point for RLVRworks best. AlpacaEval, Omega-500, and AIME 2025 performance
over the course of RLVR training when starting from Olmo 3 7B SFT or DPO, training using either data filtered via
the DPO model (w/ DPO data) or SFT model (w/ SFT data). The importance of starting from DPO or SFT depends
on the evaluation, but starting from DPO is overall preferable.
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Figure 20 Training onmixed data prevents overfitting (left). We plot IFEval and AlpacaEval performance over
RL training on Olmo 3 Think SFT 7B when training on IFEval data only or on mixed data. Training on mixed data
achieves similar IFEval performance whilst maintaining high AlpacaEval performance. DPO displays higher pass@K
performance than SFT (right). We plot pass@K for AIME 2024 and 2025 for SFT and DPO thinking models for up
to K=32. DPO consistently improves performance, even at higher K.

Olmo 3-RL shows significant improvement in precise instructino following. Instruction following performance
The precise instruction following performance increases across post-training stages, with the final RL training
stage leading to the biggest improvements in Olmo3’s precise instruction following abilities, as shown in
Table 22, for both the development (IFEval) and the unseen (IFBench) evaluations.

Think-SFT Think-DPO Think-RL Instruct-SFT Instruct-DPO Instruct-RL

7B IFEval 83.9 80.6 86.0 81.7 82.0 85.77
IFBench 30.0 28.3 41.6 27.4 29.3 32.3

32B IFEval 83.7 82.3 88.0 - - -
IFBench 37 34.4 47.6 - - -

Table 22 Summary of precise instruction following results on IFEval and IFBench, for both the Olmo3 Think and
Olmo3 Instruct models (at 7B and 32B sizes), across various stages of the post-training pipeline.
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Figure21 Per-domain trainingyieldshigher train rewards. We plot the train reward over RL training for per-domain
and overall mix (i.e., final) training runs. In each plot, we train an intermediate SFT model using RLVR with data
only from general, IF, and math subsets, and compare to training on our overall mix. Whilst the domain-specific runs
achieve higher train reward, Figure 20 shows this does not necessarily yield improved downstream performance.

Skill Benchmark Olmo 3 Instruct
7B-SFT

Olmo 3 Instruct
7B-DPO

Olmo 3 Instruct
7B

Qwen 3 8B (no
reasoning)

Qwen 3 VL 8B
Instruct Qwen 2.5 7B Olmo 2 7B

Instruct
Apertus 8B
Instruct

Granite 3.3 8B
Instruct

Math MATH 65.1 79.6 87.3 82.3 91.6 71.0 30.1 21.9 67.3

AIME 2024 6.7 23.5 44.3 26.2 55.1 11.3 1.3 0.5 7.3

AIME 2025 7.2 20.4 32.5 21.7 43.3 6.3 0.4 0.2 6.3

OMEGA 14.4 22.8 28.9 20.5 32.3 13.7 5.2 5.0 10.7

Reasoning BigBenchHard 51.0 69.3 71.2 73.7 85.6 68.8 43.8 42.2 61.2

ZebraLogic 18.0 28.4 32.9 25.4 64.3 10.7 5.3 5.3 17.6

AGI Eval English 59.2 64.0 64.4 76.0 84.5 69.8 56.1 50.8 64.0

Coding HumanEvalPlus 69.8 72.9 77.2 79.8 82.9 74.9 25.8 34.4 64.0

MBPP+ 56.5 55.9 60.2 64.4 66.3 62.6 40.7 42.1 54.0

LiveCodeBench v3 20.0 18.8 29.5 53.2 55.9 34.5 7.2 7.8 11.5

IF IFEval 81.7 82.0 85.6 86.3 87.8 73.4 72.2 71.4 77.5

IFBench 27.4 29.3 32.3 29.3 34.0 28.4 26.7 22.1 22.3

Knowledge MMLU 67.1 69.1 69.1 80.4 83.6 77.2 61.6 62.7 63.5

QA PopQA 16.5 20.7 14.1 20.4 26.5 21.5 25.5 25.5 28.9

GPQA 30.0 37.9 40.4 44.6 51.1 35.6 31.3 28.8 33.0

Chat AlpacaEval 2 LC 21.8 43.3 40.9 49.8 73.5 23.0 18.3 8.1 28.6

Tool Use SimpleQA 74.2 79.8 79.3 79.0 90.3 78.0 - - -

LitQA2 38.0 43.3 38.2 39.6 30.7 29.8 - - -

BFCL 48.9 49.6 49.8 60.2 66.2 55.8 - - -

Safety Safety 89.2 90.2 87.3 78.0 80.2 73.4 93.1 72.2 73.7

Table 23 Overview of Olmo 3 Instruct-7B results onOlmo 3 Eval. suite. All numbers are the mean of three runs.

5 Olmo 3 Instruct
Recent studies suggest that real-world language model use predominantly centers around general tasks such as
advice seeking and information recall (Chatterji et al., 2025) that may not require extensive reasoning. Hence,
Olmo 3 Instruct was constructed with these real use-cases in mind, as users expect chat models to quickly
and helpfully respond to common queries. Everyday chat settings often do not require the inference-time
scaling of Olmo 3 Think, allowing us to be more efficient at inference time on common tasks by not
generating extended internal thoughts.

These different model types demand different data to support them. We focus on improving the interactability
of the models by introducing multi-turn DPO data and promoting concise responses in our delta-learning
preference-tuning pipeline. Additionally, Olmo 3 Instruct is trained for function-calling, for which we
release new SFT datasets. Together, our recipe yields Olmo 3 Instruct models that effectively leverage
tools and efficiently responds to user queries. See Table 23 for the full set of our evaluations and comparisons
with similar models. The benchmarks used for all the evaluations except function-calling are the same as
those used for Olmo 3 Think (Section 4.1).
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Dataset Env.
interactions #Trajectories #Unique

functions %Multi-turn %Multi-step

Science QA Real (MCP) 22.6K 8 - 42.3%
Web Search QA Real (MCP) 6.6K 3 - 76.1%
SimFC Simulated 200K 42.6K 42.3% 23.8%

Table 24 Details of function calling datasets. Multi-turn refers to multiple user turns per trajectory and multi-step
refers to multiple environment interactions per user request.

5.1 Main Results for Olmo 3 Instruct
Table 23 demonstrates the results of Olmo 3 Instruct on our evaluation suite. Olmo 3 Instruct
significantly outperforms Qwen 2.5-7B Instruct, Olmo 2 7B Instruct, and Apertus 8B Instruct.

5.2 Supervised Finetuningwith Dolci Instruct SFT
We construct Dolci Instruct SFT by building upon OLMo 2 Instruct, making significant improvements
to advance general chat, reasoning, and function calling capabilities.

5.2.1 New function-calling training data
Our goals for curating tool use training data for Olmo 3 Instruct are to provide the model a strong
foundation in basic function-calling and to expose the model to trajectories demonstrating the effective use
of real environments (i.e., MCP servers) to perform tasks. Accordingly, we collect two kinds of trajectories
synthesized using LLMs, described below.

Trajectories with real interactions We collect trajectories demonstrating agents’ use MCP servers to
answer queries in the following two domains. All these trajectories have single user turns and multiple
agent-environment interactions.

• ScienceQADataset contains two broad classes of queries requiring retrieval and reasoning over scholarly
content: (i) paper content-based queries, which focus on information present in the abstract or full text
of papers and (ii) citation graph-based queries, which are about metadata such as authors, venues, and
citations. Trajectories associated with the queries were obtained using an agent based on GPT-4.1-mini
equipped with the ASTA Scientific Corpus (ASC) MCP server35, which provides structured access to
metadata and paper content on Semantic Scholar36. Additional details about these datasets are provided in
Appendix A.5.2.

• Web Search QA Dataset is generated from a multi-stage process that combines benchmark-derived and
real-world queries. Queries are drawn from open-access benchmarks: HotpotQA (Yang et al., 2018),
TaskCraft (Shi et al., 2025), and WebWalkerQA (silver) (Wu et al., 2025a), as well as from consented,
publicly released user prompts from SearchArena (Miroyan et al., 2025) and OpenScholar (Asai et al., 2024).
We filtered the set of queries using GPT-5 to keep only those that require search, and whose responses
need to be long-form and are verifiable. The trajectories for these queries were obtained from a GPT-5
agent equipped with the Serper API37 which provides access to a Google search tool and a tool for fetching
webpages given their URLs. Additional details about query filtering and trajectory generation can be found
in Appendix A.5.2.

Trajectories with simulated interactions While training on trajectories with executable environments is
expected to teach the model to effectively deal with real environment outputs and handle unexpected errors,
it is difficult to curate such trajectories at scale, thus potentially limiting the model’s generalization to unseen

35https://allenai.org/asta/resources/mcp
36https://www.semanticscholar.org/
37https://serper.dev/
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tools at inference-time. To fill this gap, we also create a dataset of synthetic trajectories with LLM-simulated
environments which are much easier to scale. We call this dataset SimFC. We start with a large pool of tool
sets or APIs from existing datasets (e.g. xLAM (Liu et al., 2024c), ToolACE (Liu et al., 2024b)), and from
publicly available MCP servers, and prompted LLMs (GPT-4o, GPT-4.1, and GPT-5) to generate entire
trajectories including simulated user queries, environment responses, and assistant messages. We design
prompts to ensure the dataset contained a variety of interaction patterns including multi-turn, multi-step,
and refusals due to inadequate information or tools. Additional details about this dataset and illustrative
prompts used for generation can be found in Appendix A.5.2 and Figures 36, 37.

Balancing function diversity with interaction complexity As illustrated by the statistics in Table 24, the
two types of trajectories have key differences. SimFC has a large number of trajectories with diverse sets
of functions. We found that synthesizing trajectories with multiple user turns (multi-turn trajectories) was
relatively easier than those with multiple assistant-environment interactions per user request (multi-step
trajectories). However, the latter class usually corresponds to more complex tasks. On the other hand, the
MCP-based datasets, while smaller in size, are naturally more complex in terms of multi-step interactions.

Unified data format Across all tool-use data, we adopt consistent tool definition and tool calling formats
which we found to be crucial for stable and high-quality tool-use behavior. Particularly, we use the OpenAPI
specification38 for all tool definitions and represented all function calls as pythonic code blocks. We provide
tool specifications in the system prompt, encapsulated tool calls with XML tags within the assistant role, and
presented environment outputs to the model within a special environment role. We also extend the tokenizer’s
vocabulary with dedicated special tokens corresponding to these tags, which we found was essential for tool
use training.

Evaluating function calling We evaluated the function calling capabilities of Olmo 3 Instruct in terms of
intrinsic function calling and extrinsic task completion accuracies using different benchmarks. We used the
Berkeley Function Calling Leaderboard (BFCLv3) (Patil et al., 2025) to evaluate intrinsic function calling
accuracy. This benchmark focuses on models’ ability to choose the relevant functions and the right values for
their arguments to accomplish a given task in settings that require one or more interactions with simulated
users and environments. We evaluated the task completion accuracy of Olmo 3 Instruct in comparison
with similar models when they are deployed as agents with access to tools served via Model Context Protocol
(MCP) servers. Particularly, we used the Asta Scientific Corpus (ASC) tool (Bragg et al., 2025) that serves
eight functions for accessing scientific literature, and the Serper API which provides Google search tool and
web browsing functionalities. To evaluate models’ usage of the ASC tools, following Bragg et al. (2025), we use
a subset of 75 questions from LitQA2 (Skarlinski et al., 2024) for which the associated papers can be found in
ASC’s index. We evaluate the models’ usage of search and browsing tools using a subset of SimpleQA39 (Wei
et al., 2024).

We use the official Gorilla repository40 for BFCLv3 evaluations. For LitQA2 and SimpleQA, we implement a
basic function calling agent using OpenAI’s Agent SDK. This agent uses the tools provided by the relevant
MCP server, and interacts with the environment by iteratively making function calls and processing the
outputs of executing them to solve the given tasks. For LitQA2 and SimpleQA, We also measure model
performance when deployed in a No-Tools setting, in which we provide no tools to the agents and they are
expected to solve the tasks entirely from the models’ parametric knowledge. We use a zero-shot evaluation
for all these benchmarks. We sample from models at temperature 0 and for LitQA2 and SimpleQA, allow
the agents at most 10 turns to finish each task. We run each evaluation three times and report the average
accuracy. We release our code41 for running our MCP-based tool use evaluations.

38https://swagger.io/specification/
39https://huggingface.co/datasets/akariasai/sampled_simpleqa
40https://github.com/ShishirPatil/gorilla
41https://github.com/allenai/mcp-tool-eval

52

https://swagger.io/specification/
https://huggingface.co/datasets/akariasai/sampled_simpleqa
https://github.com/ShishirPatil/gorilla
https://github.com/allenai/mcp-tool-eval


Subset of Olmo 3 Instruct Benchmarks
Name Avg. MMLU BBH GPQA MATH GSM8K CHE AE IFEval
Base mix 29.0 50.0 29.5 25.2 6.6 30.1 23.2 5.8 61.7
Base mix + Aya 29.1 51.9 28.2 28.1 6.9 31.4 21.3 4.9 60.3
Base mix + Code 28.7 51.1 28.8 25.0 6.9 28.2 26.8 5.8 57.3
Base mix + Flan 30.3 51.9 35.0 26.8 6.6 34.7 21.3 5.8 60.3
Base mix + IF 30.7 51.4 24.7 25.5 7.9 42.2 14.6 5.5 74.1
Base mix + Math 29.3 49.9 23.9 29.2 14.2 39.7 18.3 5.4 54.0
Base mix + Safety 27.0 51.7 28.3 24.8 6.5 28.2 14.0 6.8 56.0
Base mix + Science 29.4 53.4 25.3 28.1 8.3 34.9 20.7 6.8 57.3
Base mix + Wildchat 30.9 51.9 30.7 23.7 6.9 32.2 23.2 19.2 59.7

Table 25 Results of our instruct SFT mixing ablations on top of OLMo 2.

Subset of Olmo 3 Instruct Benchmarks
Name Avg. BBH GPQA MATH GSM8K OMEGA CHE MBPP LCB AE IFEval
No thinking SFT 44.5 46.5 29.7 60.3 87.6 8.6 63.8 54.1 13.0 27.0 81.0
Thinking SFT 47.8 46.6 34.4 65.9 91.1 12.2 68.7 57.1 17.1 27.1 84.7

Gain from thinking SFT first 3.3 0.1 4.7 5.6 3.5 3.6 4.9 3.0 4.0 0.1 3.7

Table 26 Results of training an intermediate Olmo 3 Instruct checkpoint with and without thinking SFT first.

5.2.2 Curating Dolci Instruct SFT
Step 1. Sourcing Prompts and Completions Our prompt collection includes all our new function calling
data (Section 5.2.1), new prompts for instruction following §4.2.1 and science, and more chat prompts from
WildChat (Zhao et al., 2024a). For examples that we include that originally contained reasoning traces (such
as the OpenThoughts3 science subset described in § 4.2.1), we remove the reasoning traces and special tokens.
We also update completions from older models such as GPT-3.5 and GPT4 with completions from GPT-4.1.
We show a summary of our instruct SFT mix in Table 27.

Step 2: Filtering &Mixing We follow the same filtering and mixing procedure detailed in Section 4.2.1. For
Olmo 3 Instruct, our base mix is 100k examples from an updated intermediate mix based on the OLMo 2
SFT mix. We show results of our data mixing experiments on OLMo 2 in Table 25.

Starting fromOlmo 3 Think SFT We train the SFT stage of Olmo 3 Instruct starting from the Olmo 3
Think SFT model as shown in Figure 2. We found that this significantly improves the performance of the
Instruct model, as shown by the results in Table 26.

