

Part 7 of 8 The 'Must Know' advanced laboratory tests for a successful treatment outcome

> Dr. Wayne Sodano, DC, DABCI, DACBN, CIHP, BCTN Director of Clinical Support & Education, Evexia Diagnostics, Inc.

8 PART SERIES

Integrative and Functional Medicine Stool Analysis

D: Digestive

I: Inflammation/immune system

G: Gastrointestinal microbiome

Patient: Jane Doe Collected: 07/24/2017 DOB: 12/19/1971 Accession: 20170724-0102 Received: 07/24/2017 Completed: 07/31/2017

GI-MAPTM DNA Stool Analysis

Ord	lered	by:	Diane	Farhi,	MD

Pathogens			
Bacterial Pathogens	Result		Expected
Campylobacter	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
C. difficile Toxin A	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
C. difficile Toxin B	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
Enterohemorrhagic E. coli	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
E. coli O157	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
Enteroinvasive E. coli/Shigella	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
Enteropathogenic E. coli	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
Enterotoxigenic E. coli LT/ST	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
Shiga-like Toxin E. coli stx1	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
Shiga-like Toxin E. coli stx2	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
Salmonella	6.4 e2	Low	<dl< td=""></dl<>
Vibrio cholerae	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>
Yersinia enterocolitica	<dl< td=""><td></td><td><dl< td=""></dl<></td></dl<>		<dl< td=""></dl<>

Some Diseases Associated with GI Dysfunction

- Gastroesophageal reflux (GERD)
- Irritable bowel syndrome
- Inflammatory bowel disease
- Non-alcoholic steatohepatitis
- Colorectal cancer
- Allergy and asthma
- Autism
- Autoimmune disorders: type 1 diabetes, and
- Hashimoto's thyroiditis

Clinical Microbiology: Bacteriology, Parasitology, Virology via PCR testing	 Bacterial Pathogens Parasitic Pathogens Viral Pathogens
H. pylori	H. pylori and Virulence Factor
Normal Bacteria Flora	 Bacteroides fragilis Biffidobacterium species Enterococcus species Lactobaccillus species Clostridium species Enterbacter species
Phyla Microbiotia	 Bacteroidetes Firmicutese Firmicutes:Bacteroidetes Ratio
Opportunistic Bacteria (dysbiosis/overgrowth)	 Bacillus species Enterococcus faecalis Enterococcus faecium Morganella species Pseudomonas species Pseudomonas aeruginosa Staphylococcus species Staphylococcus aureus Streptococcus species

Opportunistic Bacteria Potential Autoimmune Triggers	 Citrobacter species Citerbacter freudii Klebseilla pneumoniae M. avium subsp. paratuberculosis Prevotella copri Proteus species Proteus mirabilis
Fungi/Yeast	 Candida species Candida albicans Geotrichum species Microsporidium species Rodotoula speccies
Viruses	CytomegalovirusEpstein Barr Virus
Parasites	ProtozoaWorms

Gut Immunology/Inflammation Markers	 Calprotectin Secretory IgA Anti-gliadin IgA
Digestion and GI Markers	 Occult Blood –Fecal Immunochemical Test Beta-Glucuronidase Elastase-1 Steatocrit

Clinical Microbiology: Bacteriology and Mycology

Beneficial Bacteria: Health promoting bacteria - Controls potentially pathogenic organism and opportunistic organisms, synthesize vitamins, aids in digestion of protein and carbohydrates, removal of toxins, stimulates the intestinal immune system and produces of short chain fatty acids (e.g. butyrate – fuel for the colonocytes and reduces DNA damage).

Dysbiotic Bacteria: Known pathogenic bacteria and/or overgrowth of certain commensal bacteria.

Commensal/Imbalanced Bacteria: Bacteria that are part of the normal flora (co-evolved). Imbalances (e.g. overgrowth) can occur when there are insufficient levels of beneficial bacteria, resulting in dysbiosis and opportunistic infection.

Yeast (Mycology): Yeast is normally found in small numbers as a part of the colonic flora. Over growth of yeast can infect virtually every organ system, leading to an extensive array of clinical manifestations.

Parasitology

- Traditionally, a one-sample stool is collected for examination of parasites.
- Most integrative and functional medicine labs use three stool samples generally collected on consecutive days.
- Laboratory techniques used for identifying parasites and ova can vary among labs.
- It is generally recognized that stained fecal films are a productive means of stool examination for intestinal protozoa.
- PCR testing and Antigen Detection Testing

General Considerations for Abnormal GI Microbiology

- **Medical History**: antibiotic use; NSAIDs; antacids, acid-blocking medication
- Associated Conditions: hypochlorhydria; pancreatic insufficiency; Standard American Diet; exposures to pathogens (esp. water and food), inflammatory bowel disease, oxidative stress, emotional stress, depressed immune system (e.g. low secretory IgA)

Conditions	Potential Etiology
Low beneficial bacteria	Antibiotic usePoor diet
Abnormally high count of some beneficial bacteria	 Poor diet Maldigestion Malabsorption Food intolerance
Presence of Potential Bacterial Pathogens (opportunistic) (Especially with high counts/growth)	 Low beneficial bacteria Poor diet Antibiotic use Low gut immunity
Pathogenic bacteria	Well-recognized pathogens of concern

Conditions	Potential Etiology
Yeast /Fungi (Candida are normal inhabitants the GI tract when present in small numbers. They may become potential pathogens when the intestinal barrier is compromised and/or with overgrowth.)	 Antibiotic use Hypochlorhydria Food allergies Altered intestinal flora Poor diet with high intake of carbohydrates and dairy Depressed immune system

Conditions	Potential Etiology	
	 Suspicion of parasitic infection Skin irritation and itching Anal or rectal itching 	
Parasitic infection	 Low lactobacillus on stool analysis Blood in stool Unexplained anemia Abdominal discomfort especially right lower quadrant Low blood amino acid assay and low protein Unexplained nutritional deficiencies (e.g. iron, zinc, selenium) Continued GI symptoms after treatment for yeast and/or bacterial infection. 	

Digestion and Absorption Markers

Marker	Explanation
Pancreatic elastase	 Digestive enzyme produced by the pancreas. Low levels suggest: Pancreatic insufficiency Gallstones or post-cholecystectomy Chronic pancreatitis Diabetes Hypochlorhydria Cystic fibrosis Chronic inflammatory bowel disease
	If low, consider digestive enzyme support and treat the underlying cause

 \mathbf{O}

Marker	Explanation
Fecal fats -	Increased levels are associated with fat
Steatocrit:	malabsorption
Triglycerides, long	Pancreatic insufficiency
chain fatty acids,	Cholestasis
cholesterol,	Celiac disease
phospholipids	Short bowel syndrome
	Post-cholecystectomy

Gastrointestinal Immunology and Inflammatory Markers

Marker	Explanation
Lactoferrin	 Lactoferrin is an iron-binding glycoprotein that serves as a marker for leukocytes activityIn the GI tract, it serves as a non-specific marker of inflammation. Elevated levels as associated with: Enteric infection IBD Colorectal cancer
Calprotectin	Calprotectin is a calcium-binding neutrophil derived protein. Elevated levels of calprotectin are associated with IBD.

