

JP Morgan Clean Energy Corporate Day

Christina Lampe-Onnerud Founder & CEO Cadenza Innovation Inc. Syrah Resources Non-Executive Director 15 May 2018

Disclaimer

This presentation is for information purposes only. Neither this presentation nor the information contained in it constitutes an offer, invitation, solicitation or recommendation in relation to the purchase or sale of shares in any jurisdiction. This presentation may not be distributed in any jurisdiction except in accordance with the legal requirements applicable in such jurisdiction. Recipients should inform themselves of the restrictions that apply in their own jurisdiction. A failure to do so may result in a violation of securities laws in such jurisdiction. This presentation does not constitute financial product advice and has been prepared without taking into account the recipient's investment objectives, financial circumstances or particular needs and the opinions and recommendations in this presentation

are not intended to represent recommendations of particular investments to particular persons. Recipients should seek professional advice when deciding if an investment is appropriate. All securities transactions involve risks, which include (among others) the risk of adverse or unanticipated market, financial or political developments.

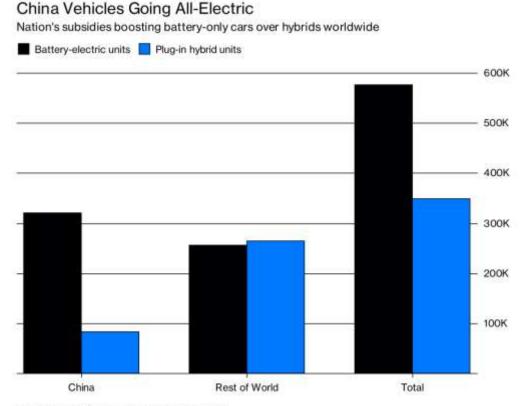
Certain statements contained in this presentation, including information as to the future financial or operating performance of Syrah Resources Limited (Syrah Resources) and its projects, are forward-looking statements. Such forward-looking statements: are necessarily based upon a number of estimates and assumptions that, whilst considered reasonable by Svrah Resources, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements; and may include, among other things, Statements regarding targets, estimates and assumptions in respect of metal production and prices, operating costs and results, capital expenditures, ore reserves and mineral resources and anticipated grades and recovery rates, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions. Syrah Resources disclaims any intent or obligation to update publicly any forward looking statements, whether as a result of new information, future events or results or otherwise. The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and other similar expressions identify forward-looking statements. All forward-looking statements made in this presentation are gualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

Syrah Resources has prepared this presentation based on information available to it at the time of preparation. No representation or warranty, express or implied, is made as to the fairness, accuracy or completeness of the information, opinions and conclusions contained in the presentation. To the maximum extent permitted by law, Syrah Resources, its related bodies corporate (as that term is defined in the Corporations Act 2001 (Cth)) and the officers, directors, employees, advisers and agents of those entities do not accept any responsibility or liability including, without limitation, any liability arising from fault or negligence on the part of any person, for any loss arising from the use of the Presentation Materials or its contents or otherwise arising in connection with it.

Lithium-ion battery market

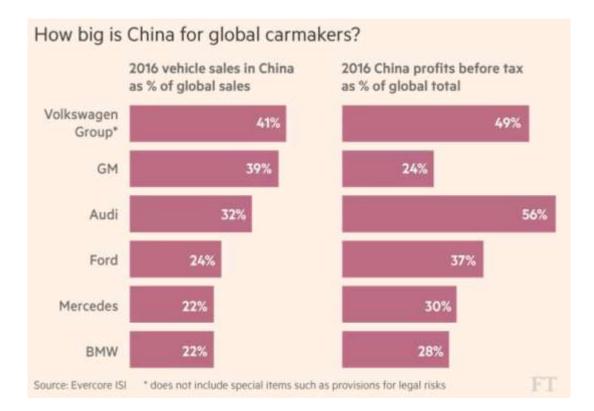
Shenzhen now uses only electric buses (16,500) and also has 62.5% of all taxies being electric (12,518)