5.3 Preference Tuningwith Dolci Instruct-DPO
We create Dolci Instruct-DPO by extending the strong base of our delta-learning heuristic preference
pipeline (Section §4.3) with further preference signals to enhance the our model’s behavior in general use
settings. For example, we enrich our data with contrastive pairs from an improved GPT-judge pipeline for
general alignment. Additionally, user interaction with LMs commonly requires multi-turn capabilities, so we
introduce synthetic multi-turn conversations to our preference data. We also observe that preference-data
pipelines often promote overly verbose responses; we introduce counteracting interventions to promote brevity
in model responses by mitigating length bias in the preference data.

5.3.1 Preference Signals
Dolci Instruct-DPO is constructed from a composite of several preference signals to promote model
capabilities and general usability:
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Category Prompt Dataset
#

Prompts
used in

SFT

#
Prompts
used in
DPO

Reference

Chat & WildChat 302,406 30,248 Zhao et al. (2024a)

Precise IF Dolci Instruct Precise IF 136,833 35,057 –

Dolci Instruct Persona Precise IF – 6667 Lambert et al. (2024)

OpenAssistant 7,132 493 Köpf et al. (2024)

Math Tülu 3 Persona MATH 149,958 14,728 Lambert et al. (2024)

Tülu 3 Persona Algebra 19,999 2,025 Lambert et al. (2024)

Tülu 3 Persona GSM 49,980 5,011 Lambert et al. (2024)

OpenMathInstruct 2 50,000 5,325 Toshniwal et al. (2024)

Coding Dolci Instruct Python Algorithms 186,345 24,096 –

Tülu 3 Persona Python 34,999 4,598 Lambert et al. (2024)

Evol CodeAlpaca 107,270 12,953 Luo et al. (2023)

Safety CoCoNot 10,957 2,203 Brahman et al. (2024)

WildGuardMix 49,373 12,037 Han et al. (2024)

WildJailbreak 49,965 12,431 Jiang et al. (2024)

Science SciRiff 4,557 8,874 Wadden et al. (2024)

Dolci Instruct OpenThought3+ Science 99,268 26,134 Guha et al. (2025a)

Multilingual Aya 99,987 6,523 Singh et al. (2024)

Other TableGPT 5,000 1,218 Zha et al. (2023)

FLAN 89,981 16,120 Wei et al. (2021)

Logic Puzzles 159,882 –
Verifiable Reasoning 310,572 –
Dolci Instruct Hardcoded 69 – –

Dolci Instruct Tool Use 227,579 –
Multiturn Dolci Instruct Self-Talk – 5,000 –

Dolci Instruct Synthetic Context – 5,000 –

Not used in SFT DaringAnteater – 878 Wang et al. (2024b)

Ultrafeedback – 22,303 Cui et al.

Total Olmo 3 Datasets 2,152,112 259,922

Table 27 Olmo 3 Instruct prompt sources for both SFT and DPO.

Delta-learning heuristic pairs. Similar to Dolci Think-DPO, we construct heuristic contrastive pairs by
generating chosen responses with a large model (Qwen3-32B) and rejected responses with a small model
(Qwen3-0.6B) following Geng et al. (2025). Note that we turn off thinking mode, as we do not need internal
thinking traces.

Delta-awareGPT-judgedpairs. We additionally generate GPT-judged preference pairs to add a further source
of preference signal. Our initial attempts to modernize the Ultrafeedback pipeline from OLMo 2 and Tülu 3
3 by improving the quality of the LLM judge (GPT-4o → GPT-4.1) and updating our data-generator model
pool failed to yield gains and even hurt relative to the OLMo 2 preference dataset baseline. We conjectured
that this is because the majority of our data generators were too high-quality, and hence on average there was
minimal meaningful contrast between the resulting chosen and rejected pairs. To mitigate this, we explicitly
introduce interventions designed to lower the quality of the rejected response. We (1) ensure that responses
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Figure 22 Length control promotes concise, usable responses. On the left is a response from a model trained
without length control; on the right, with length control. Promoting brevity in model responses makes the response
easier to use and understand.

from weaker models are always present in the response set we judge for each prompt, and (2) select the
worst response as the rejected completion to maximize the resulting delta. We find these “delta-maximizing”
interventions to be critical for the quality of preference pair data; see our findings in Section 5.5 for details.

Multi-turn preferences. To ensure Olmo 3’s usability in realistic multi-turn conversations, we further
added a multi-turn preference dataset with prompts synthetically extended from the Tülu 3-DPO dataset.
Preference pairs differed in only the last turn of the conversation to avoid ambiguity in quality ranking between
turns of the same conversation. Synthetic conversations were generated with two methods: (1) self-talk
extending the original prompt into a multi-turn conversation with LLM-generated follow-up requests and (2)
synthetic-context created by generating related, independent questions or paraphrases of the initial prompt
to use as previous user turns with associated completions. The combination of these generation methods
ensures diversity in generated conversations. Final turns were generated with the delta-learning heuristic
(Geng et al., 2025) where chosen/rejected completion pairs were generated by either GPT-4o and GPT-3.5 or
Qwen3-32B and Qwen3-0.6B (no-thinking) respectively.

Controlling length bias Preference data often has a length bias: the chosen responses are significantly longer
than the rejected responses. This comes from sourcing synthetic response pairs where more information is
treated more helpful by both LLM judges and heuristic pairs. Namely, LLM judges such as the GPT judge in
our pipeline tend to prefer longer responses. Similarly, we empirically observe that preference pairs made
with the delta-learning heuristic also exhibit length bias; larger models generate longer responses (Figure 23).
Thus, in addition to useful quality signal, this length bias in the preference data is often learned by the model
during preference tuning, after which its generation length per prompt increases significantly. Since excessive
verbosity can be undesirable for common real-use settings (see an example in Figure 22), we filter the chat
and multi-turn subsets of our preference data to limit the length difference between the chosen and rejected
responses to 100 tokens.

5.3.2 PromptMixing
Our prompt pool for GPT-judged and delta-learning heuristic pairs (see Table 27) is derived from the Dolci
Instruct SFT dataset supplemented with the DaringAnteater and Ultrafeedback subsets from the OLMo
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2-7b preference dataset. Because DPO performance is not monotonic with more data (see Figure 23), we
optimize the prompt distribution as a ratio within a set data budget, and treat dataset size as a hyperparameter
when training.

To determine our final preference-tuning prompt distribution, we begin with near-uniform random sampling42

of 100k examples as an empirically strong baseline prompt mix. We then perform ablations of prompt-domain
subsets to determine the impact of prompts of each domain. Additionally, we perform experiments that paired
50k samples of our base mix with 50k samples from a given domain, allowing us to understand the effects of
upsampling each prompt domain.

Notably, prompt-domain distributions do not consistently align with the contrast exhibited in the pair and
thus improvements in the corresponding downstream evaluation domains. For example, upsampling code
prompts led to the unintuitive effect of decreasing code benchmark performance (see Table 46 in the Appendix).
For our determining our final mix, we created 9 candidate mixes based on expert intuition gained from our
ablations, comparing these hand-crafted mixes against the uniform sampling baseline. Our final mix was
determined empirically; we find that hand-crafted mixes generally slightly outperformed random sampling.

5.3.3 Training
We follow the same setup of Olmo 3 Think and sweep the same hyperparameters, namely learning rate and
dataset size. We further sweep different length control interventions by creating datasets with differing token
cutoffs for length filtering. We select the best performing checkpoint of each length budget, and then select the
final Olmo 3 Instruct-DPO checkpoint based on qualitative vibe tests and performance-vs-length analysis.

5.4 Reinforcement Learningwith Dolci Instruct-RL
We use the same pool of prompts as Dolci Think-RL (§4.4.2) with the exception of (i) utilizing less
challenging datasets in math and code domains, (ii) and skipping the offline difficulty filtering as our instruct
model focuses more on general instruction following rather than complex reasoning.

5.4.1 Training
Following our Olmo 3 Think recipe, we train Olmo 3 Instruct on a mixture of general chat, math, and
code data.43 We likewise employ OlmoRL for training, with a maximum response length of 8K tokens.
Since our goal for Olmo 3 Instruct is to avoid generating excessively long outputs and preserve general
usability, we apply RL on top of two DPO candidates: one that achieved the best average performance,
and another with slightly lower performance but better qualitative “vibe-test”. We then choose the final RL
checkpoint based on final average performance, length analysis, and “vibe-test”. Concretely, we begin by
ranking checkpoints by average score; in the case of ties, we place more emphasis on datasets that do not
scale with test-time compute (e.g., MATH and AIME) to avoid biasing our selection towards models with
overly long responses. Finally, we apply the “vibe-test” to identify regressions or undesirable behaviors that
may fall outside the scope of our evaluation suite.

5.5 Key Findings
Below, we summarize our key findings across all 3 stages of Olmo 3 Instruct training:

Starting from the Olmo 3 Think SFT is helpful We find that training our instruct model on top of the thinking
SFT model both increases model performance on benchmarks, as shown in Table 26, and also does not increase
average model response length.

42We decided early to truncate the number of Wildchat prompts to be at most 35% of the prompt mix. If you read Wildchat
prompts for a month, you would too.

43Preliminary experiments indicated that alternative RL setups—for example, first warming up on math-only data and then
switching to a mixed dataset without math—resulted in suboptimal performance.
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Figure 23 Ideal preferencedataset size dependson thedownstream task (left). Both AlpacaEval and ZebraLogic
performance increases up to around 75-100K samples, beyond which further data scaling hurts or does not help. In
contrast, AIME2024 does not saturate before the point at which AlpacaEval and ZebraLogic begin to see drops in
performance. Hence, to strike an ideal balance between all downstream tasks, we sweep dataset size as a hyperparmeter
during training. Unfiltered preference data exhibits a length bias (right). A significant portion of the distribution
has longer chosen than rejected completions. For example, the 80th percentile of token difference for the GPT-judged
data is 538 tokens and for the delta-learning heuristic pairs is 564 tokens.

High contrast in preference pairs drives DPO improvements. We observe that a high contrast between
completions is critical for achieving improvements during DPO training (Table 29). Using LLM-judge pipelines
requires carefully thinking about maximizing the delta between chosen and rejected responses. Our initial
attempts to modernize the OLMo 2 preference data pipeline by improving the models used to generate
responses failed to yield any improvements beyond the OLMo 2 data baseline (Table 29). This is because
the models used for synthetic completions were too good: the chosen and rejected responses no longer had
meaningful contrast because they were both from good models. Extending the finding from delta learning
that high contrast pairs are critical for performance, we introduced interventions to explicitly lower the quality
of the rejected response and therefore increase the magnitude of the quality delta between chosen and rejected
response pairs. These resulting delta-aware GPT pairs significantly outperform the OLMo 2 preference data.

Combining different preference signals improves overall performance. We combine delta learning with
GPT-judged preference data to get the “best of both worlds.” Empirically, tuning with delta learning or
GPT-judged pairs yield a different spread of gains; we find that these gains are complementary. Combining
both sources of preference signal outperforms using either alone (Table 29).

The ideal amount of preference data depends on the downstream task. DPO performance peaks after
different amounts of training for different downstream task domains. We plot preference tuning performance
for example tasks across varying amounts of delta-learning heuristic pairs44 in Figure 23. Further optimization
beyond these optimal points hurts downstream performance, consistent with theoretical results showing that
early stopping is important for DPO (Geng et al., 2025; Azar et al., 2023). Practically, this informs our
training approach: we sweep LR and dataset set size to control the amount of total optimization, and pick
the best performing setting.

Concise, usablemodel outputs from preference tuning can boost RL performance. Applying length control
during DPO substantially reduces the model’s average generation length, allowing us to trade off some
performance for improved conciseness and overall usability. While this reduction in length comes with lower
scores on length-sensitive evaluations—particularly math benchmarks such as AIME and MATH500—our
internal qualitative assessments (“vibe tests”) almost uniformly preferred the shorter, more direct model. We
make a conscious decision to prioritize usability.

Surprisingly, despite the lower benchmark performance at the DPO stage, length control yielded a more
44Initial experiments with GPT-judged data showed similar trends.
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LitQA2 SimpleQA

No tools ASC ∆ No tools SBT ∆

Olmo 3 Instruct 7B 24.4 38.2 13.8 3.3 79.2 75.9

Qwen 3 8B (w/o reasoning) 34.7 39.6 4.9 2.0 79.0 77.0

Qwen 3 VL 8B Instruct 34.7 30.7 -4.0 9.3 90.3 81.0

Qwen 2.5 7B 36.0 29.8 -6.2 3.3 78.0 74.7

Table 28 Comparison of agents’ performance with and without access to tools on LitQA2 and SimpleQA. ASC refers
to Asta Scientific Corpus tools and SBT refers to search and browsing tools.

Subset of Olmo 3 Instruct Benchmarks
Name Avg. MMLU BBH GPQA AGI MATH CHE LCB IFEval AE2
Development 7B SFT 51.9 67.6 47.7 30.2 62.0 65.5 69.3 17.9 83.2 23.8
Olmo 2 preference data 55.5 69.4 55.6 33.7 63.6 71.3 73.7 12.7 84.5 35.2
GPT UltraF. pipeline 55.4 67.6 51.2 31.5 61.8 72.2 71.5 14.7 80.8 47.5
+ Sample weak models 56.3 68.4 50.4 33.9 63.8 71.6 74.3 18.2 81.9 44.4
+ Min score rejected 57.4 68.5 53.6 34.4 64.2 72.6 75.2 19.1 82.3 47.0
Delta learning only 57.6 68.7 49.5 35.5 64.6 79.1 73.9 22.0 78.6 46.1

Delta learning + GPT 60.4 69.4 66.9 34.6 64.3 80.0 74.1 21.1 83.0 49.8

Table 29 Development results on comparing different preference signals: preference pairs created with the delta
learning heuristic (chosen = large model response, rejected = smaller model response) and pairs created with our
delta-aware LLM-judge pipeline yield a different spread of gains, suggesting that they provide different preference
signals. These signals are complementary; combining them both yields the largest average gain. Our final Olmo 3
Instruct preference data greatly outperforms our previous OLMo 2 preference data.

performant model post RL. We conjecture that this arises from the RL training context: with a fixed context
window (8K), a shorter model may be “more intelligent per token,” allowing it to leverage the available budget
more effectively during optimization. Thus, what initially appeared to be a tradeoff between usability and
performance ultimately produced improvements in both. Moreover, we found that RL training progresses
more reliably when initialized from the length-controlled DPO policy. Across most benchmarks, performance
improves more steadily compared to RL runs starting from a higher-scoring but unconstrained DPO checkpoint,
which tends to show earlier signs of instability or degradation. This further supports the role of concise
preference-tuned models as advantageous starting points for RL.

Need for tools We assessed how much of Olmo 3 Instruct’s performance on LitQA2 and SimpleQA
can actually be attributed to tool use by measuring the delta of the model performance on the benchmarks
between answering the questions only from parametric memory (No tools) and doing so using tools. Table 28
shows these deltas in comparison to those from three Qwen models. All models benefit a lot from tool use
on SimpleQA. However, Qwen models, unlike Olmo 3 Instruct 7B, mostly seem to rely on parametric
knowledge for LitQA2, with two of the models even losing performance when provided with tools.
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6 Olmo 3 RL-Zero
RL has become a key part of recent LLM pipelines in part due to Deepseek R1-Zero (Guo et al., 2025) which
notably leverage RL training on top of a base model to bootstrap complex reasoning behavior (Marjanović
et al., 2025). This has made RLVR finetuning from a base model the standard large-scale benchmark for RL
algorithms (Liu et al., 2025a; Yu et al., 2025; Luo et al., 2025b). To date, all leading open RLVR benchmarks
and algorithms train on top of open-weights models that do not reveal their pretraining or mid-training
data (Chu et al., 2025; Yang et al., 2025a). This limits the ability for the community to study the role of
pretraining data on RLVR performance. It can lead to a myriad of issues with benchmark evaluations being
contaminated e.g. mid-training data containing the evaluation which makes spurious rewards as effective as
true reward (Shao et al., 2025; Wu et al., 2025c) or improvements from fixing prompt templates outweighing
the improvements from RL (Liu et al., 2025b).