Marker	Explanation
Marker Secretory IgA	 SIgA is the first line of defense of the GI mucosa. Elevated sIgA potential causes: Normal immune response to pathogenic organism Chronic elevations have been found in intractable (stubborn) GI infections, atopic dermatitis and colorectal cancer. Depressed sIgA potential causes: Immunocompromised Dysbiosis Partial or primary selective IgA deficiency
	Chronic stress

Marker	Explanation		
Occult Blood (Fecal Immunochemical Test)	 Hidden blood in the stool. Colorectal cancer Inflammatory bowel disease Peptic ulcer Polyps Diverticulosis Other cancers of the GI tract or accessory organs (Consider FIT test – Insure Test - and colonoscopy) 		
Beta-Glucuronidase	Beta-glucuronidase is an inducible enzyme elaborated by anaerobic intestinal bacteria. Increased activity of this enzyme has been implicated in increased enterohepatic recirculation of toxins, steroids hormones, drugs and carcinogens.		

GI-MAP DIAGNOSTIC (MULTIPLEX PCR)

SESSION 2

GI-MAP[™] INTERPRETIVE GUIDE

HOW TO READ THE REPORT

GI-MAP quantifies bacteria, fungi, viruses, and parasites using qPCR. This is a leap forward from older methodologies that report only positive or negative. Results are reported as colony forming units per gram of stool (CFU/g). One CFU is roughly equivalent to one microorganism (or one cell). Results are expressed in standard scientific notation. A reported result of 3.5e7 is equivalent to 3.5 x 10⁷ CFU/g, which equals 35,000,000 CFU/g, or 35 million CFU per gram of stool.

GI-MAP INTERPRETIVE GUIDE

Pathogens			
Bacterial Pathogens	Result		Normal
Campylobacter	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
C. difficile, Toxin A	1.21e5	High	<1.00e3

Figure 1. The normal reference range for C. difficile, Toxin A is 0–1,000 CFU/g. The patient's result is very high at 1.21 x 10⁵, or 121,000 CFU/g.

Reference ranges were developed using known positive, diseased samples to construct cut off values that distinguish disease-causing amounts of pathogenic and opportunistic microbes. Reference ranges for the pathogens were correlated with an FDA cleared assay for GI pathogens. The GI-MAP is capable of detecting as low as 0.1 cell per gram of stool.

Table 1. Scientific notation; a basic reference table.

1.0e1	1 X 101	10	Ten
1.0e2	1 X 10 ²	100	One hundred
1.0e3	1 X 10 ³	1,000	One thousand
1.0e4	1 X 104	10,000	Ten thousand
1.0e5	1 X 105	100,000	
1.0e6	1 X 10 ⁶	1,000,000	

Pathogens		
Bacterial Pathogens	Result	Normal
Campylobacter	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
C. difficile, Toxin A	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
C. difficile, Toxin B	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
Enterohemorrhagic E. coli	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
E. coli O157	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
Enteroinvasive E. coli/Shigella	<dl< td=""><td><1.00e2</td></dl<>	<1.00e2
Enterotoxigenic E. coli LT/ST	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
Shiga-like Toxin E. coli stx1	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
Shiga-like Toxin E. coli stx2	<dl< td=""><td><1.00e3</td></dl<>	<1.00e3
Salmonella	<dl< td=""><td><1.00e4</td></dl<>	<1.00e4
Vibrio cholerae	<dl< td=""><td><1.00e5</td></dl<>	<1.00e5
Yersinia enterocolitica	<dl< td=""><td><1.00e5</td></dl<>	<1.00e5

Parasitic Pathogens	Result	Normal
Cryptosporidium	<dl< th=""><th><1.00e6</th></dl<>	<1.00e6
Entamoeba histolytica	<dl< th=""><th><1.00e4</th></dl<>	<1.00e4
Giardia	<dl< th=""><th><5.00e3</th></dl<>	<5.00e3
Viral Pathogens	Result	Normal
Adenovirus 40/41	<dl< td=""><td><1.00e10</td></dl<>	<1.00e10
Norovirus GI/II	<dl< td=""><td><1.00e7</td></dl<>	<1.00e7

Result	Normal
<dl< td=""><td><1.0e3</td></dl<>	<1.0e3
N/A	Negative
	<di N/A N/A N/A N/A N/A N/A</di

Normal Bacterial Flora			
	Result		Normal
Bacteroides fragilis	5.1e6	Low	1.60e9 - 2.50e11
Bifidobacterium spp.	1.4e8		>6.70e7
Enterococcus spp.	6.4e6		1.9e5 - 2.00e8
Escherichia spp.	8.4e5	Low	3.70e6 - 3.80e9
Lactobacillus spp.	1.5e6		8.6e5 - 6.20e8
Clostridium spp.	<dl< td=""><td></td><td>1.20e3 - 1.00e6</td></dl<>		1.20e3 - 1.00e6
Enterobacter spp.	3.60e5	Low	1.00e6 - 5.00e7
Phyla Microbiota	Result		Normal
Bacteroidetes	1.48e9	Low	8.61e11 - 3.31e12
Firmicutes	1.35e11		5.70e10 - 3.04e11
Firmicutes:Bacteroidetes Ratio	90.87	High	<1.00

Opportunistic Bacteria			
Additional Dysbiotic/Overgrowth Bacteria	Result		Normal
Bacillus spp.	5.89e4		<1.50e5
Enterococcus faecalis	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Enterococcus faecium	2.70e2		<1.00e4
Morganella spp.	1.80e3	High	<1.00e3
Pseudomonas spp.	<dl< td=""><td></td><td><1.00e4</td></dl<>		<1.00e4
Pseudomonas aeruginosa	1.86e3	High	<5.00e2
Staphylococcus spp.	2.09e3		<1.00e4
Staphylococcus aureus	2.80e2		<5.00e2
Streptococcus spp.	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Potential Autoimmune Triggers	Result		Normal
Citrobacter spp.	<dl< td=""><td></td><td><5.00e6</td></dl<>		<5.00e6
Citrobacter freundii	<dl< td=""><td></td><td><5.00e5</td></dl<>		<5.00e5
Klebsiella spp.	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Klebsiella pneumoniae	<dl< td=""><td></td><td><5.00e4</td></dl<>		<5.00e4
M. avium subsp. paratuberculosis	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Prevotella copri	<dl< td=""><td></td><td><1.00e7</td></dl<>		<1.00e7
Proteus spp.	<dl< td=""><td></td><td><5.00e4</td></dl<>		<5.00e4
Proteus mirabilis	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3

Fungi/Yeast			
	Result		Normal
Candida spp.	3.72e5	High	<5.00e3
Candida albicans	<dl< td=""><td></td><td><5.00e2</td></dl<>		<5.00e2
Geotrichum spp.	<dl< td=""><td></td><td><3.00e2</td></dl<>		<3.00e2
Microsporidium spp.	<dl< td=""><td></td><td><5.00e3</td></dl<>		<5.00e3
Rodotorula spp.	<dl< td=""><td></td><td><1.00e3</td></dl<>		<1.00e3
Viruses			
	Result		Normal
Cytomegalovirus	<dl< td=""><td></td><td><1.00e5</td></dl<>		<1.00e5
Epstein Barr Virus	<dl< td=""><td></td><td><1.00e7</td></dl<>		<1.00e7