Retrieved: 2018-01-04 <u>https://www.greencarreports.com/news/1114577_shenzhen-now-uses-only-electric-buses-16500-of-them?utm_source=dlvr.it&utm_medium=twitter</u>


The Economist: China moves towards banning the internal combustion engine

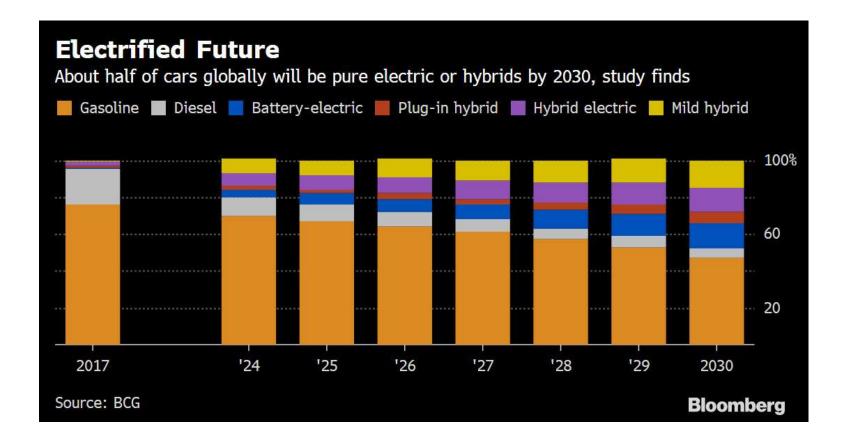
Published 2017-09-14 https://www.economist.com/news/business/21728980-its-government-developing-plan-phase-out-vehicles-powered-fossil-fuels-chinamoves?fsrc=scn/tw/te/bl/ed/chinamovestowardsbanningtheinternalcombustionengine

2017 China accounts for >50% all EV sales



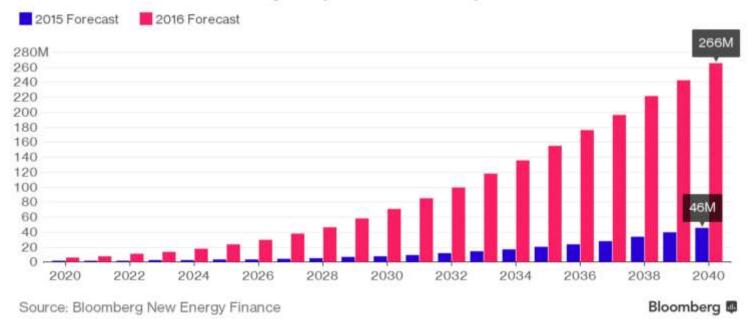
Note: Sales for four quarters ended September Data: BNEF; graphic by Bloomberg Businessweek

Retrieved: 2018-01-09 <u>https://www.bloomberg.com/news/articles/2018-01-09/china-driving-global-battery-electric-vehicle-sales-past-hybrids?cmpid=socialflow-twitter-business&utm_content=business&utm_campaign=socialflow-organic&utm_source=twitter&utm_medium=social</u>