We therefore release a fully open dataset Dolci RL-Zero, an algorithmic RL zero setup for Olmo 3,
and open-source OlmoRL code to enable clear benchmarking for the ecosystem. We perform RLVR from
Olmo 3 Base over four benchmarking domains to create the Olmo 3 RL-Zero family: math, code, precise
instruction following (IF) and a mix of all three. In all cases, we further decontaminate Dolci RL-Zero
from pretraining and midtraining data to guarantee our setup carefully studies the effect of RLVR without
data leakage confounding our conclusions.

6.1 Reinforcement Learning FromBasewith Dolci RL-Zero
Data We create Dolci RL-Zero, an effective RL-zero training dataset. For Math, we do an aggressive
filtering of DAPO math (Yu et al., 2025) and Klear-Reasoner Math (Su et al., 2025c). We de-deduplicate
DAPO and remove all non-English examples. As Klear-Reasoner is a much larger dataset, we further group
questions with semantic clustering and select one representative question per cluster. We further decontaminate
against both pretraining and evaluation data following subsubsection 4.2.1 and perform offline filtering for
prompts fully solved in 8 out of 8 sample completions by the final base model. This results in a dataset of
13.3k math prompts. Data for code and instruction-following is subsampled from Dolci Think RL.

Prompt and Eval. Template Confirming the findings of Liu et al. (2025b), we find that “simple” prompt
templates greatly outperform standard post-trained templates (e.g. <think></think>) when training from
a purely mid-trained model, as Dolma 3 Dolmino Mix excluded most special formatting. We develop a
simple custom prompt for each domain, using the zero-shot pass@k performance as our metric. We end up
with a prompt similar to Yu et al. (2025), shown in Figure 33. We furthermore “clean” all our evaluation
prompts to remove special formatting (i.e. \boxed{} ) to make evaluations prompts more similar to training.

RL Algorithm We follow Section § 4.4.1 in all RL details except (i) we train with response length of 16K
tokens to better accommodate long chain-of-though reasoning in math and code domains and (ii) we evaluate
with a response length of 32K tokens and temperature 1.0 to encourage diversity as we report pass@k. See
Table 47 for hyperparameter details.

6.2 Key Findings
Olmo 3 RL-Zero can strongly improve on reasoning As shown in Figure 24, our base model can greatly
improve on train reward across the different domains when leveraging RL on our datasets. To demonstrate
OOD improvements, we evaluate our math run on the decontaminated evals AIME 2024 and 2025. We find
that Olmo 3 Base drastically improves in the first couple hundred steps of training and then improves
steadily but slowly. We also see slight improvement in Pass@32 results, demonstrating that our run maintains
diversity and RLVR pushes the model beyond its initial capabilities. Our initial scores and final scores with
the 7B model are, notably, close to DAPO (Yu et al., 2025) which leverages the larger Qwen 2.5 32B and
trains for an order of magnitude more steps. This demonstrates how Olmo 3 RL-Zero can be a more
efficient alternative to existing RLVR experiments.
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Figure 24 Different domain runs of RL-Zero on Olmo 3 Base: math, precise instruction-following, code, and a mix
of all three. We show the main evaluation for the math domain: AIME 2024 and 2025 with Pass@1, computed as a
bootstrapped average over 32 samples, and Pass@32. For all domains, we show reward over training. For Mix, we
separate out the individual rewards for each domain.
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Figure 25 The response length and math reward over RL training for two early midtrained base models. This
demonstrates the how base model midtraining can determine whether RL-zero learns longer, complex reasoning and
increases response length.

Olmo 3 RL-ZeroMix can benchmark challenges inmulti-objective RL Most studies have focused exclusively on
RLHF (Stiennon et al., 2020) or single-domain RLVR (Yu et al., 2025; Luo et al., 2025a). Our mix of math,
code, and instruction-following is a more challenging RLVR benchmark for models. Figure 24 demonstrates
that our general run has improved performance across different domains but each domain is under-optimized
compared to the single-domain setup. Future work can leverage this setup to investigate the interactions
between domains in multi-objective RLVR.

Olmo 3 RL-Zero can benchmark reasoning data mixes in midtraining Midtraining and Olmo 3 RL-Zero
offers a chance to ablate specific data sources, unlike the large scale effort behind Olmo 3 Think. We
leveraged RL-Zero to evaluate midtraining data mixes for their ability to develop downstream reasoning with
RL. For example, we compare two early models in Figure 25. As evidenced by the stagnant response length,
the model with insufficient reasoning data did not learn to backtrack, verify answers, and other cognitive
skills (Gandhi et al., 2025). Olmo 3 RL-Zero can therefore serve as a testbed for downstream performance
of alternative midtraining approaches and improvements over Dolma 3 Dolmino Mix.
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Figure 26 Active Sampling maintains a full batch of non-zero advantage samples by continuously pulling prompt-
completions from the result queue after filtering. We plot the percentage of batch with non-zero advantage as well as
the train loss for an RL-Zero Math run with and without active sampling.
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Figure 27 RL training on Olmo 3 Base using random, signal-free rewards produces no performance gains, suggesting
successful decontamination of training data.

ActiveSamplingstabilizes training Olmo 3 RL-Zero also offers a simpler test bed for ablating RL algorithm
and infrastructure decisions. We ablate active sampling, our novel method for continuously re-sampling
prompts after filtering for non-zero advantage (see OlmoRL Infra). Running on our Math domain, Figure 26
shows that active sampling does indeed maintain consistent full batch of completions with non-zero advantage.
These consistent batch sizes have an interesting effect of training stability and we see greatly reduced loss
variance.

Eval decontamination is verified via Spurious Rewards Recent RLVR benchmarks have shown substantial
improvements from training with spurious rewards that are not correlated with model utility. This can suggest
that the RLVR task may have been contaminated i.e. the model exposed to evaluation data during pretraining
or midtraining. RLVR with a spurious reward can elicit this memorized knowledge, differentiating it from
genuine learning of reasoning capabilities (Shao et al., 2025). To verify that Olmo 3 RL-Zero evaluation is
not contaminated, we conduct a negative control experiment by training Olmo 3 Base with spurious rewards
on a standard RLVR dataset. Specifically, we assign random binary rewards to model generations independent
of correctness, following the protocol in Shao et al. (2025). We use the decontaminated OpenReasoner Zero
(Hu et al., 2025). If our pretraining or midtraining data contained significant overlap with our evaluation
sets, we would expect spurious reward training to elicit these memorized solutions and improve benchmark
performance.

As shown in Figure 27, training with random rewards does not improve performance on any of our benchmark
evals. Performance either remains flat with random fluctuations or degrades, which is consistent with the
model learning arbitrary patterns unrelated to the task. This negative result is evidence that our data
decontamination successfully removed overlaps between our base model pipeline and RLVR evaluation data.
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A.1 BaseModel Additional Data Details: Pretraining

Layers 32 / 64 Gradient Clipping 1.0
Hidden Size (dmodel) 4096 / 5120 Z-LossWeight 10

−5

QHeads 32 / 40 Weight Decay on Embeddings No
KVHeads 32 / 8 SlidingWindowAttention 3/4 of layers
Activation SwiGLU RoPE Scaling YaRN
QKVNormalization QK-Norm RoPE θ 5 ⋅ 105

Layer Norm RMSNorm Layer NormApplied to Outputs

Table 30 Architecture for Olmo 3 7B / 32B.

Pretraining Mid-training Long-context Extension
Learning Rate Schedule Modified Cosine (see Figure 3) Linear decay Linear decay
LRWarmup from0 2000 steps 0 steps 200 steps
Peak LR 3.0 × 10

−4
2.074 × 10

−4
2.074 × 10

−4

Final LR 3.0 × 10
−5 0 0

Batch Size in Instances 512 256 64
Sequence Length 8,192 8,192 65,536
Batch Size in Tokens 4,194,304 2,097,152 4,194,304
Total Training Tokens 5.9T 100B 50B
Peak Training Temperature (LR

2

bsz
) 2.146 × 10

−14
2.051 × 10

−14
1.026 × 10

−14

Table 31 Training hyperparameters for each stage of Olmo 3 7B.

Pretraining Mid-training Long-context Extension
Learning Rate Schedule 5.9T cosine truncated at 5.7T tokens 100B cosine Linear decay
LRWarmup from0 2000 steps 0 steps 200 steps
Peak LR 6.0 × 10

−4
2.071 × 10

−4
2.071 × 10

−4

Final LR 6.0 × 10
−5 0 0

Batch Size in Instances 1,024 512 128
Sequence Length 8,192 8,192 65,536
Batch Size in Tokens 8,388,608 4,194,304 8,388,608
Total Training Tokens 5.7T 100B 100B
Peak Training Temperature (LR

2

bsz
) 4.292 × 10

−14
1.023 × 10

−14
5.113 × 10

−15

Table 32 Training hyperparameters for each stage of Olmo 3 32B. Compared to the 7B, the batch size is doubled in
all steps, as is the number of tokens in the long-context extension stage.
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Figure 28 Cross-entropy loss and total gradient norm during pretraining for Olmo 3. For readability, gradient norm
plots were produced using an exponential moving average with a window size of 20 steps.

A.1.1 CommonCrawl
The majority of our pretraining corpus comes from CommonCrawl (Common Crawl Foundation). We start
with 104 dumps, starting with CC-MAIN-2013-20 and ending with CC-MAIN-2024-51, roughly covering dates
from mid-2013 until late 2024. We linearize the WET files provided by Commoncrawl using Resiliparse,
yielding an initial pool composed of 252.6B documents.

Next we apply a pipeline of heuristic filtering steps to further prune down the dataset to a size amenable
for pretraining. Our steps essentially follows that of DCLM (Li et al., 2024a), with a few small differences.
We start with URL-based filtering, identifying and removing documents that have URLs that have banned
words or subwords from the blacklists used by FineWeb (Penedo et al., 2024) and RefinedWeb (Penedo et al.,
2023). This step removes roughly 1% of the data pool. Then we apply the DCLM collection of heuristic
filters, roughly targeting and removing: i) very short documents, ii) very long documents, iii) documents with
not enough alphanumeric characters, and iv) documents with large amounts of internal repetition. Then we
modify and remove any lines/paragraphs in each document that have i) too many numeric characters, or ii)
any boilerplate phrases such as "items in cart" or "read more..."; and then we fully remove any documents
that have been obliterated by these line-specific removals. Then we apply a FastText English language filter,
mirroring DCLM and using a threshold of 0.65 to identify documents as containing English text. Finally, we
apply a subset of the rules for identifying questionable sentences from MADLAD-400 (Kudugunta et al.,
2023). Ablation tests show that only rules 2 and 5 from MADLAD improve dataset quality, targeting sentences
that have a large number of capitalized words or contain a "cursed regex". If the number of sentences in the
document is less than 5 or if at least 20% of sentences are questionable, we remove the document from the
corpus.

Overall, the heuristic steps remove 76% of the total pool, and the English filtering step removes an additional
2.5% of the pool. This leaves a pool of 38.7B documents, attaining a survival rate of 15.1%. While each
of these described steps are incorporated into the DCLM processing pipeline, we note that these heuristic
filters are commutative and that the English filtering is the slowest step, so efficiency gains can be attained by
putting the language filtering step at the end. We spent a total of 1030 i4i.32xlarge ec2 hours in this step,
incurring a cost of approximately $11,300. An exact breakdown of how much time was spent in each step is
provided in Table 33.
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Pipeline Step Docs Removed (B) % of pool removed % of total time
URL Filters 2.3 0.9 1.68
Length Filters 103.4 40.42 8.03
Symbol Filters 56.5 22.1 4.13
Internal Repetition 32.1 12.53 31.41
Line Modifiers 7.1 2.79 10.0
English Filter 6.2 2.44 14.3
MadLad Filters 9.3 3.65 5.87
Quality Classifiers 0.0 0.0 24.58

Table 33 Web data processing step cost and removal breakdown during the heuristic processing steps. We started
with 252.6B documents and ended with 38.7B documents for a total removal rate of 84.9%. This procedure took, in
aggregate, approximately 1,030 hours on i4i.32xlarge EC2 instances.

A.1.2 Deduplication
As described in the main paper, we apply a three-stage deduplication pipeline to our dataset, with each
stage targeting progressively more nuanced forms of redundancy: (i) global exact deduplication based on
document content hashes to remove identical copies, (ii) 32-way sharded MinHash deduplication with exact
Jaccard similarity verification to remove near-duplicate documents, and (iii) 56-way sharded fuzzy suffix
array deduplication to eliminate repeated boilerplate text. We note that while applying exact deduplication
before MinHash deduplication is technically redundant, exact deduplication is substantially more efficient
computationally; hence this two-pass approach is much faster overall. For the exact and MinHash deduplication
stages, we utilize the Duplodocus tool45, and for the suffix array deduplication stage, we employ bsade46.

Exact Deduplication We perform exact deduplication in two sequential passes. During the heuristic filtration
pipeline, we annotate each document with a 128-bit hash computed from the document text. We then apply
an initial deduplication step to each of the 104 processed CommonCrawl dumps individually, arbitrarily
retaining one copy of each document per dump. This within-dump deduplication removes 24% of the surviving
document pool.

Following this, we aggregate all documents globally and perform a second exact deduplication pass across the
entire corpus, again arbitrarily keeping one copy of each document. This global pass removes an additional
43% of the surviving pool. In total, exact deduplication eliminates 66% of the input documents, reducing the
corpus to 12.7 billion documents for subsequent MinHash processing.

MinHashFuzzyDeduplication We partition the 12.7 billion document corpus resulting from exact deduplication
into 32 shards of approximately equal size and perform MinHash deduplication independently on each shard.
Our MinHash procedure broadly follows the approach outlined in (Lee et al., 2022). We tokenize documents
using the p50k tokenizer and construct sets of 5-gram token sequences. We then apply a MinHash locality-
sensitive hashing scheme with 26 bands of size 11, configured to target a Jaccard similarity threshold of
0.80.

For any pair of documents that share at least one matching bucket, we treat them as connected by an edge
in graph-theoretic terms. We construct a graph from the union of all such edges and identify connected
components within this graph. Each document in a connected component is then annotated with a unique
identifier for that component.

In a second verification phase, we explicitly compute pairwise Jaccard similarities within each MinHash-
identified cluster to eliminate false positives. For this verification, we use 3-gram token sequences. Our
approach varies based on cluster size: for connected components containing 500 or more documents, we apply
a more stringent MinHash configuration using 200 bands of size 31; for components with fewer than 500

45https://github.com/allenai/duplodocus
46https://github.com/liujch1998/bsade/
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documents, we perform exhaustive pairwise Jaccard similarity checks and generate final duplicate clusters
from these results.

After annotating all documents according to their true Jaccard similarity with other documents in the corpus,
we retain only the most recent version of each document based on crawl date, removing all earlier duplicates.
This complete MinHash deduplication procedure eliminates 24% of the input documents, leaving 9.8 billion
documents in the pool.