Parasites		
Protozoa	Result	Normal
Blastocystis hominis	<dl< td=""><td><2.00e3</td></dl<>	<2.00e3
Chilomastix mesnili	<dl< td=""><td><1.00e5</td></dl<>	<1.00e5
Cyclospora spp.	<dl< td=""><td><5.00e4</td></dl<>	<5.00e4
Dientamoeba fragilis	<dl< td=""><td><1.00e5</td></dl<>	<1.00e5
Endolimax nana	<di< td=""><td><1.00e4</td></di<>	<1.00e4
Entamoeba coli	<dl< td=""><td><5.00e6</td></dl<>	<5.00e6
Pentatrichomonas hominis	<dl< td=""><td><1.00e2</td></dl<>	<1.00e2
Worms	Result	Normal
Ancylostoma duodenale	Not Detected	<not detected<="" td=""></not>
Ascaris lumbricoides	Not Detected	<not detected<="" td=""></not>
Necator americanus	Not Detected	<not detected<="" td=""></not>
Trichuris trichiura	Not Detected	<not detected<="" td=""></not>
Taenia spp.	Not Detected	<not detected<="" td=""></not>

Intestinal Health						
Digestion		Result				Normal
Elastase-1		262				>200 ug/g
Steatocrit		<dl< td=""><td></td><td></td><td></td><td><15 %</td></dl<>				<15 %
GI Markers		Result				Normal
b-Glucuronidase		136				<2486 U/mL
Occult Blood - FIT		0				<10 ug/g
Immune Response	,	Result				Normal
Secretory IgA		467		Low		510 - 2010 ug/g
Anti-gliadin IgA		19				0 - 157 U/L
Inflammation		Result				Normal
Calprotectin		12				<173 ug/g
Antibiotic Resistar	nce Genes, pl	henotypes				
Helicobacter		Result				Expected Result
Clarithromycin		Negative				Absent
A2142C	N/A	A2142G	N/A		A2143G	N/A
Fluoroquinolones		Negative				Absent
gyrA N87K	N/A	gyrA D91N	N/A		gyrA D91G	N/A
gyrB S479N	N/A	gyrB R484K	N/A			

NutrEval Test = Nutritional testing tool for <u>complex</u> <u>chronic illness</u> as well for those seeking to <u>improve health</u>

Targeted personalized nutrition (biochemical individuality) that provides the framework of core nutrients in 5 key areas:

- 1. Antioxidants
- 2. B-vitamins
- 3. Minerals
- 4. Essential Fatty Acids
- 5. Digestive support (pancreatic/need for probiotics)

Most Comprehensive

✓ NutrEval Plasma
 ✓ NutrEval FMV (first morning void)

 both require urine and blood

Genomic testing can be added to both tests to assess for SNPs

Shorter version with no EFA testing

✓ ONE-FMV – urine only (Optimal Nutritional Evaluation)

Why use the NutrEval Profile?

NutrEval Profile is an <u>advanced nutritional analysis</u> designed to reveal nutritional imbalances or inadequacies.

Evaluates the functional need for antioxidants, B-vitamins, minerals, essential fatty acids, amino acids, digestive support, and other select nutrients.

Provides insight into nutrient status and allows you to provide targeted treatment (**i.e. personalized nutrition**) for the particular needs of each patient, often augmenting and speeding recovery of <u>complex chronic</u> <u>conditions</u>.

- Mood disorders (e.g. depression, anxiety)
- Fatigue
- Digestive Complaints
- Chronic Pain/Inflammatory Conditions (e.g. migraine, musculoskeletal)
- Cardiovascular Risk
- Weight Issues
- Dietary Guidance
- General Health
- Sports Fitness Optimization

NutrEval FMV Profile

- Metabolic Analysis (urine organic acids)
- Urine Amino Acid Analysis (essential and non-essential amino acids, plus intermediary metabolites)
- Essential and Metabolic Fatty Acids (red blood cell essential and nonessential fatty acids, including Omega-3 and Omega-6 fatty acids)
- Oxidative Stress Analysis (blood and urine biomarkers indicative of oxidative stress)
- Elemental Markers (both nutrient and toxic elements)

NutrEval Plasma Profile

 Urine Amino Acid Analysis is replaced with Plasma Amino Acid Analysis (essential and non-essential amino acids, plus intermediary metabolites)

What's the difference between the two tests?

NutrEval Plasma Profile

A fasting plasma amino acid highlights the dynamic balance of the amino acid pool, independent of recent dietary intake. Plasma amino acid analysis is favored when the primary clinical consideration are conditions in which the supply of essential amino acid precursors is critical, such as in mood and neurobehavioral disorders.

NutrEval FMV Profile

Urine amino acid testing is valuable for assessing vitamin/mineral cofactors that affect amino acid metabolism and provide insight into **protein digestion**.

Select genomics biomarkers may be added to the profile for enhanced personalization of therapies such as MTHFR, COMT, TNF-alpha and APOE.

Biomarkers on the NutrEval Profile

- Metabolic Analysis Markers (urine organic acids)
 - Malabsorption and Dysbiosis Markers
 - Malabsorption Markers
 - Bacterial Dysbiosis Markers
 - Yeast/Fungal Dysbiosis Markers
 - Cellular Energy & Mitochondrial Metabolites
 - Carbohydrate Metabolism
 - Energy Metabolism
 - Fatty Acid Metabolism
 - Neurotransmitter Metabolites
 - Vitamin Markers
 - Toxin & Detoxification Markers
 - Tyrosine Metabolism

Biomarkers on the NutrEval Profile (continued)

- Urine Amino Acid Analysis (FMV)
 - Nutritionally Essential Amino Acids
 - Nonessential Protein Amino Acids
 - Intermediary Metabolites
 - Dietary Peptide Related Markers
- Plasma Amino Acid Analysis (Plasma)
 - Nutritionally Essential Amino Acids
 - Nonessential Protein Amino Acids
 - Intermediary Metabolites
 - Dietary Peptide Related Markers

• Essential and Metabolic Fatty Acids

- Omega 3 Fatty Acids
- Omega 6 Fatty Acids
- Omega 9 Fatty Acids
- Saturated Fatty Acids
- Monounsaturated Fats
 - Omega 7 Fats
 - Trans Fat
- Delta-6 Desaturase Activity
- Cardiovascular Risk featuring key ratios: Omega 6/Omega 3, AA/EPA, and the Omega 3 Index

J Clin Lipidol. 2014 Nov-Dec;8(6):612-7. doi: 10.1016/j.jacl.2014.08.001. Epub 2014 Aug 19.

Purified palmitoleic acid for the reduction of high-sensitivity C-reactive protein and serum lipids: a double-blinded, randomized, placebo controlled study.

Bernstein AM¹, Roizen MF², Martinez L³.

Author information

Abstract

BACKGROUND: Purified palmitoleic acid (16-1; omega-7) has shown lipid-lowering and anti-inflammatory benefits in open label, epidemiologic, and animal studies.

OBJECTIVE: Our objective was to perform the first randomized controlled trial of purified palmitoleic acid supplementation in humans.

METHODS: Adults with dyslipidemia and evidence of mild systemic inflammation (high-sensitivity C-reactive protein [hs-CRP] between 2 and 5 mg/L) were randomly allocated to receive either 220.5 mg of cis-palmitoleic acid (n = 30) or an identical capsule with placebo (1000 mg of medium chain triglycerides, n = 30) once per day for 30 days. Participants were asked to maintain their current diet. Serum lipids and hs-CRP were drawn at baseline and study completion.