The xEV opportunity in China is driving market share

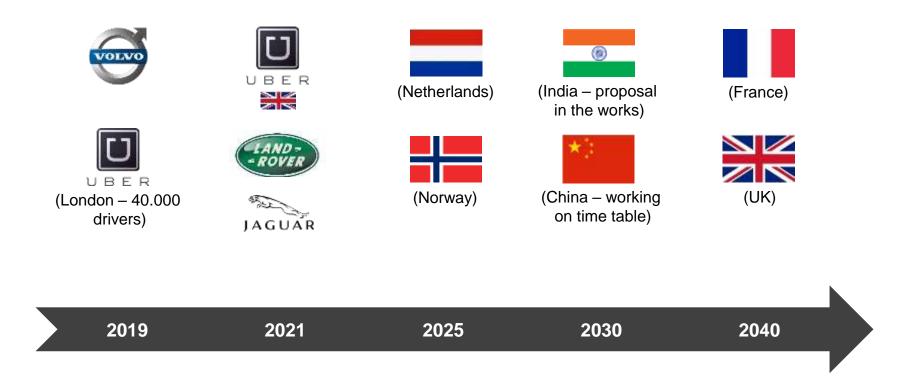
Retrieved: 2017-09-01 <u>https://www.ft.com/content/c4c332c4-7036-11e7-aca6-c6bd07df1a3c?accessToken=zwAAAV4-</u> <u>6cewkdPEwzLEcDYR59Ospsa9B98aPA.MEQCIDyKB2Im4l60wa2Ojs7WqXSGI0EqrfEDkqNssYf1oQxFAiAmqvMDEMfE02IS7PcfjbGj58MfQnKaNzNmYrJHg_VTiw</u> &sharetype=gift

xEVs projected to be 50% of global auto market by 2030

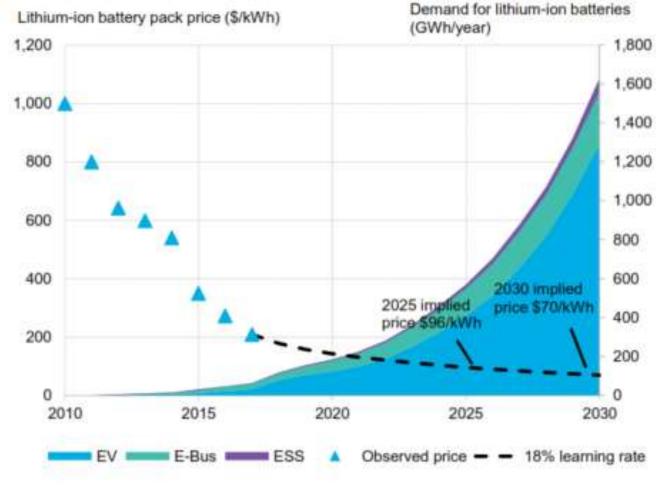

Retrieved: 2017-10-18 https://www.bloomberg.com/news/articles/2017-11-02/battery-powered-cars-to-be-half-of-global-auto-market-by-2030

Upward EV forecasting is the new trend

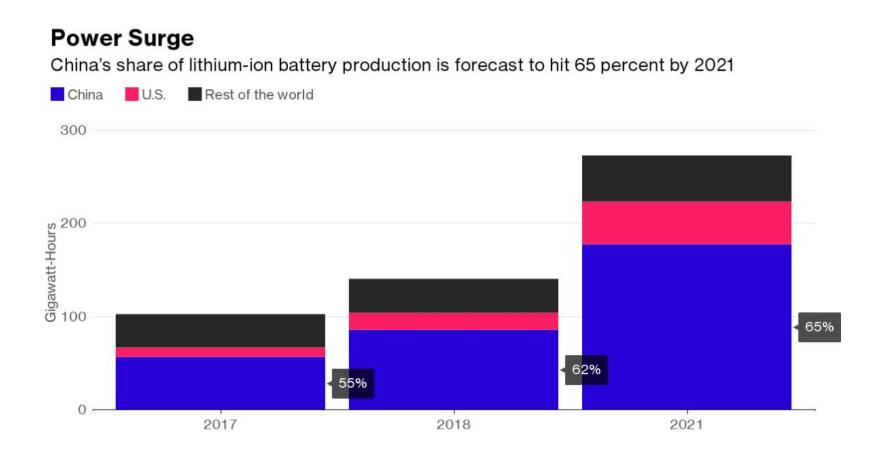
Growing Expectations


OPEC's electric vehicle forecast grew by almost 500% last year

Retrieved: 2018-01-11 https://www.greentechmedia.com/articles/read/everyone-is-revising-electric-vehicle-forecasts-upward#gs.OVFCXQM