Suffix Array Deduplication In the final deduplication stage, we employ suffix arrays to identify and remove
substrings that appear repeatedly throughout the dataset. We partition the 9.8 billion document corpus into
56 shards of roughly equal size and run suffix array deduplication independently on each shard.

For each shard, we construct a suffix array and identify every byte sequence of length 500 or greater that
appears at least twice in the shard. We then apply a novel "fuzzy suffix array" removal strategy that
considers contiguous text spans within each document. Specifically, if a text span is bounded on both sides by
500-byte sequences that appear multiple times in the suffix array, and at least 80% of the span is covered
by such repeated sequences, we remove the entire span. This strategy targets cases where naive suffix array
deduplication would leave short, unique fragments interspersed between removed substrings. For text that
does not meet this bookended criterion, we remove all individual occurrences of repeated 500-byte sequences.

After these three rounds of deduplication—exact, MinHash, and suffix array—we arrive at a final corpus of
9.7 billion documents.

A.1.3 Topic Classification

Category F1 Prec. Rec. Category F1 Prec. Rec.
Finance and Business 0.755 0.758 0.751 Travel and Tourism 0.781 0.780 0.782
Home and Hobbies 0.748 0.704 0.797 Crime and Law 0.735 0.747 0.724
Entertainment 0.801 0.773 0.832 Software 0.666 0.696 0.639
Sports and Fitness 0.870 0.850 0.890 Literature 0.759 0.801 0.721
Politics 0.788 0.786 0.790 Games 0.823 0.867 0.783
Health 0.822 0.824 0.820 Transportation 0.777 0.786 0.768
Education and Jobs 0.706 0.789 0.638 Religion 0.808 0.833 0.785
Science, Math and Technology 0.679 0.665 0.693 Electronics and Hardware 0.743 0.730 0.757
Social Life 0.628 0.609 0.649 Software Development 0.687 0.613 0.781
Fashion and Beauty 0.845 0.845 0.845 Industrial 0.710 0.691 0.731
Food and Dining 0.878 0.860 0.896 History and Geography 0.630 0.698 0.574
Art and Design 0.670 0.668 0.672 Adult Content 0.700 0.894 0.575

Overall (N=20,000): Precision = 0.762, Recall = 0.762

Table 34 Performance of FastText WebOrganizer topic classifier on the held out sample of 20,000 documents used in
the original WebOrganizer paper.

After strict rounds of deduplication, we partition our data according to topic using the 24 topic categories
introduced in WebOrganizer (Wettig et al., 2025a). Rather than using the 140M parameter topic classifier
used by WebOrganizer, we train a FastText classifier47 to support cost-effective topic classification at scale. To
train this classifier, we use the Llama-labeled training data used to train the original WebOrganizer category
as well as an extra 506,746 examples with topics labeled by a combination of gpt-4.1 and o4-mini. The
performance of this classifier is outlined in Table 34.

47https://huggingface.co/allenai/dolma3-fasttext-weborganizer-topic-classifier
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A.1.4 CommonCrawlMixing
We perform a hierarchical mixing procedure on our data. Our procedure Olmix (Chen et al., 2025a) generates
prescriptions for which percentage of the training mix should come from each topic or source, but offers no
guidance on the quality composition within each topic. While prior works, such as DCLM (Li et al., 2024a)
use a quality classifier to flatly filter data as high-quality or not, we take a more fine-grained approach and
perform selective up and down-sampling within each WebOrganizer topic depending on the quality signal.
This section formalizes the search procedure we use to generate these upsampling curves.

Problem Formulation: We discuss this procedure in more general terms: consider a category with X tokens,
partitioned into Q strictly ordered quality buckets, where the q

th bucket contains Xq tokens. Further assume
that Olmix prescribes that Z tokens be taken from this category, and that at no point do we want to upsample
any quality bucket more than M times. This equates to a search problem, where we need to take Zq tokens
from the q

th bucket such that ∑q Zq = Z and ∀q, Zq/Xq ≤ M .

Parameterizing the Solution Space: To reduce the dimensionality of this search space, we make a modeling
choice, where we search over a family of functions that control the upsampling ratio that meets the following
criteria:

• Every function in the family is convex and monotonic.
• The functions are defined on the interval [0, 1], which can be normalized to the token counts later.

• We are able to control the integral such that ∫ 1

0 f(x)dx = Z/X.

• We can control the maximum average value of any one bucket. Suppose the q
th bucket of data is

arranged on the x-axis from [a, b], then the maximum upsampling constraint correlates to the inequality
1

b−a ∫ b

a f(x)dx ≤ M .

• We have the option to filter out the lowest quality buckets, i.e. ∫ a

0 f(x)dx = 0.

One such family of functions that meets these criteria is the family of truncated power-exponential functions:

fp,λ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, for x < a

C(x − a)p ⋅ eλ(x−a), for x ≥ a

Specifically, this becomes a feasibility problem for each topic of the data, where we search over parameters
p, λ, C such that the constraints

• (Token yield is satisfied) ∫ 1

0 fp,λ(x)dx = Z/X.

• (Maximum upsampling ratio is honored) 1
b
∫ 1

1−b fp,λ(x)dx ≤ M.

• (Function is monotonic) λ ≥ 0.

are satisfied. The maximum upsampling constraint has been simplified such that, assuming monotonicity, the
most upsampled quality bucket would be the highest-quality one, with an assumed data proportion of b.

Implementation Details: For each WebOrganizer topic, we set the maximum upsampling ration to be M = 7
and also throw away the bottom 40% in terms of quality, a = 0.40. Then we numerically solve for feasible
p, λ, C. If the q

th quality bucket spans from the q
− percentile to the q

+ percentile of the data, then the
upsampling ratio for this bucket of data should be 1

q+−q− ∫ q
+

q− f(x)dx.

A.1.5 Validating Quality Upsampling andMixing
We validate our quality upsampling curves and mixing methodology both individually and jointly using
small-scale 1B parameter models trained on 100B tokens. Our validation consists of three experiments:
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QA Easy Math Easy Code Easy
Natural Distribution 100.70 71.87 59.20
QA-heavy Mix 97.19 64.34 53.45
Math-heavy Mix 97.98 58.64 49.65
Code-heavy Mix 98.64 61.85 48.05
Olmix 99.54 61.69 48.94

Table 35 Token-constrained mixing allows optimizing
different evaluation objectives. We use our swarms to
optimize a QA-, Math- and Code-heavy data mix and
train 1B models to 100B tokens. Results are on the
OlmoBaseEval Easy suite (§3.3, lower is better).

QA Easy Math Easy Code Easy
Top 50% (1.1x repeat) 104.19 86.28 94.34
Top 30% (1.8x repeat) 103.10 86.97 88.00
Top 10% (5.6x repeat) 104.14 85.83 93.89
Top 5% (11.1x repeat) 106.53 84.31 93.02
Olmo 3 Upsampling 99.95 74.04 71.88

Table 36 Quality-aware upsampling outperforms naive
data filtering. We simulate data-constrained training
using 1B models trained to 100B tokens where we match
the repetition of a 4.51T training run. Results are on the
OlmoBaseEval Easy suite (§3.3, lower is better).

TargetedMixing: We first verify that our mixing methodology can successfully optimize for specific prediction
targets. Using our swarm optimization procedure, we create mixes optimized for three different objectives:
the QA average, Math average, and Code average from OlmoBaseEval. We compare these targeted mixes
against both the natural data distribution and the final Olmo 3 mix. Table 35 demonstrates that our swarm
optimization successfully adapts the data distribution to match specific capability targets. While the final
OlmoBaseEval mix exhibits slightly higher (worse) BPB scores than task-specific mixes due to necessary
trade-offs across multiple objectives, it substantially outperforms the natural distribution.

Quality-Aware Upsampling Next, we demonstrate that quality-aware upsampling outperforms naive quality-
based filtering. To simulate a data-constrained 4.51T token training run, we compare different data selection
strategies in Table 36. For the filtering baselines, we select the top percentiles from our vigintile quality
buckets and match the resulting repetition factor that would occur when training on 100B tokens drawn from
a theoretical 4.51T pool. For the upsampling approach, we apply the same methodology but set the target
pool size to 100B tokens directly. Our results show that quality-aware upsampling consistently outperforms
flat filtering across all repetition factors.

Reconciling Upsampling andMixing. Finally, we evaluate how to best combine our mixing and upsampling
methodologies, which address complementary aspects of data selection. Data mixing determines the distribution
across topics, while quality upsampling determines the distribution within a single source. To conceptualize
this, imagine the dataset as a two-dimensional matrix of buckets where rows represent WebOrganizer topics
and columns represent the quality buckets. Then the mixing strategy can be thought of as imposing row-wise
(topic) constraints only. The quality-aware upsampling experiments in the preceding paragraph impose
column-wise (quality) constraints only.

We considered several techniques that did not work quite as well as the truncated power-exponential forms
described in § A.1.4. On one hand, the Olmix framework samples data from each topic (row) according only
to the natural quality distribution. On the other, quality upsampling samples data from each quality bucket
(column) and does not consider reweighting topic distributions. For a theoretical target token yield, each of
these strategies prescribes a target token count to be taken from each (topic, quality) bucket. Naive ways
to rectify these strategies is to take an arithmetic or geometric mean between the target token counts from
each bucket. We also note that the theoretical framework defining upsampling curves above is not necessarily
restricted to the concept class of truncated power-exponential families. We could just as easily consider the
family of exponential functions like fλ(x) = Ce

λ(x−a). Upon considering each of these techniques on small 1B
models, we found that the truncated power-exponential family performed the best. Results are contained in
Table 37.

A.2 BaseModel Additional Data Details: Midtraining
This section provides further detail on curation processes for Dolma 3 Dolmino Mix. Additional replication
resources, including prompts for synthetic data generation, are available in the Dolma3 GitHub repo.
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QA Easy Math Easy Code Easy
Mixing Only 100.51 77.78 87.21
Quality Upsampling Only 102.21 82.08 80.88
Arithmetic Mean 100.38 79.15 82.83
Geometric Mean 100.42 78.18 81.34
Truncated exponential family 100.17 78.24 78.72
Truncated power-exponential family (Olmo 3) 99.31 75.81 78.26

Table 37 Different methods of combining quality-aware upsampling and token-constrained mixing to arrive at the final
Olmo 3 pre-train mix. Results are on the OlmoBaseEval Easy suite (§3.3, lower is better).

Model #Toks Seen (B) #Toks Total (B) MMLU Math MATH GSM8K
tinyMATH (PoT) 0.24 0.24 -2.90 16.58 20.70 25.33
tinyMATH (MIND) 0.90 0.90 -1.75 11.62 12.48 14.80
tinyMATH (Both) 1.15 1.15 -1.68 9.98 11.40 12.07
CraneMath 4.34 4.34 0.01 4.86 4.26 6.32
SwallowMath 3.65 3.65 0.33 4.84 4.38 6.72
Dolminos Math 5.00 10.70 -0.60 4.68 2.08 7.65
MegaMatt 2.69 21.78 0.32 3.39 3.91 4.85
MM-Web-Pro 5.00 15.10 0.09 2.31 1.92 3.49
MM-Web-Pro-Max 5.00 73.85 -0.10 1.70 1.40 2.67
FineMath4+ 6.89 9.61 0.03 1.51 1.21 2.19
MM-Web 5.00 263.90 0.03 1.30 0.69 2.16

Table 38 Results from math microanneals, with normalized per-token differences in scores relative to pre-anneal
baseline. All anneals were run with a 50/50 mixture of web text data and the high quality data source. Numbers
were arrived at by taking the difference from the pre-anneal baseline and dividing by the number of tokens seen during
training.

A.2.1 Math Capabilities
Similar to Olmo 2 (OLMo et al., 2024), we take particular care to curate math-specific mixes of data during
the midtraining phase of training. In this section we discuss some of the procedures used to generate, as
well as validate, the math-specific data sources. It should be noted, that while there has been a flurry of
research on high-quality, open-source, STEM-focused datasets, many of these are synthetic data generated
using LLama-models, which carry with them a restrictive Llama license. We produce several reproductions of
these with more permissive licensing and urge the community to take care in the licensing of the data they
release if they wish to see adoption for research or commercial purposes.

TinyMATH In OLMo2, great strides were made in performance on the GSM-8K (Cobbe et al., 2021) dataset
by generating synthetic math problems seeded from the original GSM training set, and then generating both
python code (PoT) and natural language discussions of solutions (MIND). We adopt a similar strategy here,
to target the MATH dataset (Hendrycks et al., 2021c). Namely, we adopt the TinyGSM protocol (Liu et al.,
2023a) and prompts to generate 100 new problems for each existing MATH problem, and then generate
pythonic solutions for each of these new problems. Then we apply the MIND rewrite prompt (Akter et al.,
2024), using the two-student and problem-solving variants. This yields the PoT dataset (241M tokens) and
the MIND dataset (899M tokens). To assess the potency of these new datasets, we ran annealing runs and
evaluated fine-grained math related benchmarks as well as MMLU, to keep an eye on generalization. These
results are summarized in TABLE:
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CraneMath SwallowMath (Fujii et al., 2025) is a 2.3 Billion token dataset, generated from rewriting
FineMath4+ (Allal et al., 2025). Unfortunately the data was rewritten using a Llama model, which would
require that any model trained on this data would need to have "Llama" in the name, according to the
Llama Community License. To provide truly open data, we mirror the generation of this dataset, but use
Qwen3-32B Yang et al. (2025a) to rewrite FineMath4+ using the prompt presented in the SwallowMath
paper. This yields a 5.62B token dataset we refer to as CraneMath. Compared to the 9.6B tokens contained
in FineMATH4+, CraneMath is a distillation into fewer tokens, but not as few as SwallowMath (2.3B) – we
posit that this is because using Qwen3 as a rewrite model is slightly "chattier" than Llama.

To evaluate performance of this rewrite procedure, we ran several anneals, starting from a base model that had
seen 6T tokens of our pre-training mix, we ran several anneals, always with 50% token from the pretraining
mix and 50% tokens from the data-source of interest. In the case where the anneals have different token
counts, driving the learning rate linearly down to the same final learning rate. Then we compare the following
runs: i) The pre-anneal baseline, ii) FineMath4+, but just an incomplete subset; iii) the original SwallowMath
dataset; iv) our version, CraneMath; v) two copies of CraneMath; vi) a copy of CraneMath and all their
original documents from FineMath4+.

MegaMatt OctoThinker (Wang et al., 2025) generated a 70B token data pool dubbed Megamath-Web-Pro-
Max, intended to be a rewrite of LLM360’s MegaMath data pool (Liu et al., 2023c), with quality mirroring
that of the MegaMath-Web-Pro quality. Again, unfortunately, MegaMath-Web-Pro-Max was rewritten using
Llama, and an independent recreation needed to be performed for fully open usage in training. Since our
initial ablations showed that the Megamath-Web-Pro-Max pool wasn’t as high of quality as, say, SwallowMath,
we didn’t need a recreation of the full 70B pool. Instead, we generated a recreation of just the documents from
Megamath-Web-Pro-Max that occured in CommonCrawl dumps from dump CC-MAIN-2023-23 and later,
since more recent data was shown in the OctoThinker paper to be of higher quality. We ultimately generated
3.9B tokens of data, dubbed MegaMatt. To verify the efficacy, we ran ablations on: i) MegaMath-Web, ii)
MegaMath-Web-Pro-Max (both to 10B and 25B tokens), and iii) MegaMatt.

OMR Rewrites Inspired by the success of Nvidia’s OpenMathReasoning dataset on the AIO-2 Kaggle
competition, we experimented with various rewrites sourced from AoPS forums Moshkov et al. (2025). See
Dolma3 repo for further details.