RESULTS: At 30 days, there were significant mean (95% confidence interval [CI]) reductions in CRP (-1.9 [-2.3 to -1.4] mg/L), triglyceride (-30.2 [-40.2 to -25.3] mg/dL), and low-density lipoprotein (LDL) (-8.9 [-12.0 to -5.8] mg/dL), and a significant increase in high-density lipoprotein (HDL) (2.4 [1.5, 3.3] mg/dL) in the intervention group compared with control. These changes equated to 44%, 15%, and 8% reductions in CRP, triglyceride, and LDL respectively, and a 5% increase in HDL compared with control.

CONCLUSIONS: Purified palmitoleic acid may be useful in the treatment of hypertriglyceridemia with the beneficial added effects of decreasing LDL and hs-CRP and raising HDL. Further study is needed to elucidate mechanisms and establish appropriate human doses.

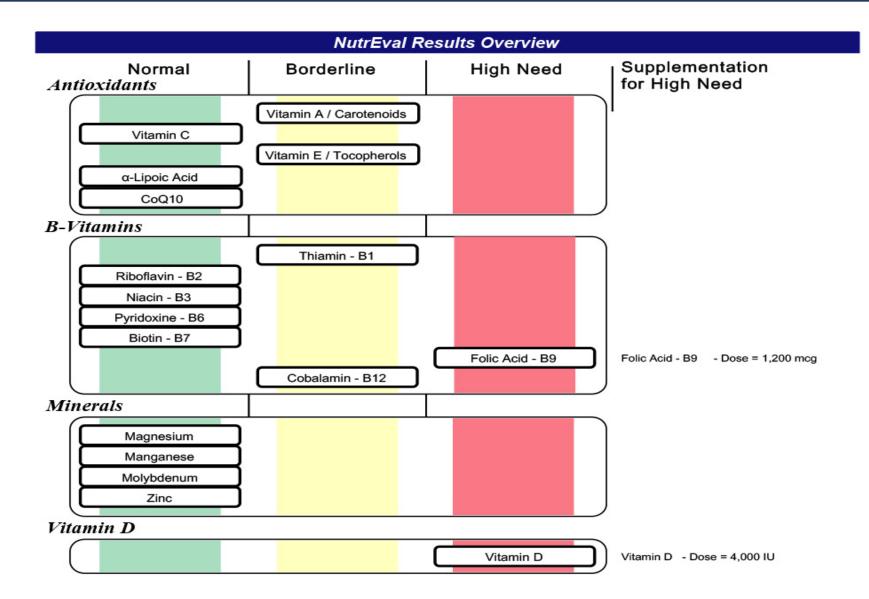
Sources: Macadamia oil and sea buckthorn oil

Biomarkers on the NutrEval Profile (continuted)

Oxidative Stress Markers

- Glutathione (whole blood)
- Lipid Peroxides (urine)
- 8-OHdG (urine <u>8-hydroxy-2-deoxyguanosine</u>)
- Coenzyme Q10 (plasma)

Elemental Markers


- Nutrient Elements
 - Copper
 - Magnesium
 - Manganese
 - Potassium
 - Selenium
 - Zinc

- Toxic Elements
 - Lead
 - Mercury
 - Antimony
 - Arsenic
 - Cadmium
 - Tin

Advantages of the NutrEval Tests

- Identification of imbalances that may precede abnormal findings on standard laboratory panels
- Comprehensive nutritional assessment indicating the functional need for specific nutrients, diet modification, antioxidant protection, detoxification and other therapies
- Personalized nutrient recommendations based on biochemical individuality

SUGGESTED SUPPLEMENT SCHEDULE

Supplements	Daily Recommended Intake (DRI)	Patient's Daily Recommendations	Provider Daily Recommendations
Antioxidants			
Vitamin A / Carotenoids	2,333 IU	5,000 IU	
Vitamin C	75 mg	250 mg	
Vitamin E / Tocopherols	22 IU	200 IU	
α-Lipoic Acid		50 mg	
CoQ10		30 mg	
B-Vitamins			
Thiamin - B1	1.1 mg	25 mg	
Riboflavin - B2	1.1 mg	10 mg	Green = normal
Niacin - B3	14 mg	20 mg	Yellow = borderline
Pyridoxine - B6	1.5 mg	10 mg	
Biotin - B7	30 mcg	100 mcg	Red = high need
Folic Acid - B9	400 mcg	1,200 mcg	
Cobalamin - B12	2.4 mcg	500 mcg	
Minerals			
Magnesium	320 mg	400 mg	
Manganese	1.8 mg	3.0 mg	
Molybdenum	45 mcg	75 mcg	
Zinc	8 mg	10 mg	

Essential Fatty Acids			
Omega-3 Oils	500 mg	1,000 mg	
Digestive Support			
Probiotics		50 billion CFU	
Pancreatic Enzymes		10,000 IU	
Other Vitamins			
Vitamin D	800 IU	4,000 IU	
Amino Acid	mg/day	Amino Acid	mg/day
Arginine		Methionine	
Asparagine		Phenylalanine	
Cysteine		Serine	
Glutamine	334	Taurine	
Glycine	327	Threonine	
Histidine		Tryptophan	
Isoleucine		Tyrosine	
Isoleucine Leucine		Tyrosine Valine	

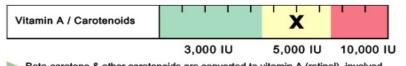
Recommendations for age and gender-specific supplementation are set by comparing levels of nutrient functional need to optimal levels as described in the peer-reviewed literature. They are provided as guidance for short-term support of nutritional deficiencies only. The Suggested Supplemental Schedule is provided at the request of the ordering practitioner. Any application of it as a therapeutic intervention is to be determined by the ordering practitioner.

Key			
	Normal	Borderline	High Need

© Genova Diagnostics · A. L. Peace-Brewer, PhD, D(ABMLI), Lab Director · CLIA Lic. #34D0655571 · Medicare Lic. #34-8475

AUNT1.3

Nutritional Needs


Key

Causes of Deficiency Complications of Deficiency

Function

Food Sources

Antioxidants

- Beta-carotene & other carotenoids are converted to vitamin A (retinol), involved in vision, antioxidant & immune function, gene expression & cell growth.
- Vitamin A deficiency may occur with chronic alcoholism, zinc deficiency, hypothyroidism, or oral contraceptives containing estrogen & progestin.
- Deficiency may result in night blindness, impaired immunity, healing & tissue regeneration, increased risk of infection, leukoplakia or keratosis.
- Food sources include cod liver oil, fortified cereals & milk, eggs, sweet potato, pumpkin, carrot, cantaloupe, mango, spinach, broccoli, kale & butternut squash.

100 IU 200 IU 400 IU

- Alpha-tocopherol (body's main form of vitamin E) functions as an antioxidant, regulates cell signaling, influences immune function and inhibits coagulation.
- Deficiency may occur with malabsorption, cholestyramine, colestipol, isoniazid, orlistat, olestra and certain anti-convulsants (e.g., phenobarbital, phenytoin).
- Deficiency may result in peripheral neuropathy, ataxia, muscle weakness, retinopathy, and increased risk of CVD, prostate cancer and cataracts.
- Food sources include oils (olive, soy, corn, canola, safflower, sunflower), eggs, nuts, seeds, spinach, carrots, avocado, dark leafy greens and wheat germ.