Countries banning new sales of petrol and diesel cars, auto industry starting to respond


Electric vehicles are driving Li-ion global demand; Li-ion battery technology here to stay

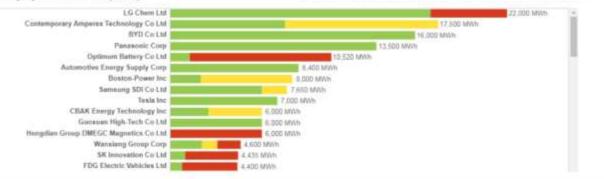
Source: Bloomberg New Energy Finance

~55% of global lithium-ion battery production is currently in China, compared with 10% in the U.S.

Source: Bloomberg New Energy Finance

Substantial capacity is under construction or announced

Global EV lithium-ion battery manufacturing capacity



2021 planned* capacity: 290 GWh/year

Source: BNEF battery manufacturing database.

*Planned = announced or under construction

Capacity by manufacturer (MWh)

Source: Bloomberg New Energy Finance

Current lithium-ion technology here to stay

History of the battery

1786, Luigi Galvani discovered "animal electricity"

1800, Alessandro Volta built the first practical battery

1859, Gaston Plante invented the first rechargeable battery with lead acid

1899, Waldemar Jungner invented the NiCd battery

1991, Sony commercialized the Lithium - based battery

- 100+ Lithium-ion factories globally
- Mature supply chain
- Wide acceptance into devices

Lithium-ion in high demand in future markets

1991	2017	2030
Introduced into Portable Power market • Cell phones • Laptops • 3C	 Portable power 100% Lithium-ion 7B batteries sold globally 	Portable PowerNo real competition
2000		
Introduced in EVs Personal Commercial 	EVs 1.5% global penetration 	EVsSignificant global penetration
2010		
Introduced in ESS Grid Commercial Home 	ESSSouth Australia grid storage	ESS Widely adopted



The Australian energy storage opportunity

One-quarter of Australian homes now have solar

Retrieved: 2017-07-06 http://reneweconomy.com.au/one-quarter-of-australian-homes-now-have-solar-70886/

Changing grid

HE CHANGING GR.D

According to New York Public Service Commission estimates, the top 100 hours of demand cost New York's ratepayers as much as \$1.2-1.7 billion annually, making it some of the most expensive electricity in the world.

NY-BEST ENERGY STORAGE ROADMAP

Challenges for mass market uptake next five years

Price - Performance

- Volume vs. energy density
- Weight vs. range/run-time

Reliability

• Safety - Warranty

Use model

- Battery charging infrastructure
- Harmony with current electricity paradigm

Syrah and Cadenza Innovation Inc.

- Research and Development

Graphite to maintain dominance in anodes, natural graphite increase market share as cost pressure increases

Artificial Graphite xEV, grid	Natural Graphite xEV, grid, portable electronics	Silicon Alloy Anodes Emerging but mixed with graphite presently		
	More energy			
Better cycle	life			
	Key Issues			
 High cost High graphitisation energy use 	Low temperature performance	 Cycle life Electrode expansion/ cell dimensional stability Low first cycle efficiency 		
	Mitigating solutions			
 Mix with natural graphite Develop low cost graphitisation 	Surface coating/ modification	 Si-nano-particles composite Mix with larger percentage of natural and/ or artificial graphite Limit discharge cut-off voltage 		

Solid State and Silicon Anode battery technology outlook

Solid State Batteries

- "Solid state" is really two separate technologies
 - Shorter term is polymer electrolytes still use graphite anodes in cells
 - True solid state with ceramic or glassy • electrolytes and likely with lithium metal anodes, carries large challenges
- Feasibility and manufacturability, need to be validated
- Will take at least 10 years to reach commercialisation with significant technical challenges remaining

Silicon Anode Technology

- Most silicon is used as a composite mixed with graphite
- Silicon anode technology has been already ٠ commercially introduced
- Today 2-10% silicon being introduced in low volume
- Challenge: Address life and safety issues