Key Findings and Results We summarize the annealing results for the math datasets in Table 38. Each value
reflects the change in the evaluation score relative to the pre-anneal baseline, normalized by the number of
training tokens. Presenting the results this way highlights several distinct tiers of math-data quality, stratified
by the effect-per-token. Notably, these quality tiers anticorrelate with the number of available tokens: the
highest-quality sources are also the smallest. While it is true that there are diminishing returns of evaluation
scores as more tokens are added, we claim that amongst these high-quality data sources, some higher quality
than others.

At the top of the quality-spectrum are the tinyMATH variants. Although each contains less than a billion
tokens, they deliver the strongest improvement per token – this is perhaps not surprising as these tokens were
specifically crafted to augment the MATH evaluation score. Next in the tier-list of quality are the synthetic
rewrites of natural high-quality data: the Crane, SwallowMath and MegaMatt sources which are each rewrites
of FineMath4+ and MegaMathWeb-Pro. These provide a markedly weaker lift to the math evaluation metrics
than the tinyMATH variants but also have a much larger pool of tokens to draw from. Finally, the largest
data sources, including those of naturally occurring data such as FineMath4+ and MegamathWeb, also yield
improvements, but their effect-per-token is noticeably smaller than that of the highly curated synthetic data.
Finally we note that the effect of math midtraining on MMLU is generally neutral to negative, but is more
strongly negative the more targeted the data pool is to Math evals, suggesting “overcooking”, where increased
specialization comes at the expense of broader general-purpose performance.

A.2.2 CodeCapabilities
During pretraining, we relied entirely on stack-edu (Allal et al., 2025) for providing coding data. This data
came in the form of naturally-occurring source code from github scraps with limited extra preprocessing.
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During midtraining, we focused on improving Python and code-completion capabilities. To this end, we
incorporated 10B tokens of FIM-transformed data form the same source as the pretraining code mixture.
Inspired by improvements in math metrics by incorporating synthetic data, we also created a fully-open
replica of SwallowCode (Fujii et al., 2025), which we call CraneCode.

CraneCode Of the off-the-shelf synthetic code data sources we considered, SwallowCode provided the greatest
lift to coding evaluation metrics. Unfortunately, SwallowCode was generated using Llama models and thus
had the less-permissive Llama license attached. We created a replica of SwallowCode by starting with just
the python files from The Stack v2 Smol (Lozhkov et al., 2024), and applying the compilation and linting
filters just as in SwallowCode. Then we applied a two-stage rewriting process, first to generate code data that
is more compliant to the python style guides (SGCR), and then to generate optimized code (SCOR); both
using the prompts from the original SwallowCode paper and Qwen/Qwen2.5-Coder-32B-Instruct (Qwen et al.,
2024). To verify the the quality of the reproduced dataset, we ran several anneals, where results are displayed
in Table 39.

Model #Tokens Crux-Eval HumanEval MBPP MMLU
CraneCode (25B) 18.87B 35.92 35.06 31.72 54.30
CraneCode SGCR 18.87B 41.75 33.78 36.76 54.18
SwallowCode 10.0B 35.74 31.80 34.67 55.03
CraneCode (10B) 10.0B 33.28 26.51 34.94 54.98
Pre-anneal Baseline N/A 35.46 21.51 27.11 56.60

Table 39 Microanneal results for CraneCode ablations. For each annealing run, we ran with a 50/50 mixture of
web text and high-quality synthetic code data. We note several observations: 1) Both SwallowCode and CraneCode
provide a lift to coding evaluation metrics at the expense of MMLU metrics; 2) SwallowCode provides a larger lift
normalized for tokens than the CraneCode dataset; 3) CraneCode continues to provide lift to HumanEval as more
data is provided, indicating that this data source is not yet exhausted.

A.2.3 Reasoning Capabilities
Meta-reasoning Recent work demonstrates that structured meta reasoning capabilities present during
pre-training and mid-training serve as the foundation for successful reinforcement learning in complex
reasoning tasks. Gandhi et al. (2025) showed that models exhibiting verification and backtracking behaviors
during base training achieved dramatically superior performance trajectories during mathematical reasoning
RL. Therefore, we begin by identifying structured reasoning capabilities that are critical for mathematical
problem-solving. We select seven core capabilities that are foundational to mathematical and programming
expertise: self-awareness (Toy et al., 2024; Callaway et al., 2022), self-evaluation (Fleming and Daw, 2017),
goal management (Ackerman and Thompson, 2017; Griffiths et al., 2019), hierarchical organization (Haupt,
2018), backward chaining (Olieslagers et al., 2024), backtracking and conceptual reasoning (Markovits et al.,
2015). We then design specific tasks that systematically target these capabilities, as shown in Table 40, and
41. For instance, Math Error Recovery specifically targets self-awareness, verification, and backtracking by
requiring models to experience authentic mistakes and demonstrate recovery processes. Strategy Selection
focuses purely on meta-cognitive choice processes, while Conversation Generation integrates all capabilities
through educational dialogue. For data generation, we start with existing math (Luo et al., 2025a; Moshkov
et al., 2025) and coding (Li et al., 2023a; Hendrycks et al., 2021a; Ahmad et al., 2025) problems and their
corresponding correct answers. Following Pandalla dataset48, we automatically augment each problem with
detailed annotations49 covering ‘problem classification’, ‘difficulty analysis’, ‘solution approaches’, ‘common
pitfalls’, and ‘verification methods’. These rich annotations serve as inputs for our capability-targeted tasks.
For example, the ‘common pitfalls’ field directly informs math error recovery generation, while steps in ‘solution
approach’ provides structure for backward chaining tasks. Using the annotated datasets as foundation, we
employ GPT-4.1 and o4-mini to generate training data at scale for each capability-targeted task.

48https://huggingface.co/datasets/pandalla/pandalla-math-dataset-v1.0
49We provide the problem and the correct answer as inputs to o4-mini with high reasoning, to synthesize the annotations

following the Pandalla-math annotation schema.
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Task Meta Capabilities
Math error recovery Self-awareness, verification, backtracking
Choosing the technique to use Strategy selection
Difficulty estimation & self-awareness prompts Self-evaluation
Steps generation Goal management, hierarchical organization
From answer, generate steps backwards Backward chaining
Conversation generation All capabilities (tagging)
Reason about necessary concepts and how they connect Conceptual reasoning

Table 40 Meta reasoning capabilities across mathematical tasks

Task Meta Capabilities
Code error recovery (single-turn) Self-awareness, verification, backtracking
Code error recovery (multi-turn) Self-awareness, verification, backtracking
Planning the solution Strategy selection, goal management
Solution implementation Conceptual-level processing, hierarchical organization
Code quality evaluation (high/low) Self-evaluation
Difficulty estimation Self-evaluation, self-awareness
Unit test walkthrough Goal management, verification

Table 41 Meta reasoning capabilities across coding tasks

Existing thinking traces The full list of existing thinking traces is as follows:

1. GeneralReasoningMix is a compilation of three existing datasets: GeneralThought-430K50, OpenThoughts-
114k (Guha et al., 2025b), and Open-R1-Math-220k51. The resulting dataset contains questions, thinking
traces, and answers for topics spanning math, code, natural sciences, humanities, social sciences, and
puzzles.

2. Gemini Reasoning Traces, introduced by Muennighoff et al. (2025b), contains thinking traces covering
domains of math, astronomy, biology, chemistry, computer science, geography, physics, English, law,
logic, and more.

3. OpenThoughts2 Reasoning Traces from Guha et al. (2025b) contains thinking traces in domains of
math, science, code, and puzzles.

4. Llama Nemotron Reasoning Traces (Bercovich et al., 2025) contains thinking trace data for math, code,
general reasoning, and instruction following.

5. QwQReasoning Traces consists of the QwQ subset of the OpenMathReasoning dataset (Moshkov et al.,
2025).

Filtering steps included subselecting for permissively-licensed generations, filtering to remove empty and
truncated responses, performing checks of verifiable claims and safety, filtering overt LLM self-references,
filtering heavily repeated sentences, paragraphs, and phrases, and remove reasoning traces consisting of greater
than 5% Chinese characters.

A.3 BaseModel Additional Evaluation Details
The OlmoBaseEval suite expands on the 11 tasks in the OLMo 2 iteration of OLMES (OLMo et al., 2024;
Gu et al., 2024b), to include 43 tasks across new families of capabilities. Here, we enumerate details from §3.3.

50https://huggingface.co/datasets/RJT1990/GeneralThoughtArchive
51https://huggingface.co/datasets/open-r1/OpenR1-Math-220k
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Figure 29 Training curves of midtraining on canonical language model benchmarks (top), and our proposed base
main task suites (bottom) for QA, Math and Code. We used the signal-to-noise ratio of early mid-training runs to
make decisions about aggregating evaluation scores. Our resulting task averages had a better signal-to-noise ratio than
individual benchmarks.

All task suites are publicly available at github.com/allenai/olmes#olmo-3-eval-suite.

Expanding OLMES tasks. We expanded our evaluation to target specific capabilities: new QA tasks focusing
on science knowledge (SciQ, QASPER, SciRIFF), medical/lab knowledge (ProtocolQA, DBQA, MedMCQA,
MedQA), math tasks (GSM Symbolic, Minerva MATH) and coding tasks (DS 1000, BigCodeBench, Deepseek
LeetCode52, MultiPL-E HumanEval, MultiPL-E MBPP). We use MultiPL-E to evaluate our multilingual
code execution, limited to six core programming languages. Additionally, we track fill-in-the-middle (FIM)
performance using HumanEval with the three settings from Bavarian et al. (2022): single-line infilling,
multi-line infilling and random span infilling.

We support code execution in Python, C++, Java, JavaScript, PHP, Rust and Shell using AWS Lambda
functions to grade instances in parallel, isolated environments of up to 50K generations simultaneously. In
total, our environments graded 17.2 million generated code samples during Olmo 3 development, with up to
1.5K simultaneously. To ensure reproducibility, we release a lightweight Docker library for code execution
without AWS infrastructure53.

Additionally, OLMo 2 only tracked math and code capabilities after mid-training, as small models exhibit
random-chance pass@1 performance on math and code tasks (Wei et al., 2022). Our base easy suite tracks
perplexity over human-written math and code solutions (Huang et al., 2024b), which allows us to broadens
the scope of capabilities we track during pre-training.

A.3.1 Base Evaluation Suites
Using the analysis tools described in the previous section, we construct two evaluation suite for decision
making in pre-training: the Base Easy suite for small-scale data decisions and the BaseMain suite for in-loop
evaluation and mid-training data decisions. We kept the number of in-context examples and generation
arguments consistent within each family of tasks, when possible.54

52We use ‘Deepseek LeetCode’ to refer to the 180 LeetCode problems used during development in Guo et al. (2024)
53Our code execution environments are publicly available at github.com/allenai/olmes-docker.
54We perform all evaluation using vLLM. To prevent performance discrepancies between versions, we pin to v0.9.0.1 for

evaluation during development, and pin to v0.11.0 for all evaluation in the final report.

88

https://github.com/allenai/olmes#olmo-3-eval-suite
https://github.com/allenai/olmes-docker


1019 1020 1021 1022 1023 1024 1025

0.3

0.4

0.5

0.6

0.7

0.8
M

C
 A

cc
ur

ac
y

Base Main QA

1019 1020 1021 1022 1023 1024 1025
0.0

0.2

0.4

0.6

pa
ss

@
1

Base Main Math

1019 1020 1021 1022 1023 1024 1025

0.0

0.1

0.2

0.3

0.4

0.5

pa
ss

@
1

Base Main Code

1019 1020 1021 1022 1023 1024 1025

Est. Compute (FLOPs)

0.4

0.5

0.6

0.7

RC
 A

cc
ur

ac
y

Base Easy QA BPB

1019 1020 1021 1022 1023 1024 1025

Est. Compute (FLOPs)

0.4

0.6

0.8

1.0

1.2

Bi
ts

-p
er

-b
yt

e

Base Easy Math BPB

1019 1020 1021 1022 1023 1024 1025

Est. Compute (FLOPs)

0.4

0.6

0.8

1.0

1.2

Bi
ts

-p
er

-b
yt

e

Base Easy Code BPB

Model Family
1B@100B toks
compute
Deepseek 1/2
Llama 3
OLMo 2
Qwen 2/2.5
SmolLM
Gemma 2/3

Figure 30 Scaling analysis for the Olmo 3 base evaluation suite. At the largest scale used to run from-scratch data
ablations (grey line, a 1B model trained to 100B tokens), our ‘base main’ evaluation suite is too difficult to show
improvement (top figures). Instead, we introduce a ‘base easy’ suite to compare models at small scales (bottom figures).
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Figure 31 Relationship between bits-per-byte using the ‘Easy’ suite and final metrics using the ‘Main’ evaluation suite.
We use the ‘Easy’ suite to make decisions at a small scale, which corresponds to an improvement at the large scale.

Table 43 describes the task configuration and metrics for the Olmo 3 base evaluation suite.

Base Easy Suite. For multiple-choice BPB, we simply use the correct answer as the continuation. For math
BPB, we use the provided human-written solutions from Minerva MATH (Lewkowycz et al., 2022). For code
BPB, we use the gold ‘canontical’ solution as provided in HumanEval and MBPP (Chen et al., 2021; Austin
et al., 2021). For BPB over non-Python coding tasks, MultiPL-E did not release gold solutions (Cassano et al.,
2022), so we generate silver continuations for 16 languages using o4-mini-medium55. Figure 30 shows the
scaling behavior of the three base easy task clusters, where we see signal even at very small (190M parameter)
model sizes.

One important property of the base eval suite is that a ranking of two small models on the base easy suite
agrees with their ranking on the downstream base main suite. We validate this by measuring rank correlation
between the easy and main task suites, as pictured in Figure 31.

55We release this generation set at huggingface.co/datasets/allenai/multilingual_mbpp
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Figure 32 To select generation arguments for base
evaluation, we run a temperature and top-p sweep
across 5 models. We use a reasonable configuration
such that we can calculate both pass@1 and pass@k
using the results of a single evaluation job.

BaseMainSuite. As a result of the clustering procedure,
the base main suite tracks 6 task groups: MCQA STEM,
MCQA Non-STEM, Gen, Math, Code, Code FIM. Unlike
OLMo 2, we are tracking generative math and code
tasks at pre-training. We chose to evaluate pass@k with
the largest number of samples such that each task could
evaluate on OLMo 2 7B on 1 H100 in under 30 minutes,
in order to ensure the eval speed is not bottlenecked by
any particular task. For tasks with a large enough n,
we set k = 16 to match the GRPO group size, which
we observed to act as an empirical upper-bound on the
possible improvement from RL training. To decide on
the the temperature and top-p, we ran a sweep and
evaluated 5 models (OLMo 2 7B, 13B; Qwen 2.5 7B,
13B; Qwen 3 8B; Qwen et al., 2024; Yang et al., 2025a) to
find an adequate configuration setting for high scores on
both pass@1 and pass@k. Results are shown in Figure
32, and we select temperature and top-p of 0.6 for all
base math and code evaluation.

BaseChatSuite. During mid-training, we refashion the
chat eval suite (§4.1) for use evaluating base models, which served as a reference as to whether we expect our
model to perform well after the adaptation pipeline. To do this, we used a standard, simple chat template
(Question: {text}\nAnswer:) across all base models (both Olmo 3 and baseline models) and we included
stop tokens to prevent degenerate responses. We also excluded tasks which required an API-based judge
(AlpacaEval, SimpleQA) due to cost. In practice, we noticed most of the disagreements between the base main
and base chat evaluation suites were due to noise, so we primarily used the base suite for making decisions.