Vitamin C	×			1 1
		250 mg	500 mg	1,000 mg

 Vitamin C is an antioxidant (also used in the regeneration of other antioxidants).
 It is involved in cholesterol metabolism, the production & function of WBCs and antibodies, and the synthesis of collagen, norepinephrine and carnitine.

- Deficiency may occur with oral contraceptives, aspirin, diuretics or NSAIDs.
- Deficiency can result in scurvy, swollen gingiva, periodontal destruction, loose teeth, sore mouth, soft tissue ulcerations, or increased risk of infection.
- Food sources include oranges, grapefruit, strawberries, tomato, sweet red pepper, broccoli and potato.

α-Lipoic Acid	1	1	×	1	1	1		1	

50 mg

- α-Lipoic acid plays an important role in energy production, antioxidant activity (including the regeneration of vitamin C and glutathione), insulin signaling, cell signaling and the catabolism of α-keto acids and amino acids.
- High biotin intake can compete with lipoic acid for cell membrane entry.
- Optimal levels of α-lipoic acid may improve glucose utilization and protect against diabetic neuropathy, vascular disease and age-related cognitive decline.
- Main food sources include organ meats, spinach and broccoli. Lesser sources include tomato, peas, Brussels sprouts and brewer's yeast.

Function

Cause of Deficiency Complications of Deficiency Food sources

100 mg

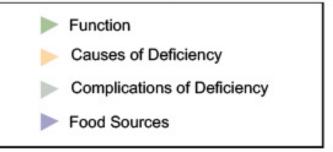
200 mg

Info@ evexiadiagnostics.c

60 mg 90 mg

х

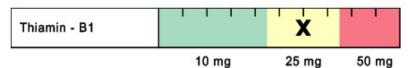
- CoQ10 is a powerful antioxidant that is synthesized in the body and contained in cell membranes. CoQ10 is also essential for energy production & pH regulation.
- CoQ10 deficiency may occur with HMG-CoA reductase inhibitors (statins), several anti-diabetic medication classes (biguanides, sulfonylureas) or beta-blockers.
- Low levels may aggravate oxidative stress, diabetes, cancer, congestive heart failure, cardiac arrhythmias, gingivitis and neurologic diseases.
- Main food sources include meat, poultry, fish, soybean, canola oil, nuts and whole grains. Moderate sources include fruits, vegetables, eggs and dairy.


Plant-based Antioxidants

- Oxidative stress is the imbalance between the production of free radicals and the body's ability to readily detoxify these reactive species and/or repair the resulting damage with anti-oxidants.
- Oxidative stress can be endogenous (energy production and inflammation) or exogenous (exercise, exposure to environmental toxins).
- Oxidative stress has been implicated clinically in the development of neurodegenerative diseases, cardiovascular diseases and chronic fatigue syndrome.
- Antioxidants may be found in whole food sources (e.g., brightly colored fruits & vegetables, green tea, turmeric) as well as nutraceuticals (e.g., resveratrol, EGCG, lutein, lycopene, ginkgo, milk thistle, etc.).

Glutathione	

- х
- Glutathione (GSH) is composed of cysteine, glutamine & glycine. GSH is a source of sulfate and plays a key role in antioxidant activity and detoxification of toxins.
- GSH requirement is increased with high-fat diets, cigarette smoke, cystinuria, chronic alcoholism, chronic acetaminophen use, infection, inflammation and toxic exposure.
- Deficiency may result in oxidative stress & damage, impaired detoxification, altered immunity, macular degeneration and increased risk of chronic illness.
- Food sources of GSH precursors include meats, poultry, fish, soy, corn, nuts, seeds, wheat germ, milk and cheese.


Key

Nutritional Needs

B-Vitamins

- B1 is a required cofactor for enzymes involved in energy production from food. and for the synthesis of ATP, GTP, DNA, RNA and NADPH.
- Low B1 can result from chronic alcoholism, diuretics, digoxin, oral contraceptives and HRT, or large amounts of tea & coffee (contain anti-B1 factors).
- B1 deficiency may lead to dry beriberi (e.g., neuropathy, muscle weakness), wet beriberi (e.g., cardiac problems, edema), encephalopathy or dementia.
- Food sources include lentils, whole grains, wheat germ, Brazil nuts, peas, organ meats, brewer's yeast, blackstrap molasses, spinach, milk & eggs.

Riboflavin - B2	X		
	10 mg	25 mg	50 mg

- B2 is a key component of enzymes involved in antioxidant function, energy production, detoxification, methionine metabolism and vitamin activation.
- Low B2 may result from chronic alcoholism, some anti-psychotic medications, oral contraceptives, tricyclic antidepressants, quinacrine or adriamycin.
- B2 deficiency may result in oxidative stress, mitochondrial dysfunction, low uric acid, low B3 or B6, high homocysteine, anemia or oral & throat inflammation.
- Food sources include milk, cheese, eggs, whole grains, beef, chicken, wheat germ, fish, broccoli, asparagus, spinach, mushrooms and almonds.

Pyridoxine - B6	X		
	10 mg	25 mg	50 mg
 B6 (as P5P) is a cofactor for genesis, and synthesis of ne 			-
 Low B6 may result from chro contraceptives and HRT), and 			• •
 B6 deficiency may result in seizures), oral inflammation 			
 Food sources include poultr soybean, lentils, nuts & see 			heat germ,

100 mcg 400 mcg 200 mcg

- Biotin is a cofactor for enzymes involved in functions such as fatty acid synthesis, mitochondrial FA oxidation, gluconeogenesis and DNA replication & transcription.
- Deficiency may result from certain inborn errors, chronic intake of raw egg whites, long-term TPN, anticonvulsants, high-dose B5, sulfa drugs & other antibiotics.
- Low levels may result in neurologic symptoms (e.g., paresthesias, depression), hair loss, scaly rash on face or genitals or impaired immunity.
- Food sources include yeast, whole grains, wheat germ, eggs, cheese, liver, meats, fish, wheat, nuts & seeds, avocado, raspberries, sweet potato and cauliflower.

Info@ evexiadiagnostics.co www.avaviadiaapaatiaaaam

Niacin - B3	X			
		20 mg	30 mg	50 mg

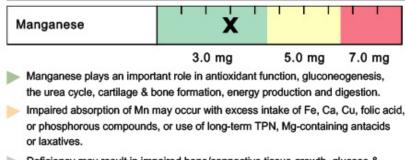
- B3 is used to form NAD and NADP, involved in energy production from food, fatty acid & cholesterol synthesis, cell signaling, DNA repair & cell differentiation.
- Low B3 may result from deficiencies of tryptophan (B3 precursor), B6, B2 or Fe (cofactors in B3 production), or from long-term isoniazid or oral contraceptive use.
- B3 deficiency may result in pellagra (dermatitis, diarrhea, dementia), neurologic symptoms (e.g., depression, memory loss), bright red tongue or fatigue.
- Food sources include poultry, beef, organ meats, fish, whole grains, peanuts, seeds, lentils, brewer's yeast and lima beans.