Aims of testing and benchmarking Syrah products

Crystallinity (structure) Capacity (performance) Evaluate spacing between the layers of carbon atoms in Determine the practicable capability of the material to the graphite structure and the size of the crystallite store lithium when formulated as a lithium-ion electrode. domains Theoretical capacity for graphite is 372 mAh/g These parameters indicate how close the structure is to ٠ Capacity of the electrode materials determines the a perfect graphite structure and determine the capacity energy density of a battery. Using material with higher for lithium storage in the material energy density (volumetric and gravimetric basis) enables longer-lasting batteries - increased range/ time between charging Shape and particle size distribution Density & surface area Determine the morphology of the particles as well as the · Ability of the particles to compress to a goal density at a number and volume fraction of particles of each size given pressure is an important parameter for manufacturing of electrodes in a high volume plant, the This determines important performance parameters for material density affects the battery energy density the material when formulated into an electrode such as rate capability (power), packing density (energy), and Surface area is important for the balance between cycle life battery life, rate capability and energy density, generally high surface area materials have better rate capability but shorter life and lower energy density

Syrah precursor material crystallinity matches existing Li-ion anode precursors, enabling easy supply chain entry

d_{002} (Å) 3.3572 3.3574 3.3572 (III) * silicon Calibrating Degree of Graphitization (%) 96.29 96.06 96.24 V <th><u>Unpurified</u> Samples</th> <th>Syrah Spherical Graphite</th> <th>Competitor A</th> <th>Competitor B</th> <th></th> <th>(002)</th> <th>Syrah Precursor Spherical Graphite (unpurified)</th>	<u>Unpurified</u> Samples	Syrah Spherical Graphite	Competitor A	Competitor B		(002)	Syrah Precursor Spherical Graphite (unpurified)
Degree of Graphitization (%) 96.29 96.06 96.24 V Lc (002) (nm) 54 52 59 1 1	d ₀₀₂ (Å)	3.3572	3.3574	3.3572	it)	*	* Silicon Calibrating
	en e	96.29	96.06	96.24	Αp.		
	Lc (002) (nm)	54	52	59	Intensity		* (100)
La (101) (nm) 74 82 76	La (101) (nm)	74	82	76			(100) (110) (112) (112) (112) (112) (112) (112)

2-Theta (Deg.)

60

70

90

80

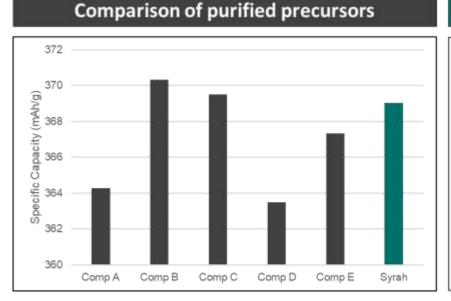
50

20

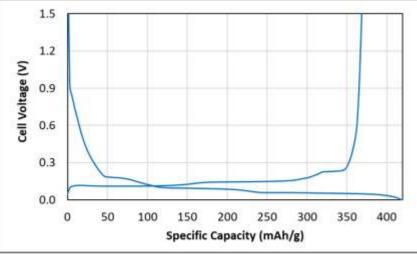
30

40

Purified Samples	Syrah Spherical Graphite	Competitor A	Competitor B	Competitor C	Competitor D	Competitor E
d ₀₀₂ (Å)	3.3572	3.3572	3.3572	3.3575	3.3574	3.3575
Degree of Graphitization (%)	96.24	96.24	96.34	95.88	96.09	95.94
Lc (002) (nm)	51	45	57	48	56	47
La (101) (nm)	67	77	85	73	72	71