Base Long-Context Suite. During the long-context extension phase, we evaluate long-context capability
using RULER (Hsieh et al., 2024) as our primary development signal. As a complementary held-out set,
we also use HELMET (Yen et al., 2025), noting that the HELMET Recall task directly implements several
RULER evaluations (specifically, ruler-niah-mk-2, ruler-niah-mk-3, and ruler-niah-mv). Because we evaluate
only base models at this stage, we disable chat templates within HELMET to ensure consistent scoring
across models. For HELMET tasks requiring an LLM-as-a-judge, we use its default judge configuration
(gpt-4o-2024-05-13). Taken together, RULER guides most model-selection decisions during long-context
development, with HELMET providing an additional check on generalization.

Base Held-out Suite. We targeted one held-out evaluation task to match each family of capability: MMLU
Pro for QA (Wang et al., 2024a), LBPP for code (Matton et al., 2024), Deepmind Math for math (Saxton
et al., 2019), and BigBench Hard to measure broad coverage across unseen task types (Suzgun et al., 2022).

A.3.2 New Evaluation Benchmarks
Basic Skills. We developed a new benchmark, BasicSkills, to measure whether core capabilities are being
acquired during pretraining. BasicSkills consists of 6 subtasks: basic arithmetic, string manipulation, simple
coding, elementary logical reasoning, basic common sense, and simple pattern recognition. Each task isolates
a single skill using a self-contained context that requires no external knowledge or additional information and
can be completed through natural text continuation without relying on instruction-following abilities.

Gen2MC. One takeaway from OLMo 2 development was a sensitivity to task format. The clustering
procedure furhter confirmed this, finding that generative scores rank models similarly as rank choice (RC) QA
tasks, disagreeing with ranking of single-token multiple choice (MC) QA tasks (see Figure 5). In particular,
the short-form generative QA tasks (GenQA in Table ??) evaluate by comparing a generated answer to a bank
of plausible answers, but these answer banks are often not complete, leading to false negatives. To address this,
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task capability ICL metric # sub

Base Easy Suite
Minerva MATH (2022) Math Gen 4α BPB 7
HumanEval (2021) Code Gen 3 BPB -
MBPP (2021) Code Gen 3 BPB -

C
od

e

MT MBPP (2022) Code Gen 3 BPB 17
ARC (2018) Science QA 5 BPB 2
MMLU (2021b) General QA 5 BPB 57
CSQA (2019) Commonsense QA 5 BPB -
HellaSwag (2019) Language Modeling 5 BPB -
WinoGrande (2020) Language Modeling 5 BPB -
SocialIQA (2019) Social QA 5 BPB -
PiQA (2020) Physical QA 5 BPB -
CoQA (2019) Conversation QA 0† BPB -
DROP (2019) Passage QA 5 BPB -
Jeopardy (2024) Trivia QA 5 BPB -
NaturalQs (2019) General QA 5 BPB -
SQuAD (2016) General QA 5 BPB -
SciQ (2017) Science QA 5 BPB -
QASPER (2021) Science QA 5 BPB -
Basic Skills (§A.3.2) Basic QA 5 BPB 6
DBQA (2024) Science QA 5 BPB -
ProtocolQA (2024) Science QA 5 BPB -
Lambada (2016) Language Modeling 0 BPB -
MedMCQA (2022) Medical QA 5 BPB -
MedQA (2021) Medical QA 5 BPB -

Q
A

SciRIFF (2024) Science QA 5 BPB -

Table 42 Details of the Olmo 3 base easy evaluation suite. Tasks were formatted as bits-per-byte (BPB) over the
gold continuation, or rank choice (RC, following the setup in Gu et al. (2024b)). = new additions to the base OLMo
2 suite (OLMo et al., 2024); † = few-shot examples are built-in the task; α = human-written few-shot examples.

we introduce the Gen2MC benchmarks, which were constructed by taking the original question/answer pairs
and generating incorrect multiple-choice distractor answers using a strong LLM. For each set of generated
distractors, we manually review a set of 200 sample questions from the validation set before generating the
full dataset. We create Gen2MC tasks for DROP, Jeopardy, NaturalQs, SQuAD, CoQA using GPT-4o for
generating distractors, and fall-back to GPT-4.1 in cases where output parsing failed.

Masked Perplexity. We want our model to perform well on the diversity of requests from real user chat data;
however, we don’t want to overfit to the “style” of chat outputs. To avoid this, we use a simple token masking
strategy, inspired by work in loss masking (Mindermann et al., 2022):

1. Fine-tune a 1B model on a tiny subset of the dataset (5̃%) with a small learning rate. The key idea is
that we ‘warm up’ to the format of the target set without learning a lot of new knowledge.

2. Compute the token losses of the base model and the fine-tuned model on every sequence in the dataset
and compute the difference: log pSFT(y∣x) − log pbase(y∣x)

3. Mask tokens where the difference is greater than some threshold (found by inspection)

4. Also mask the user responses and tool calls (we don’t want to model these for data selection) Use the
loss at all the non-masked tokens positions for perplexity evaluations

In practice, we use Olmo 2 1B and the trained Olmo 2 1B SFT to compute the loss difference on target tokens.
We use UltraChat and WildChat (Ding et al., 2023; Zhao et al., 2024a) as our masked perplexity sets.
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task ICL format metric temp top-p max toks p@k (n) # sub

BaseMain Suite
GSM8K (2021) 8α CoT EM pass@k 0.6 0.6 512 1, 4 (8) -
GSM Symbolic (2024) 8α CoT EM pass@k 0.6 0.6 512 1, 4 (8) 3
Minerva MATH (2022) 4α CoT EM pass@k 0.6 0.6 1024 1, 4 (4) 7M

at
h

MATH 500 (2022; 2023) 4α CoT EM pass@k 0.6 0.6 1024 1, 16 (32) -
HumanEval (2021) 3 Code Exec pass@k 0.6 0.6 512 1, 16 (32) -
MBPP (2021) 3 Code Exec pass@k 0.6 0.6 512 1, 16 (32) -
BigCodeBench (2024) 3 Code Exec pass@k 0.6 0.6 1280 1 (5) -
DS 1000 (2022) 3 Code Exec pass@k 0.6 0.6 1024 1 (5) -
Deepseek LeetCode (2024) 0 Code Exec pass@k 0.6 0.6 512 1, 16 (32) -
MultiPL-E HumanEval (2022) 0 Code Exec pass@k 0.6 0.6 1024 1, 16 (32) 6

C
od

e

MultiPL-E MBPP (2022) 0 Code Exec pass@k 0.6 0.6 1024 1, 16 (32) 6
HumEval FIM Single (2022) 0 FIM pass@1 0.8 0.95 512 1 (10) -
HumEval FIM Random (2022) 0 FIM pass@1 0.8 0.95 512 1 (5) -

F
IM

HumEval FIM Multi (2022) 0 FIM pass@1 0.8 0.95 512 1 (1) -
ARC (2018) 5 MC Acc - - - - 2
MMLU STEM (2021b) 5 MC Acc - - - - 19
MedMCQA (2022) 5 MC Acc - - - - -
MedQA (2021) 5 MC Acc - - - - -

S
T
E
M

Q
A

SciQ (2017) 5 MC Acc - - - - -
MMLU Humanities (2021b) 5 MC Acc - - - - 13
MMLU Social Sci. (2021b) 5 MC Acc - - - - 12
MMLU Other (2021b) 5 MC Acc - - - - 14
CSQA (2019) 5 MC Acc - - - - -
PiQA (2020) 5 MC Acc - - - - -
SocialIQA (2019) 5 MC Acc - - - - -
DROP Gen2MC (§A.3.2; 2019) 5 MC Acc - - - - -
Jeopardy Gen2MC (§A.3.2; 2024) 5 MC Acc - - - - -
NaturalQs Gen2MC (§A.3.2; 2019) 5 MC Acc - - - - -
SQuAD Gen2MC (§A.3.2; 2016) 5 MC Acc - - - - -
CoQA Gen2MC (§A.3.2; 2019) 0† MC Acc - - - - -

N
on

-S
T
E
M

Q
A

Basic Skills (§A.3.2) 5 MC Acc - - - - 6
HellaSwag (2019) 5 RCper-char Acc - - - - -
WinoGrande (2020) 5 RCnone Acc - - - - -
Lambada (2016) 0 RCper-char Acc - - - - -
Basic Skills (§A.3.2) 5 RCper-token Acc - - - - 6
DROP (2019) 5 GenQA F1 0 1 100 - -
Jeopardy (2024) 5 GenQA F1 0 1 50 - -
NaturalQs (2019) 5 GenQA F1 0 1 50 - -
SQuAD (2016) 5 GenQA F1 0 1 50 - -

G
en

Q
A

CoQA (2019) 0† GenQA F1 0 1 50 - -

Base Held-out Suite
MMLU Pro (2024a) 5 MC Acc - - - - 13
LBPP (2024) 0 Code Exec pass@k 0.6 0.6 4096 1 (32) -
Deepmind Math (2019) 5 CoT EM pass@k 0.6 0.6 2048 1 (1) -
BigBench Hard (2022) 3 CoT EM Acc 0.6 0.6 512 1 (1) 55

Table 43 Details of the Olmo 3 base evaluation suite. Tasks were formatted as multiple-choice (MC), rank choice
(RC, following the setup in Gu et al. (2024b)), short-form generative (GenQA), chain-of-thought with exact-match
scoring (CoT EM), code exeuction (Code Exec) or fill-in-the-middle coding (FIM). = new additions to the base
OLMo 2 suite (OLMo et al., 2024); † = few-shot examples are built-in the task; α = human-written few-shot examples.
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A.4 Post-Training Additional Training Details
A.4.1 Supervised Finetuning Details
Using OlmoCore infrastructure for SFT Training Relative to pretraining, this involves a substantially smaller
batch size, different data packing, and masking. This leads to an 8x faster training speed than open-instruct,
dramatically improving our iteration speed. We use between 1 and 8 8xH100 nodes, or 1 to 4 8xB200 nodes
to train our 7B reasoner and instruct models. We use 32 8xH100 nodes to train our 32B thinking model As a
consequence of using olmo-core, our batch size is now measured in tokens instead of instances, and we train
with document packing instead of padding. We train all of our 7B SFT models with a batch size of 1m tokens
and 32B SFT models with a batch size of 4m tokens, for two epochs, with packing, and a 32,768 sequence
length. Our hyperparameter settings are also summarized in Table 44.

7B Thinking SFT 32B Thinking SFT 7B Instruct SFT
Total Tokens 45.4B 45.2B 3.4M
Learning Rate 5.0 × 10

−5
1.0 × 10

−4 souped with 5.0 × 10
−5

8.0 × 10
−5

Num. GPUs 64 256 8-64
Max Sequence Length 32K 32K 32K

Table 44 Training hyperparameters for Olmo 3 Think SFT and Olmo 3 Instruct SFT. All GPUs used
were H100s.

A.4.2 Preference Tuning Details
Training Settings Given a preference dataset D = {(x, yc, yr)} of prompts x and corresponding chosen and
rejected responses yc ≻ yr, we optimize the model policy πθ on a length-normalized DPO loss (Lambert et al.,
2024):

max
πθ

E(x,yc,yr)∼D [log σ ( β

∣yc∣
log

πθ(yc∣x)
πref(yc∣x)

−
β

∣yr∣
log

πθ(yr∣x)
πref(yr∣x)

)]

where πref is the initial reference policy and β is a hyperparameter that regularizes learning via an implicit
Kullback-Lieber (KL) divergence penalty between the reference policy and the training policy.

We sweep learning rate and preference dataset size, as we observe that performance increases up until
some task-dependent optimal optimization point beyond which further tuning hurts (Figure 23). All other
hyperparmeters are kept fixed. See Table 45 for exact hyperparameters. We train our 7B models using 2-4
8xH100 nodes, and our 32B models with 8-16 8xH100 nodes.

7B Thinking DPO 32B Thinking DPO 7B Instruct DPO
Num. Preference Pairs 150k 200k 260k
Num. Epochs 1 1 1
DPO β 5 5 5
Learning Rate 8.0 × 10

−8
7.0 × 10

−8
1.0 × 10

−6

LR Schedule Linear decay Linear decay Linear decay
Warmup Ratio 0.1 0.1 0.1
Num. GPUs 32 64-128 16
Batch Size 128 128 128
Num. GPUs 32 64-128 16
Max Sequence Length 16K 8K 16K

Table 45 Training hyperparameters for Olmo 3 Think DPO and Olmo 3 Instruct DPO. All GPUs
used were H100s.

DPO promptmixing
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Subset of Olmo 3 Instruct Benchmarks
Name Avg. MMLU BBH GPQA AGI MATH CHE LCB IFEval AE2
Development SFT 50.1 66.3 44.2 29.9 58.6 56.2 70.0 13.8 82.1 29.8
Base mix (uniform* sample) 54.3 68.1 48.1 32.1 62.7 67.3 68.5 17.0 79.3 45.4
Ablate code 53.6 64.7 51.6 33.0 65.2 67.9 65.9 17.7 75.8 40.6
Ablate math 54.4 67.8 49.2 33.0 64.8 67.2 67.0 20.4 77.3 42.9
Ablate science 52.8 66.4 49.9 31.7 64.2 67.0 60.0 19.8 76.3 39.6
Ablate chat 53.1 67.1 51.3 30.6 64.8 67.6 59.3 21.2 76.3 39.3
Ablate inst. following 50.3 66.1 51.0 29.5 62.5 66.3 48.3 18.7 75.2 34.8
Ablate safety 51.0 66.3 48.6 34.2 63.5 67.3 51.0 18.1 74.7 35.4
Ablate misc/SFT unused 48.3 66.6 49.9 29.7 64.2 65.3 38.6 14.9 74.1 31.2

Upsample code 51.1 67.7 48.6 31.7 63.8 65.9 51.7 18.0 76.0 36.3
Upsample math 53.3 67.5 48.6 29.5 62.3 66.4 66.7 17.5 78.4 42.6
Upsample chat 53.0 67.0 46.8 30.6 61.6 65.7 68.3 15.6 76.9 44.7

Table 46 Development results for DPO prompt domain mixing (rounded to one decimal place). Overall, we find that
(1) all prompt domains are useful for performant tuning, but (2) the exact ratios for each domain are challenging
to ascertain systematically; the prompt domain does not necessarily correspond directly to the domains in which
performance improves.
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Model pool for LLM-judged pairs For our Instruct model, we generate completions on our prompt pool with
the following models: GPT-OSS 20B, GPT-OSS-120B (Agarwal et al., 2025), GPT-4.1-2025-04-14 (OpenAI,
2023b), Mistral-Small-24B-Instruct-2501, OLMo 2-1B-Instruct, OLMo 2-7B-Instruct, OLMo 2-13B-Instruct,
OLMo 2-32B-Instruct (OLMo et al., 2024), Phi4-Mini-Instruct (Abdin et al., 2024), Gemma3-4B-it, Gemma3-
12B-it, Gemma3-27B-it (Gemma 3 Team, 2025), Qwen3-Coder-30B-3A (no reasoning), Qwen3-0.6B (no
reasoning), Qwen3-1.7B (no reasoning), Qwen3-4B (no reasoning), Qwen3-8B (no reasoning), Qwen3-14B (no
reasoning), Qwen3-32B (no reasoning), Qwen3-30B-3A (no reasoning) (Yang et al., 2025a), QwQ-32b (Qwen
Team, 2025), Yi-9B, Yi-34B (Young et al., 2024).