F	olic Acid - B9			×
		400 mcg	800 mcg	1,200 mcg
	Folic acid plays a key role in methylation, nucleic acids &			
•	Low folate may result from a blockers, some diuretics and trimethoprim, pyrimethaming	d anti-convulsants, SSR	RIs, methotrexa	ite,
►	Folate deficiency can result homocysteine, impaired imm			

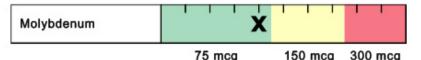
Food sources include fortified grains, green vegetables, beans & legumes.

Cobalamin - B12

X


100 mcg 500 mcg 1,000 mcg

B12 plays important roles in energy production from fats & proteins, methylation, synthesis of hemoglobin & RBCs, and maintenance of nerve cells, DNA & RNA.

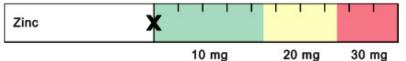

- Low B12 may result from alcoholism, malabsorption, hypochlorhydria (e.g., from atrophic gastritis, H. pylori infection, pernicious anemia, H2 blockers, PPIs), vegan diets, diabetic meds, cholestyramine, chloramphenicol, neomycin or colchicine.
- B12 deficiency can lead to anemia, fatigue, neurologic symptoms (e.g., paresthesias, memory loss, depression, dementia), methylation defects or chromosome breaks.
- Food sources include shellfish, red meat poultry, fish, eggs, milk and cheese.

Nutritional Needs

Minerals

- Deficiency may result in impaired bone/connective tissue growth, glucose & lipid dysregulation, infertility, oxidative stress, inflammation or hyperammonemia.
- Food sources include whole grains, legumes, dried fruits, nuts, dark green leafy vegetables, liver, kidney and tea.

- Molybdenum is a cofactor for enzymes that convert sulfites to sulfate, and nucleotides to uric acid, and that help metabolize aldehydes & other toxins.
- Low Mo levels may result from long-term TPN that does not include Mo.
- Mo deficiency may result in increased sulfite, decreased plasma uric acid (and antioxidant function), deficient sulfate, impaired sulfation (detoxification), neurologic disorders or brain damage (if severe deficiency).
- Food sources include buckwheat, beans, grains, nuts, beans, lentils, meats and vegetables (although Mo content of plants depends on soil content).


400 mg 600 mg 800 mg

 Magnesium is involved in >300 metabolic reactions. Key areas include energy production, bone & ATP formation, muscle & nerve conduction and cell signaling.

Deficiency may occur with malabsorption, alcoholism, hyperparathyroidism, renal disorders (wasting), diabetes, diuretics, digoxin or high doses of zinc.

Low Mg may result in muscle weakness/spasm, constipation, depression, hypertension, arrhythmias, hypocalcemia, hypokalemia or personality changes.

Food sources include dark leafy greens, oatmeal, buckwheat, unpolished grains, chocolate, milk, nuts & seeds, lima beans and molasses.

- Zinc plays a vital role in immunity, protein metabolism, heme synthesis, growth & development, reproduction, digestion and antioxidant function.
- Low levels may occur with malabsorption, alcoholism, chronic diarrhea, diabetes, excess Cu or Fe, diuretics, ACE inhibitors, H2 blockers or digoxin.
- Deficiency can result in hair loss and skin rashes, also impairments in growth & healing, immunity, sexual function, taste & smell and digestion.
- Food sources include oysters, organ meats, soybean, wheat germ, seeds, nuts, red meat, chicken, herring, milk, yeast, leafy and root vegetables.

Info@ evexiadiagnostics.

Essential Fatty Acids

Need for Essential Fatty Acids		1	1	1	1	X					
-----------------------------------	--	---	---	---	---	---	--	--	--	--	--

500 mg 1,000 mg 2,000 mg

- Omega-3 (O3) and Omega-6 (O6) fatty acids are polyunsaturated fatty acids that cannot be synthesized by the human body. They are classified as essential nutrients and must be obtained from dietary sources.
- The standard American diet is much higher in O6 than O3 fatty acids. Deficiency of EFAs may result from poor dietary intake and/or poor conversion from food sources.
- EFA deficiency is associated with decreased growth & development of infants and children, dry skin/rash, poor wound healing, and increased risk of infection, cardiovascular and inflammatory diseases.
- Dietary sources of the O6 Linoleic Acid (LA) include vegetable oils, nuts, seeds and some vegetables. Dietary sources of the O3 a-Linolenic Acid (ALA) include flaxseeds, walnuts, and their oils. Fish (mackerel, salmon, sardines) are the major dietary sources of the O3 fatty acids EPA and DHA.

Digestive Support

X

Need for Probiotics	1	I	I	1	1	I.

10 B CFU 25 B CFU 50 B CFU

- Probiotics have many functions. These include: production of some B vitamins and vitamin K; enhance digestion & absorption; decrease severity of diarrheal illness; modulate of immune function & intestinal permeability.
- Alterations of gastrointestinal microflora may result from C-section delivery, antibiotic use, improved sanitation, decreased consumption of fermented foods and use of certain drugs.
- Some of the diseases associated with microflora imbalances include: IBS, IBD, fibromyalgia, chronic fatigue syndrome, obesity, atopic illness, colic and cancer.
- Food sources rich in probiotics are yogurt, kefir and fermented foods.

Need for Pancreatic Enzymes 0 IU

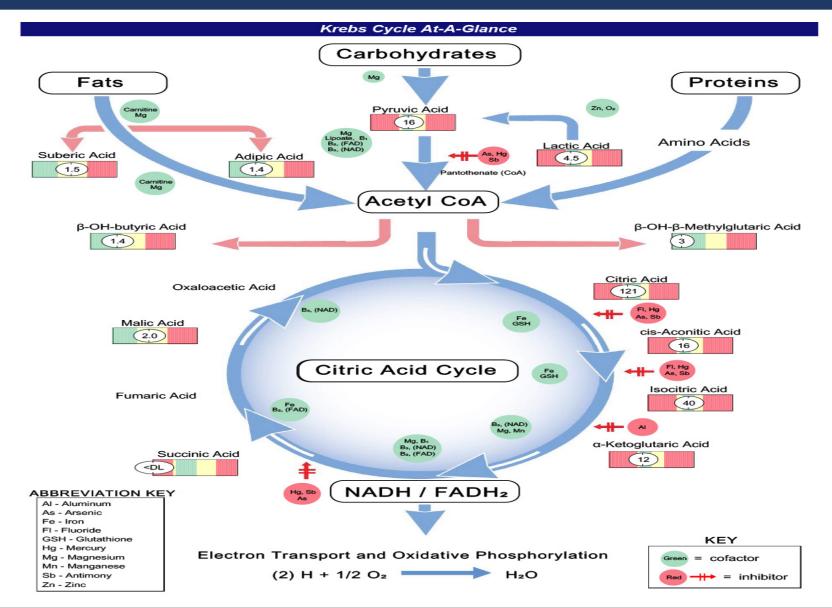
5.000 IU 10.000 IU

- Pancreatic enzymes are secreted by the exocrine glands of the pancreas and include protease/peptidase, lipase and amylase.
- Pancreatic exocrine insufficiency may be primary or secondary in nature. Any indication of insufficiency warrants further evaluation for underlying cause (i.e., celiac disease, small intestine villous atrophy, small bowel bacterial overgrowth).
- A high functional need for digestive enzymes suggests that there is an impairment related to digestive capacity.
- Determining the strength of the pancreatic enzyme support depends on the degree of functional impairment. Supplement potency is based on the lipase units present in both prescriptive and non-prescriptive agents.