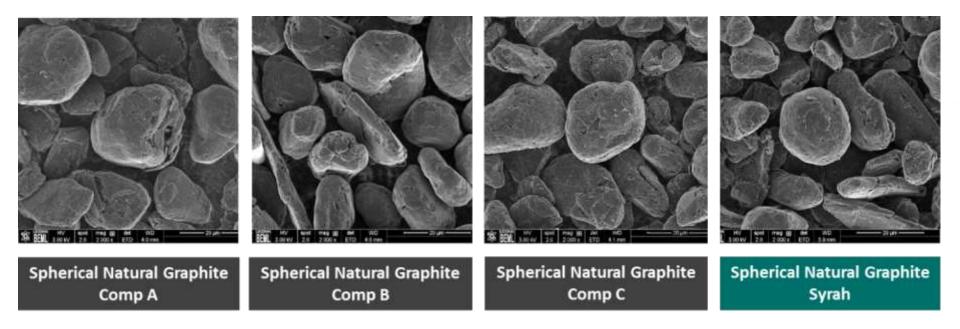
Note: Precursor material refers to uncoated spherical graphite and uncoated purified spherical graphite



Source: Results based on laboratory testing by Cadenza Innovation Inc.

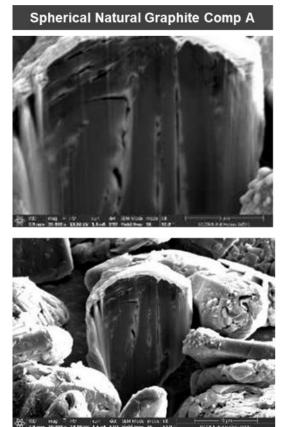
Syrah precursor demonstrates high 365-370 mAh/g capacity – near theoretical maximum capacity of graphite

Syrah Precursor Capacity Measurement

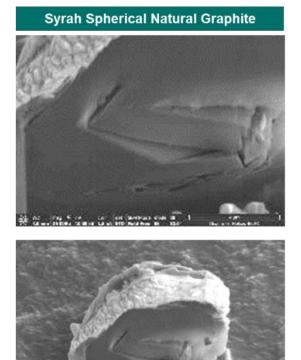

Testing conditions: C/20 charge discharge rate PVDF electrode formulation Density 1.65g/cc

Note: Precursor material refers to uncoated spherical graphite and uncoated purified spherical graphite Source: Results based on laboratory testing by Cadenza Innovation Inc.

Syrah precursors have similar spherical shape and particle size distribution as industry leading precursor materials

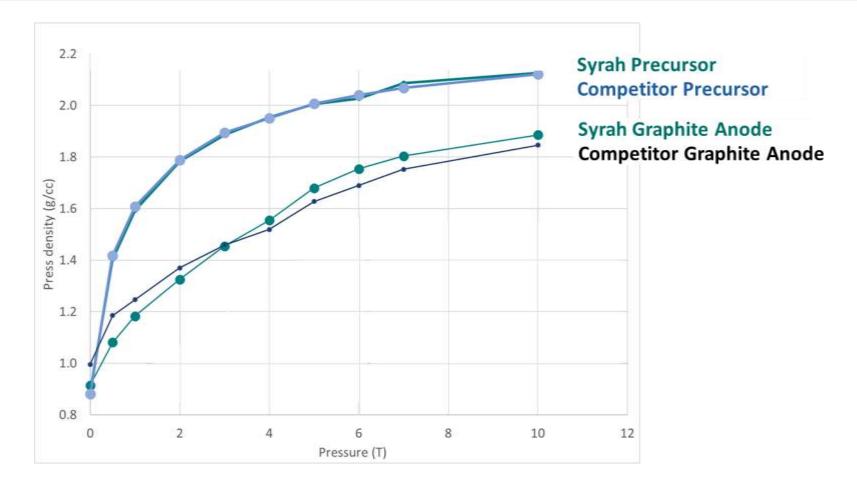


Note: Precursor material refers to uncoated spherical graphite and uncoated purified spherical graphite Source: Results based on laboratory testing by Cadenza Innovation Inc.