For each prompt, we sample four model completions and judge them via a GPT-4.1 judge with the Ultrafeedback
judge prompts (Lambert et al., 2024; Cui et al.).56 To enforce a meaningful delta between chosen and rejected
responses, we enforce our judge pipeline to sample responses from exactly two of the following smaller
and/or previous generation models which show lower overall performance: OLMo 2-1B-Instruct, OLMo
2-7B-Instruct, Yi-9B, Yi-34B, Phi4-Mini-Instruct, Qwen3-0.6B (no reasoning), Qwen3-1.7B (no reasoning).
Without this intervention, we would have a 33% chance of sampling at least 2 weak models out of our 4
samples from our model pool for judgment, providing limited contrast in preference pairs. We binarize into
preference pairs by selecting the worst response out of the four to be rejected, and the best as chosen.

A.4.3 Reinforcement Learning Details
We provide full training curves for our 7B reasoner in Figure 35. The overall reward increases steadily over
training. The KL divergence grows gradually and reflects stronger deviation from the reference policy. The
response length becomes longer and stabilizes at a higher level. Domain-specific verifier rewards display
consistent gains in math and moderate fluctuations in code. The IfEval reward rises throughout training. The
two general-quality verifiers also show clear and sustained improvement. Together, these trends indicate that
the policy improves both specialized skills and overall response quality. The full hyperparameters for all RL
experiments are provided in in Table 47.

A.4.4 RL-Zero Details
We detail the prompt used for math in Figure 33. Prompts of other domains are quite similar, see the
open-instruct codebase for details.

RL-Zero Math Prompt

Solve the following math problem step by step.
The last line of your response should be the answer to the problem in form Answer: $Answer (without quotes)
where $Answer is the answer to the problem.

{Math Question}

Remember to put your answer on its own line after "Answer:"

Figure 33 RL-Zero Prompt for Math Task.

A.5 Post-Training Additional Data Details
A.5.1 Filtering for Dolci Think-SFT
In this section we detail the filtering methods created primarily for training Olmo 3 Think, which was
also used for mid-training and Olmo 3 Instruct data. Each phase of filtering would remove 0-1% of data
across most available or generated reasoning traces. Some data, such as Nvidia’s Nemotron Post-training
datasets (Nathawani et al., 2025) had very few samples removed relative to their peers.

56We ran initial experiments employing a GPT-5 judge, but results suggested that the GPT-4.1 judge actually performed
better.
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Prompt for LLM Judge Reward

Please act as an impartial judge and evaluate the quality of the answer provided by an AI assistant to the
conversation history leading up to the answer displayed below. Judge whether the provided answer is good by
comparing it to the reference answer.

Notes:
- Besides comparing to the reference answer, your evaluation should consider factors such as the helpfulness,
relevance, accuracy, creativity, appropriate level of detail, and how well the response satisfies the user’s explicit
constraints or accurately follows their instructions.
- Note that sometimes the reference answer is not the only answer. So any valid variation of the reference
answer is also acceptable and can get a full score.
- If there is a system prompt, ensure the AI answer prioritizes following it.
- Begin your evaluation by providing a short explanation.
- Be as objective as possible. After providing your short explanation, please output a score on a scale of 1 to 10.
- Please adhere to the following format.

[Conversation History]
{input}

[AI Answer]
{output}

[Reference Gold Answer]
{label}

[Your judgement]
Respond in JSON format. {"REASONING": "[...]", "SCORE": "<your-score>"}

Figure 34 LLM Judge Prompt for Non-verifiable Tasks.

1. Source Filtering We perform some filtering to remove non-compliant licenses or data that will not
be useful. E.g. for GeneralThoughts traces used in mid-training, we filtered to only commercially
friendly licensed prompts. For OpenThoughts2, we removed ShareGPT prompts due to questionable
provenance (as done in Tulu 3). For LlamaNemotron Post-Training we filter to only reasoning samples
from DeepSeek and Qwen that have not been touched by Llama models.

2. Format Filtering We remove truncated answers (i.e. if they have <think> and no </think>) and empty
outputs (empty responses). https://github.com/allenai/open-instruct/blob/7ba4cd0/scripts/
data/filtering_and_updates/filter_cots.py

3. Domain Specific Accuracy Filtering We check accuracy for many domains, such as precise instruction
following, code, or math. Additionally, for chat domains we use included metadata in some datasets
such as Wildchat to remove responses or prompts tagged as unsafe. https://github.com/allenai/
open-instruct/blob/7ba4cd0/scripts/data/filtering_and_updates/filter_wildchat.py

4. General Content Filters Here we remove mention of date cutoffs to try and avoid hallucinations of model
characteristics and any mention in the user prompt or completion that indicates the date is to or from
any model. Maintaining identity of models trained on heavily distilled data takes a meaningful amount of
data work and system prompt design. https://github.com/allenai/open-instruct/blob/7ba4cd0/
scripts/data/filtering_and_updates/filter_datasets_sequential.sh
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Figure 35 Reward, KL, response length, and per-verifier reward over the final RL run for OLMo 3 Thinker.
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7B Thinking RL 32B Thinking RL 7B Instruct RL 7B RL-ZeroMath
Dataset Size 104,869 104,869 171,950 13,314
Learning Rate 1.0 × 10

−6
2.0 × 10

−6
1.0 × 10

−6
1.0 × 10

−6

Minibatches 1 1 4 1
LR Schedule Constant Constant Constant Constant
Training Steps 1,400 750 450 2,000
Max Prompt Length 2,048 2,048 2,048 2,048
Response Length 32,768 32,768 8,192 16,384
Unique Prompts Per Batch 64 128 64 32
Group Size 8 8 8 8
TIS Cap - 2.0 0.2 2.0
Sampling Temperature 1.0 1.0 1.0 1.0
Clip-Lower 0.2 0.2 0.2 0.2
Clip-Higher 0.272 0.272 0.272 0.272
Num Learner GPUs 16 64 8 8
NumActor GPUs 56 160 56 64
GPUs per Actor (TP) 1 8 1 1
Max Asynchrony 1 8 8 8

Table 47 RL training hyperparameters for Olmo 3 Think, Olmo 3 Instruct and OLMORL0. All GPUs used were
H100s.

5. RepetitionFiltering Many open weights reasoning models have tendencies to perform extreme repetitions,
even in thinking traces that result in a correct answer. In particular, we find that .1% of responses
from QwQ have mass repetition. We filter this roughly by searching for heavily repeated ( 10x+)
sentences, paragraphs, or ( 50x+) phrases. https://github.com/allenai/open-instruct/blob/
7ba4cd0/scripts/data/filtering_and_updates/filter_ngram_repetitions.py

6. Chinese Language Filtering In order to encourage Olmo 3 Think to stay in its intended language of En-
glish, we remove any post-training responses with 5% or higher prevalence of Chinese characters by search-
ing over the range of Unicode character range of common Chinese characters. https://github.com/
allenai/open-instruct/blob/7ba4cd0/scripts/data/filtering_and_updates/filter_chinese.py

A.5.2 Tool-use data
Additional details about the ScienceQA dataset Citation graph-based queries are produced by prompting
GPT-5 in a few-shot setup to create query templates, e.g., What are the top-three most cited papers
by {AUTHOR} on {TOPIC}? which are subsequently instantiated with real paper entities. Content-based
questions are generated by a GPT-5-based agent equipped with the ASC server, which retrieves relevant
papers and formulates grounded questions that can be answered using retrieved text. For both types of
queries, to obtain corresponding tool-use trajectories we employ a GPT-4.1-mini agent with access to the
same ASC server. All tool call outputs are derived from actual environment responses rather than synthetic
completions.

Additional details about theWeb SearchQA dataset Given the varied quality of real-world queries, GPT-5
is employed to rate each query drawn from existing open-access benchmarks on a five-point scale assessing
(i) whether it calls for comprehensive long-form responses, (ii) factual verifiability, and (iii) the degree of
search required. Only queries scoring 4 or 5 on these criteria are retained. We then use an agent equipped
with web search and browsing via the Serper API, and scientific snippet retrieval via ASC to generate
tool-use trajectories for these queries. This agent is instructed with tool specifications and step-by-step search
instructions, resulting in detailed trajectories containing both tool calls and environment outputs. We then
filter out trajectories that yield incorrect answers (where ground truth is available), and only keep trajectories
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that adhere to the expected output format. Additionally, since the environment outputs for the webpage
fetching tool of the Serper API are quite long (typically entire webpages), we used GPT 5 to summarize the
content of the web pages and only retained the summaries in the training data.

Additional details about simulated interaction trajectories We run various post-hoc checks on synthesized
datasets to verify whether the generated trajectories adhere to the prompts, and filter the dataset to create
SimFC. We filtered out trajectories where the function calls included functions not part of the presented APIs.
Our data synthesis prompts explicitly target multi-turn, multi-step, parallel function calls (i.e., multiple calls
per assistant turn), and refusals, ande filter out the trajectories that do not conform to such requirements
specified in the prompts.

Prompt for Generating Multi-Turn Function-calling Interactions

You are provided an API with the details of the functions shown in a JSON format. Use this API to write a simulated
interaction between a user, an assistant that can call the functions in the API, and the environment. The interaction
should refer to three roles: "user", "assistant", and "environment". Their messages should be represented as Python
dicts with "role" and "content" fields.

If the assistant is making function calls, they should be shown under a "function_calls" field instead of the "content"
field. The interaction should start with a user request, contain multiple steps of the assistant making function calls
while interacting with the user for additional inputs, and should conclude with the assistant performing the user’s
requested action. Please generate a simulated interaction with at least 5 function calls. Ensure that at the end of each
turn, the assistant should address the request of the user by creating an assistant message with a text in the "content" field.

Here is an example:

API:
[

{"name": "get_borrowed_books", "description ": "Get borrowed books by user ID",
"parameters ": {" user_id ": {"type": "int"}}},

{"name": "get_user_info", "description ": "Get user information",
"parameters ": {" prefix ": {"type": "str", "required ": false},

"email": {"type": "str", "required ": false }}},
{"name": "get_late_fines", "description ": ...}

]

INTERACTION:
[

{"role": "user", "content ": "How many users with the name Yoda exist?"},
{"role": "assistant", "function_calls ": "get_user_info(prefix=‘Yoda ’)"},
{"role": "environment", "content ": "{\" results \": [{\"id\": 23}]}"} ,
{"role": "assistant", "content ": "There is one user with that name."},
{"role": "user", "content ": "How many books have they borrowed ?"},

... additional turns ...

{"role": "assistant", "content ": "Luke Skywalker has borrowed one book ."}
]

Here is the real task:

API: {}
INTERACTION:

Figure 36 Illustrative Prompt for generating multi-turn function-calling interactions with simulated environment
feedback (prompt has been truncated for readability).

A.5.3 Coding Data Synthesis Pipeline
To construct reinforcement learning (RL) data for code, we required pairs of (problem, test cases). We curate a
diverse set of prompts for coding problems, including AceCoder (Zeng et al., 2025a), Klear-Reasoner Code (Su
et al., 2025c), Nemotron Post-training Code (NVIDIA AI, 2025), SYNTHETIC-2 code (PrimeIntellect, 2025),
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Prompt for Generating Function Calling Refusals

You are given an API function described in JSON format. Your task is to write a simulated conversation between a user
and an assistant. First identify the domain of the API, and then create a user request that is similar in domain but still
unaddressable by the API.

In this conversation:
1. The user makes a request that is slightly related to the capabilities of the API, but still unaddressable by the API.
2. The domain of the user request should be very similar to the API’s capabilities. If it’s about math, then the request
should also be about math.
3. The assistant refuses the request and explains clearly why it cannot be fulfilled, referencing the actual API functions.
4. The assistant should not hallucinate functionality or attempt to fulfill the request.
5. The explanation must be concise, accurate, and polite.
6. The dialogue should be brief but complete, showing a realistic interaction.
7. Format the output as a realistic, short conversation between the user and assistant.
8. There is no need to put environment outputs.
9. Use an imperative tone and include concrete values (e.g., “Compute the perimeter of a rectangle with length 10 and
width 5”).

Format the output as a dialogue, alternating between the user and the assistant.

Example 1
API:
[

{"name": "get_user_info", "description ": "Get user information",
"parameters ": {" prefix ": {"type": "str", "required ": false},

"email": {"type": "str", "required ": false }}},
{"name": "get_borrowed_books", "description ": "Get borrowed books by user ID"}

]

INTERACTION:
[

{"role": "user", "content ": "Sell the book ‘The Little Prince ’"},
{"role": "assistant", "content ": "I’m sorry , but I can ’t sell books. Based on the

APIs , I can help with retrieving user info or checking borrowed books ."}
]

Example 2

... additional examples ...

Here is the real task:

API: {}
INTERACTION:

Figure 37 Illustrative Prompt for generating function-calling refusals i.e. when the task is not feasible given the
available functions (prompt has been truncated for readability).

Open-Code Reasoner (Ahmad et al., 2025). We use the klear-reasoner and SYNTHETIC-2 test cases directly.
For the other datasets, we run prompts through the following synthetic data pipeline:

• Problem rewriting. Given a coding problem, we first prompted GPT-4.1 to rewrite the description so
that it either (a) included a function signature, or (b) explicitly specified that the solution should read
from and write to standard input/output (stdio)

• Solution generation. GPT-4.1 was then prompted to provide a corresponding solution. Depending on
the problem type, this was either a Python function matching the given signature, or a program reading
from and writing to stdio. When the original problem source included a reference solution, we included
it in the prompt

• Test case generation. GPT-4.1 was further prompted to generate test cases in the appropriate format

100



Dataset Original Format Domain General Content Repetition Chinese Final
Size Filtering Filtering Filtering Filtering Filtering Filtering Size

WildChat (Tülu 3) 57,407 1.61% 14.57% 0.75% 3.10% – 1.09% 45,917
WildChat (New) 74,997 1.53% 48.09% 0.80% 3.13% 0.02% 1.16% 36,417
OpenAssistant1 7,094 0.08% – 0.22% – – 3.86% 6,800
OpenThoughts3-Regen 1,200,000 3.22% – 0.00% – < 0.01% 0.04% 1,160,972
Persona Precise IF 224,448 0.19% – 0.03% 0.29% < 0.01% 0.08% 223,123
Val Precise IF (QwQ) 286,003 – – – 0.62% < 0.01% 1.17% 135,851
Synthetic-2-SFT-Verified 104,913 0.01% – 0.06% – < 0.01% 0.32% 104,569
Saurabh Code Mix 884,767 – – – – < 0.01% < 0.01% 884,570
CoCoNot 10,460 0.57% – 1.57% – – 0.10% 10,227
WildGuard 38,794 0.37% – 1.17% 0.54% < 0.01% 0.12% 38,315
WildJailbreak 41,420 0.13% – 0.21% 0.61% – < 0.01% 41,100
Aya 98,863 0.15% – 1.70% – < 0.01% 5.62% 98,598
TableGPT 4,982 0.02% – 0.00% – – 0.06% 4,981

Table 48 Filtering statistics showing percentage of prompts removed at each major filtering stage for reasoning
datasets. “–” indicates filtering was not applicable or no samples were removed.

(function-based or stdio-based)

A.6 Post-Training Additional Evaluation Details
A.6.1 General Evaluation Settings
For post-training, we focus exclusively on generative evaluations, in which we generate completions until a
max length is reached or eos token is generated (as opposed to multiple-choice-based evaluations used in
pretraining), better matching real-world downstream usage.