Info@ evexiadiagnostics. unum avaria dia anastiana a

Functional Imbalances

- Mitochondria are a primary site of generation of reactive oxygen species. Oxidative damage is considered an important factor in decline of physiologic function that occurs with aging and stress.
- Mitochondrial defects have been identified in cardiovascular disease, fatigue syndromes, neurologic disorders such as Parkinson's and Alzheimer's disease, as well as a variety of genetic conditions. Common nutritional deficiencies can impair mitochondrial efficiency.



- Methyl tert-Butyl Ether (MTBE) is a common gasoline additive used to increase octane ratings, and has been found to contaminate ground water supplies where gasoline is stored. Inhalation of MTBE may cause nose and throat irritation, as well as headaches, nausea, dizziness and mental confusion. Animal studies suggest that drinking MTBE may cause gastrointestinal irritation, liver and kidney damage and nervous system effects.
- Styrene is classified by the US EPA as a "potential human carcinogen," and is found widely distributed in commercial products such as rubber, plastic, insulation, fiberglass, pipes, food containers and carpet backing.
- Levels of these toxic substances should be examined within the context of the body's functional capacity for methylation and need for glutathione.

Need for Methylation			X	C					
----------------------	--	--	---	---	--	--	--	--	--

- Methylation is an enzymatic process that is critical for both synthesis and inactivation. DNA, estrogen and neurotransmitter metabolism are all dependent on appropriate methylation activity.
- B vitamins and other nutrients (methionine, magnesium, selenium) functionally support catechol-O-methyltransferase (COMT), the enzyme responsible for methylation.

All biomarkers reported in mmol/mol creatinine unless otherwise noted. Metabolic Analysis Markers (Urine)

Quinolinic Acid

Kynurenic / Quinolinic Ratio

Malabsorption and Dysbiosis Markers				
ers	Refere	nce Range		
1.5		<= 4.2		
	0.13	<= 0.12		
Markers				
	8.5	<= 5.3		
3.9		<= 8.1		
19		<= 29		
	0.06	<= 0.05		
166		<= 603		
	ers 1.5 Markers 3.9 (19	ers Refere 1.5 0.13 Markers 8.5 3.9 19 0.06		

Yeast / Fungal Dysbiosis Markers

Arabinose	27	<= 96
Citramalic Acid	2.4	<= 5.8
Tartaric Acid		<= 15

Cellular Energy & Mitochondrial Metabolites

Carbohydrate Metab	Reference Rang		
Lactic Acid	4.5		1.9-19.8
Pyruvic Acid	16		7-32
β-OH-Butyric Acid (BHBA)	1.4		<= 2.8

Energy Metabolism

Energy Metabolish	•			-
Citric Acid	0	121		40-520
Cis-Aconitic Acid		16		10-36
Isocitric Acid		40		22-65
α-Ketoglutaric Acid (AKG)		12		4-52
Succinic Acid				0.4-4.6
Malic Acid		2.0	$\overline{\mathcal{O}}$	<= 3.0
β-OH-β-Methylglutaric Acid (HMG)		3		<= 15
Fatty Acid Metabol	ism			
Adipic Acid		1.4		<= 2.8
Suberic Acid		<u>(</u>	5	<= 2.1
Creati	nine (Concer	ntratio	n
			Refe	erence Range

Creatinine + 12.0

Neurotransmitter metabolites					
Reference Range					
Vanilmandelic Acid	1.2		0.4-3.6		
Homovanillic Acid	2.2		1.2-5.3		
5-OH-indoleacetic Acid	9.6		3.8-12.1		
3-Methyl-4-OH-phenylglycol	0.09		0.02-0.22		
Kynurenic Acid	4.5		<= 7.1		

(3.3)

<= 9.1

>= 0.44

1.36

Vitamin Markers

		Refe	erence Range
α-Ketoadipic Acid	0.8		<= 1.7
α-Ketoisovaleric Acid	0.50		<= 0.97
α-Ketoisocaproic Acid	0.46		<= 0.89
α-Keto-β-Methylvaleric Acid	1.5		<= 2.1
Formiminoglutamic Acid (FIGlu)		2	.5 <= 1.5
Glutaric Acid	0.30		<= 0.51
Isovalerylglycine	2.0		<= 3.7
Methylmalonic Acid	0.9		<= 1.9
Xanthurenic Acid	0.37		<= 0.96
3-Hydroxypropionic Acid	10		5-22
3-Hydroxyisovaleric Acid	15		<= 29

Toxin & Detoxification Markers

		Reference Range
α-Ketophenylacetic Acid (from Styrene)	0.24	<= 0.46
α-Hydroxyisobutyric Acid (from MTBE)	3.9	<= 6.7
Orotic Acid	0.82	0.33-1.01
Pyroglutamic Acid	18	16-34

Tyrosine Metabolism

	Ret	erence Range	
Homogentisic Acid	12	<= 19	
2-Hydroxyphenylacetic Acid	0.40	<= 0.76	

Metabolic Analysis Reference Ranges are Age Specific

3.1-19.5 mmol/L

All biomarkers reported in micromol/g creatinine unless otherwise noted.

Nutritionally Essential Amino Acids			
Amino Acid	Refe	erence Range	
Arginine	10	3-43	
Histidine	255	124-894	
Isoleucine	16	3-28	
Leucine	37	4-46	
Lysine	81	11-175	
Methionine	9	2-18	
Phenylalanine	70	8-71	
Taurine	457	21-424	
Threonine	64	17-135	
Tryptophan	50	5-53	
Valine	28	7-49	

Nonessential Protein Amino Acids

Amino Acid		Refer	ence Range
Alanine	169		63-356
Asparagine	56		25-166
Aspartic Acid			<= 14
Cysteine (FMV urine)	25		8-74
Cystine (FMV Urine)	56		10-104
γ-Aminobutyric Acid	1		<= 5
Glutamic Acid	8		4-27
Glutamine	173		110-632
Proline	$\overline{7}$		1-13
Tyrosine		163	11-135

Creatinine Concentration

(11.9)

Reference Range

3.1-19.5 mmol/L

Amino Acid reference ranges are age specific.

The performance characteristics of all assays have been verified by Genova Diagnostics, Inc. Unless otherwise noted with \bullet , the assays have not been cleared by the U.S. Food and Drug Administration.