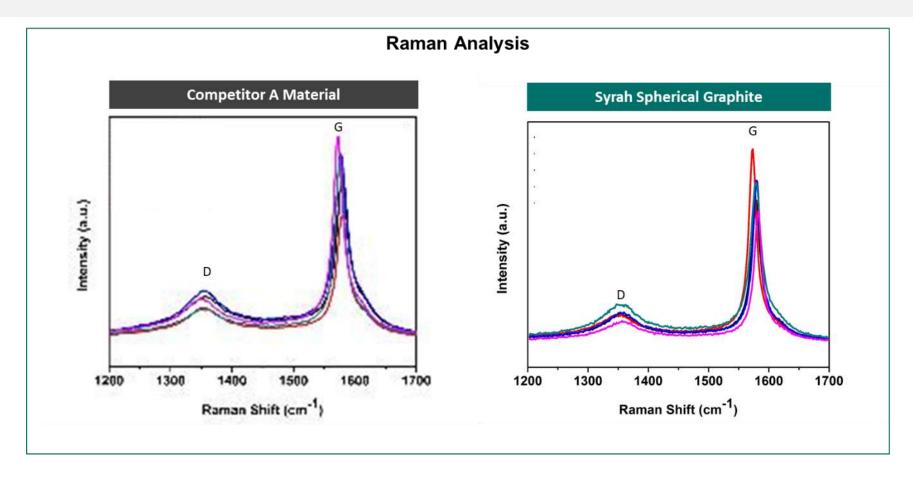
Syrah is producing spherical natural graphite with a structure comparable to industry leading competitors

Cross sectioning of particles with Focused Ion Beam SEM analysis



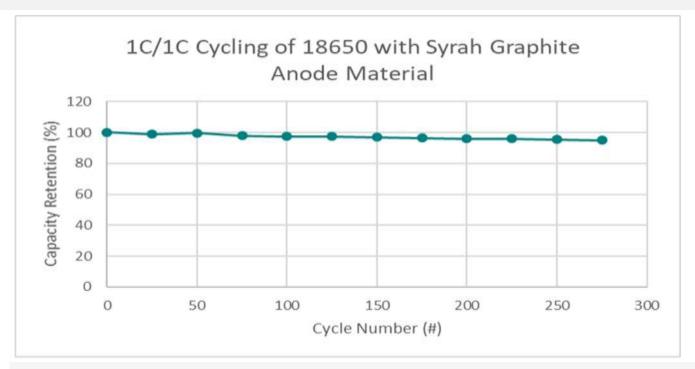
Source: Results based on laboratory testing by Cadenza Innovation Inc.

Syrah precursor and finished materials match the density characteristics of industry leading materials



Note: Precursor material refers to uncoated spherical graphite and uncoated purified spherical graphite. Finished materials refers to coated purified spherical graphite. Source: Results based on laboratory testing by Cadenza Innovation Inc.

Syrah finished anode material matches key surface and density characteristics of industry leading materials



Note: Finished materials refers to coated purified spherical graphite. Source: Results based on laboratory testing by Cadenza Innovation Inc.

Initial cycle life data of finished anode material from customer trials is promising

- 1C/1C cycle life data in industrial scale cells built with development materials
- Additional testing on pilot scale materials is in progress

Summary

Battery market	Anode technology
 Electric vehicle demand driving global Li-ion demand Currently majority Li-ion battery production based in China Substantial battery capacity under construction or announced 	 Graphite to maintain dominance Natural graphite increase market share as cost pressure increases Silicon anodes - challenges in life cycle and safety issues
Li-ion technology	Benchmarking reconfirms battery suitability
 Current Li-ion technology commercialised in 1991 >100 Li-ion factories globally with mature supply chain Wide acceptance into devices Solid state batteries – significant technical challenges remaining 	 Testing of Syrah product reconfirms: Precursor materials have core properties required by global battery industry Finished BAM products using industry standard processing have equivalent electrochemical performance to tier 1 competitors enabling market entry
Cadenza	