Following DeepSeek R1 report (Guo et al., 2025) and Nvidia Nemotron (Adler et al., 2024) we use a sampling
temperature of 0.6 and top-p of 0.95.57 We strip thinking traces from the answer text when generated. We
account for the variance this induces in smaller benchmarks (e.g. AIME, which is made up of 30 questions)
by taking multiple samples and reporting the overall average performance. For QA tasks (e.g. BBH, MMLU),
we create a unified set of ‘Olmo 3’ regexes for answer extraction, covering a wide variety of potential answer
tempaltes. We additionally update AlpacaEval 2 Length Controlled (LC) (Dubois et al., 2024) to use GPT-4.1
as a judge instead of the original GPT-4-Turbo (OpenAI, 2023b) both to increase the reliability of the
evaluation and to save ∼90% of inference costs. Importantly, our evaluation settings are unified across thinker
and instructmodels, simplifying our evaluation development process.

A.6.2 Safety Evaluations Overview
The safety evaluations that were tested upon during training runs and whose average was reported earlier
were the same set from OLMo2 (OLMo et al., 2024) and Tulu3 (Lambert et al., 2024). In addition to the
development safety evaluations, we also evaluate our models on four new safety evaluations, chosen due to
their prevalence in recent LLM safety evaluations (Kaiyom et al., 2024; Kavukcuoğlu and DeepMind, 2025;
Anthropic, 2025; Cai et al., 2025; OpenAI, 2025; Lambert et al., 2024).

Development safety evaluations include HarmBench (Mazeika et al., 2024), DoAnythingNow (DAN; Shen
et al., 2024), XSTest (Röttger et al., 2023), WildGuard-Test (Han et al., 2024), WildJailbreak-Test (Jiang
et al., 2024), and TrustLLM-JailbreakTrigger (Huang et al., 2024a).

57We find that both thinking models degenerate quickly when evaluated with low temperatures (as used in OLMo 2), while
instruction models can be evaluated at this higher temperature.
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Unseen safety evaluations that we added were Toxigen (Hartvigsen et al., 2022), StrongReject (Souly et al.,
2024), Weapons of Mass Destruction Proxy (WMDP; Li et al., 2024b), and Bias Benchmark for QA (BBQ;
Parrish et al., 2022).

Averaging and reportedmetrics Safety and accuracy scores are aggregated according to benchmark protocol,
with all reported metrics normalized such that higher values are better (1 indicates perfect safety performance).
Specifically, we report the average of: refusal accuracy, i.e., inverted ASR (Attack Success Rate), for
DoAnythingNow, Harmbench, Wildguard, TrustLLM-JailbreakTrigger, Toxigen, and StrongReject; accuracy
for XSTest and BBQ; the average of inverted ASR for Wildjailbreak (harmful) and ASR for Wildjailbreak
(benign); and inverted accuracy (i.e., error rate) for WMDP. For the safety benchmarks, models were evaluated
with a top-p of 0.95 and sampling temperature of 0.7.

We explain all of the evaluations in more detail below:

• HarmBench(Mazeikaetal.,2024) evaluates models’ refusal to comply with a diverse suite of harmful prompts,
distributed across both functional and semantic categories. The benchmark contains 320 harmful prompts,
covering functional behaviors including "standard" harms from sources like AdvBench and TDC 2023 Red
Teaming, prompts testing for copyright violations, and contextual prompts (i.e., prompts combining an
instruction with a context such as a document).58 The semantic category includes prompts representing
seven types of real-world harms: cybercrime, unauthorized intrusion, chemical/biological/drug-related,
copyright infringement, misinformation, harassment, illegal activities, and general harm. Model outputs are
evaluated for safety of output using the WildGuard classifier’s safety label (Han et al., 2024).

• DoAnythingNow (DAN; Shen et al., 2024) tests models’ robustness to the well-known DAN jailbreak
framework by pairing DAN-style jailbreak templates with harmful behaviors adapted from HarmBench.
For this evaluation, we subsample 300 representative prompts from the full benchmark. Prompt content
spans diverse instruction-jailbreak combinations aiming to bypass safety guardrails. We compute refusal
accuracy59 using the WildGuard classifier’s refusal label (Han et al., 2024) to assess whether model outputs
refuse or comply with the harmful instructions.

• XSTest (Röttger et al., 2023) measures models’ over-refusal tendencies, i.e., their ability to distinguish
harmful requests from superficially similar but benign prompts. The benchmark includes 200 unsafe prompts
and 250 safe prompts that mimic the form or vocabulary of unsafe requests. Prompt categories include
homonyms, figurative language, safe targets, safe contexts, definitions, real/nonsense group discrimination,
historical events, public and fictional privacy scenarios, among others. As with the two previous benchmarks,
we evaluate models’ outputs via refusal accuracy with WildGuard’s refusal label (Han et al., 2024).

• WildGuard-Test (Han et al., 2024) provides a comprehensive evaluation of prompt harm, response harm,
and response refusal across a set of 1,725 items. Prompts are collected from adversarial synthetic data and
real in-the-wild user interactions with LLMs. We evaluate on the subset of 749 adversarial prompts. The
evaluation reports the safety of outputs using the WildGuard classifier’s safety label, capturing both the
model’s ability to refuse harmful queries and to respond appropriately to benign prompts.

• WildJailbreak-Test (Jiangetal., 2024) assesses model safeguards in the face of advanced, adversarial jailbreak
attacks across both harmful and benign contexts. The dataset comprises 2,000 adversarially crafted harmful
prompts and 250 adversarial benign queries intended to measure over-refusals. We evaluate models’ refusal
accuracy using WildGuard’s refusal label: refusals are desirable on harmful queries (indicating stronger
refusals), and non-refusals are desired on benign queries (indicating fewer unnecessary refusals).

• TrustLLM-JailbreakTrigger (Huang et al., 2024a) tests susceptibility to 13 distinct jailbreak attack methods
with a suite of 400 prompts. Prompts are equally split between two types: "Questions about Bad Behaviors"
and "Instructions to generate Toxic Content". This benchmark evaluates whether models’ safety mechanisms
withstand a variety of jailbreak strategies and measures the toxicity of outputs produced under attack. The
main metric is the refusal accuracy, reported using WildGuard’s refusal label.

• Toxigen (Hartvigsen et al., 2022) tests whether models’ comply with instructions to generate toxic or
stereotypical sentences for given demographic groups. Each prompt includes a list of 10 examples of toxic

58In our implementation, the context string is merged into the input prompt for contextual examples.
59Refusal accuracy corresponds to 1-ASR (attack success rate).
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sentences, to which an unsafe model would add new toxic sentences. We subsampled a random set of 1400
input prompts divided equally between demographic subcategories from ToxiGen: Asian, Black, Chinese,
Jewish, Latino, LGBTQ, Mental Disability, Muslim, Native American, Physical Disability, Trans, Women.
We report the toxicity score of the model’s output, measured by the ToxiGen RoBERTa-based trained
classifier.60

• StrongReject (Souly et al., 2024) assesses models’ susceptibility to advanced jailbreak prompts intended to
elicit forbidden content. Each input prompt is a real-world adversarial instruction, constructed to evade
common safety guardrails using one of 37 jailbreak techniques, plus a baseline with no jailbreak. We
subsampled approximately 20% of the full benchmark, resulting in 2,294 unique prompts, maintaining the
diversity of jailbreak techniques and forbidden instruction topics. The model’s output is scored on a 1-5
safety scale according to the risk or compliance with the forbidden prompt, using a classifier that is uses a
version of the StrongReject classifier61 that is a LoRa adapter merged with the base Gemma-2B (Gemma
Team et al., 2024) model by the benchmark creators. The final evaluation metric is a weighted sum over
the probability distribution across possible scores computed via log-probabilities of top-scoring response
tokens, which is then reversed such that higher scores indicate higher safety.

• Weapons ofMassDestruction Proxy (WMDP) (Li et al., 2024b) evaluates whether models can provide answers
to dual-use knowledge questions in the domains of biology, chemistry, and cybersecurity. Each prompt is
a factual multiple choice question related to weapons of mass destruction, with four answer options and
one correct answer. We sample 20% of the full benchmark, yielding 734 total questions distributed across
the original biological (1273), chemical (408), and cybersecurity (1987) test sets. Prompts include the
instruction we use when evaluating MMLU (Wang et al., 2024a):

The following are multiple choice questions. Summarize your reasoning concisely, then conclude
with ’Therefore, the answer is: X’ where X is one of A, B, C, or D.\n \n

Models’ outputs are evaluated via exact match (based on regex parsing) where only outputs with a correctly
formatted, unambiguous final answer string are considered correct.

• Bias Benchmark for QA (BBQ) (Parrish et al., 2022) measures bias and stereotype adherence by presenting
models with multiple choice questions targeting social dimensions such as age, gender, race, religion, and
intersectional identities. The benchmark includes questions split by 11 subcategories, each clustered along
axes of ambiguous vs. unambiguous and stereotypical vs. anti-stereotypical framing, and sometimes
presence or absence of names. For our evaluation, we drew a subset of ∼500 questions per subcategory
(excluding intersectional combinations), distributed evenly across prompt types (ambiguous/unambiguous,
stereotypical/anti-stereotypical, and, with or without names), resulting in 4482 total instances. Each
prompt is presented in the same structured format as WMDP.62 Model responses are evaluated for accuracy
(proportion of correct answers) and for bias, using a regex-based string parser (similar to BBQ). Accuracy
simply measures whether models picked the right answer. Bias is quantified according to the protocol in
Parrish et al. (2022): ambiguous and disambiguated bias scores are computed as the frequency with which
non-unknown outputs reinforce stereotypes within each prompt type (e.g., the model incorrectly picks the
stereotypical answer).

60https://huggingface.co/tomh/toxigen_roberta
61https://huggingface.co/qylu4156/strongreject-15k-v1
62Note that this is different from the more restrictive HELM-Safety prompting format Kaiyom et al. (2024) which only scores

based on the first generated token.
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Skill Benchmark Olmo 3 Think 7B Olmo 3 Think
7B-DPO

Olmo 3 Think
7B-SFT OpenThinker3-7B Nemotron-

Nano-9B-v2

DeepSeek-R1-
Distill-Qwen-

7B

Qwen 3 8B
(with

reasoning)

Qwen 3 VL 8B
Thinker

OpenReason-
ing Nemotron

7B

DoAnythingNow 23.4 19.6 19.3 1.2 56.7 34.3 53.1 83.0 2.3

HarmBench 75.4 72.7 67.8 26.6 69.4 50.7 74.0 81.9 20.0

TrustLLM-JailbreakTrigger 72.0 65.2 64.8 2.9 62.6 50.1 56.7 77.0 6.9

WildJailbreak-Test Harmful 39.0 27.5 23.4 0.2 28.7 4.5 12.3 38.6 0.5

WildJailbreak-Test Benign 98.8 98.5 99.1 98.8 97.3 98.0 99.7 98.0 97.1

WildGuard-Test 93.8 93.9 90.2 48.1 88.4 69.2 82.9 93.0 42.6

XSTest 90.9 91.6 91.6 59.5 92.5 68.4 87.2 94.2 61.0

BBQ Accuracy 89.2 84.8 86.6 80.3 92.0 78.0 91.8 86.6 82.6

BBQ Bias - Ambig. 6.5 8.4 7.3 11.4 5.8 9.4 5.5 8.9 7.1

BBQ Bias - Disambig. 1.7 1.1 1.7 2.2 0.7 2.4 1.5 1.0 2.3

StrongReject 79.0 75.5 74.8 56.7 85.6 72.4 73.4 82.8 58.3

Toxigen 100.0 99.9 100.0 97.6 100.0 99.7 100.0 99.9 86.4

WMDP 42.7 43.4 46.4 43.8 38.3 55.9 34.9 38.7 51.8

Table 49 Olmo 3 Think 7B and comparisons on the safety benchmarks.

Skill Benchmark Olmo 3 Instruct
7B

Olmo 3 Instruct
7B-DPO

Olmo 3 Instruct
7B-SFT

Qwen 3 8B (without
reasoning)

Qwen 3 VL 8B
Instruct Qwen 2.5 7B Olmo 2 7B

Instruct
Apertus 8B
Instruct

Granite 3.3 8B
Instruct

DoAnythingNow 75.8 83.9 88.3 81.0 66.9 60.2 96.7 43.0 36.8

HarmBench 94.1 94.9 87.0 72.7 84.3 79.0 89.9 81.0 85.1

TrustLLM-JailbreakTrigger 78.3 85.9 87.0 76.1 78.7 63.4 94.8 58.0 62.3

WildJailbreak-Test Harmful 69.4 72.7 80.4 21.2 37.5 13.4 84.6 43.7 66.9

WildJailbreak-Test Benign 97.5 96.5 88.8 99.5 98.3 99.5 88.3 95.2 82.9

WildGuard-Test 99.6 99.7 98.9 86.9 89.9 88.0 99.3 91.0 94.0

XSTest 92.7 92.4 89.3 91.1 93.5 93.2 91.2 90.5 89.3

BBQ Accuracy 79.0 75.1 74.3 87.0 87.8 88.3 70.7 73.8 68.3

BBQ Bias - Ambig. 8.7 9.8 8.3 8.5 8.1 7.1 8.8 7.3 3.2

BBQ Bias - Disambig 2.6 3.0 2.7 2.0 -0.2 3.4 1.8 2.9 2.8

StrongReject 88.1 88.9 94.1 85.8 89.7 78.4 95.3 78.4 82.5

Toxigen 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

WMDP 46.7 48.6 48.4 36.8 38.7 40.6 52.3 47.8 46.0

Table 50 Olmo 3 Instruct 7B and comparisons on the safety benchmarks.

Skill Benchmark Olmo3Think 32B Olmo 3 Think
32B DPO

Olmo 3 Think
32B SFT Qwen 3 32B Qwen 3 VL 32B

Thinking
Qwen 2.5 32B
Instruct

Gemma 3 27B
Instruct

Gemma 2 27B
Instruct

Olmo 2 32B
Instruct

DeepSeek-R1-
Distill-Qwen-

32B

DoAnythingNow 20.2 15.6 16.7 59.0 88.7 74.2 31.0 30.1 73.7 46.0

HarmBench 73.5 69.7 66.5 67.3 75.2 87.1 67.8 90.1 87.2 64.0

TrustLLM-JailbreakTrigger 73.3 69.6 68.3 60.7 75.6 83.8 73.9 74.8 77.3 55.3

WildJailbreak-Test Harmful 25.6 17.5 17.6 12.6 47.0 22.3 17.3 39.7 49.8 13.7

WildJailbreak-Test Benign 99.7 99.6 99.2 100.0 94.0 99.7 100.0 98.5 99.2 99.2

WildGuard-Test 89.4 86.5 86.3 81.3 92.9 91.9 88.7 92.0 98.4 81.7

XSTest 93.9 92.1 93.0 89.6 93.4 93.3 91.6 89.8 92.0 78.1

BBQ Accuracy 88.2 88.5 90.6 89.7 90.5 91.1 83.8 86.3 84.6 88.1

BBQ Bias - Ambig. 9.2 8.2 6.9 7.1 5.6 7.7 11.2 10.5 9.6 8.1

BBQ Bias - Disambig. 1.1 0.2 0.8 0.1 0.0 0.2 0.9 0.4 1.2 0.4

StrongReject 80.8 77.2 75.9 79.3 88.5 85.4 84.5 88.2 87.7 79.1

Toxigen 100.0 100.0 100.0 100.0 99.9 100.0 99.5 100.0 100.0 100.0

WMDP 34.8 34.9 40.2 24.0 31.0 32.4 38.3 39.6 41.9 30.9

Table 51 Olmo 3 Think 32B and comparisons on the safety benchmarks.
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