Methodology: LC/MS/MS, Alkaline Picrate

Creatinine +

Amino Acids (Urine FMV)

Intermediary Metabolites		
3 Vitamin Markers	Refe	erence Range
α-Aminoadipic	43	2-47
α-Amino-N-butyric Acid	11	2-25
β-Aminoisobutyric Acid	84	11-160
Cystathionine	23	2-68
3-Methylhistidine	160	44-281

Urea Cycle Markers

Citrulline	1.4	0.6-3.9
Ornithine	9	2-21
Urea +	264	168-465

Glycine/Serine Metabolites

Glycine	176	95-683
Serine	129	40-163
Ethanolamine	91	50-235
Phosphoethanolamine	5	1-13
Phosphoserine	$\overline{\mathcal{T}}$	3-13
Sarcosine	1.1	<= 1.1

Dietary Peptide Related Markers

	Reference Range	
Anserine (dipeptide)	60.5	0.4-105.1
Carnosine (dipeptide)	29	1-28
1-Methylhistidine	923	38-988
β-Alanine	25	<= 22

Essential and Metabolic Fatty Acids Markers (RBCs)

Omega 3 Fatty Acids		
Analyte	(cold water fish, flax, walnut)	Reference Range
α-Linolenic (ALA) 18:3 n3	0.13	>= 0.09 wt %
Eicosapentaenoic (EPA) 20:5 n3		0.59 >= 0.16 wt %
Docosapentaenoic (DPA) 22:5 n3	1.79	>= 1.14 wt %
Docosahexaenoic (DHA) 22:6 n3	3.2	>= 2.1 wt %
% Omega 3s	5.8	>= 3.8

Omega 6 Fatty Acids		
ains, most meats, dairy)	Reference Range	
14.1	10.5-16.9 wt %	
0.07	0.03-0.13 wt %	
1.70	>= 1.19 wt %	
16	15-21 wt %	
2.60	1.50-4.20 wt %	
0.3	2 <= 0.26 wt %	
34.4	30.5-39.7	
	0.07 1.70 16 2.60 0.3	

Omega 9 Fatty Acids

Analyte	(olive oil)	Reference Rang
Oleic 18:1 n9	11	10-13 wt %
Nervonic 24:1 n9	2.2	2.1-3.5 wt %
% Omega 9s	13.7	13.3-16.6

Saturated Fatty Acids

Analyte "	meat, dairy, coconuts, palm oils)	Reference Range
Palmitic C16:0	21	18-23 wt %
Stearic C18:0	20	14-17 wt %
Arachidic c20:0	0.28	0.22-0.35 wt %
Behenic C22:0	0.78	0.92-1.68 wt %
Tricosanoic c23:0	0.17	0.12-0.18 wt %
Lignoceric C24:0	2.5	2.1-3.8 wt %
Pentadecanoic C15:0	0.08	0.07-0.15 wt %
Margaric C17:0	0.28	0.22-0.37 wt %
% Saturated Fats	44.6	39.8-43.6

Monounsaturated Fats		
Omega 7 Fats		Reference Range
Palmitoleic	0.30	<= 0.64 wt %
Vaccenic 18:1 n7	0.85	<= 1.13 wt %
Trans Fat		
Elaidic 18:1 n9t	0.38	<= 0.59 wt %

Delta - 6 Desaturase Activity			
Upregulate	d Functional	Impaired	
Linoleic / DGLA 18:2 n6 / 20:3 n6	8.3		6.0-12.3

Cardiovascular Risk		
Analyte Reference Rang		
Omega 6s / Omega 3s	6.0	3.4-10.7
AA / EPA 20:4 n6 / 20:5 n3	26	12-125
Omega 3 Index	3.8	>= 4.0

Oxidative Stress Markers

Oxidative Stress Markers

Reference Range

Methodology: Colorimetric, thiobarbituric acid reactive substances (TBARS), Alkaline Picrate, Hexokinase/G-6-PDH, LC/MS/MS, HPLC

Glutathione (whole blood)		1,241	>=669 micromol/L
Lipid Peroxides (urine)	8.0	>	<=10.0 micromol/g Creat.
8-OHdG (urine)	4		<=15 mcg/g Creat.
Coenzyme Q10, Ubiquinone (serum)		1.29	0.43-1.49 mcg/mL

The Oxidative Stress reference ranges are based on an adult population.

The performance characteristics of the Oxidative Stress Markers have been verified by Genova Diagnostics, Inc. They have not been cleared by the U.S. Food and Drug Administration.

	Vitami	n D (Serum)
Methodology: Chemilur	Inside Range minescent	Outside Range	Reference Range
25 - OH Vitamin D +		25	50-100 ng/mL
		= < 20 ng/mL (< y = 20-49 ng/mL	50 nmol/L) (50-124 nmol/L)

Insufficiency = 20-49 ng/mL (50-124 nmol/L) Optimal = 50-100 ng/mL (125-250 nmol/L) Excessive = > 100 ng/mL (> 250 nmol/L)

Elemental Markers

Nutrient Elements				
Element	Reference Range	Reference Range		
Copper (<i>plasma</i>)	118.8	75.3-192.0 mcg/dL		
Magnesium (<i>RBC</i>)	60.9	30.1-56.5 mcg/g		
Manganese (whole blood)	8.3	3.0-16.5 mcg/L		
Potassium (RBC)	3,376	2,220-3,626 mcg/g		
Selenium (whole blood)	269	109-330 mcg/L		
Zinc <i>(plasma)</i>	134.3	64.3-159.4 mcg/dL		

Toxic Elements*			
Element	Reference Range		Reference Range
Lead	1.05		<= 2.81 mcg/dL
Mercury			<= 4.35 mcg/L
Arsenic	0.2		<= 13.7 mcg/L
Cadmium			<= 1.22 mcg/L
Tin			<= 0.39 mcg/L

* All toxic Elements are measured in whole blood. Methodology: ICP-MS

Info@ evexiadiagnostics.c

ORGANIC ACID TEST

Indications & Clinical Interpretation

- Family of compounds that are intermediates in a variety of metabolic pathways.
- Normally found in the urine of health individuals
- Increased levels of specific organic acids or elevations of combinations of specific organic acids are often seen in metabolic disorders in which there is a <u>blockage</u> or blockages in certain metabolic pathways.

- Abnormal urinary organic acids, organic aciduria, is seen genetic disorders of amino acid metabolism, mitochondrial fatty acid beta-oxidation metabolism, and of mitochondrial oxidative phosphorylation metabolism.
- Inborn errors of metabolism such as phenylketonuria and methylmalonic aciduria

Key test in evaluation of individuals with suspected genetic disorders of organic acid metabolism.

Genetic disorders detected by urinary acid analysis present at some time during infancy or childhood

Significant catabolic stresses such as illness with vomiting, diarrhea and/or fever or fasting.

Most laboratories only test for genetic inborn errors of metabolism via urinary organic acid evaluation.

However, there are labs that analysis the urine for organic acid abnormalities from a **pathological/non-genetic perspective**.

Many of the blocked metabolic pathways can be <u>treated nutritionally</u> once they have been identified.

Common Clinical Laboratory and Patient Assessment Indications for Ordering a Urinary Organic Acid Test

Patient Assessment Indications

- Neonates and infants with <u>unexplained life-</u> <u>threatening phenotype</u>
- Infants, children and selected adults with
 <u>unexplained cognitive or developmental regression</u>
- Infants, children and selected adults with <u>unexplained epilepsy</u>
- Any age individual with unexplained encephalopathy
- Infants, children and selected adults with two or more <u>unexplained CNS peoblems</u>
- Infants, children and selected adults with <u>unexplained growth retardation or failure to thrive</u>
- Any age individual with <u>unexplained fasting</u> <u>intolerance</u>
- Any age individual with <u>exercise intolerance</u>

Common Clinical Laboratory and Patient Assessment Indications for Ordering a Urinary Organic Acid Test

- Neonates with unexplained moderate or marked <u>ketouria</u>
- Neonates, infants, children and selected adults with <u>unexplained anion gap acidosis</u>.
- Neonates, infants, children and selected adults with unexplained <u>hyperammonemia</u>
- Neonates, infants, children and selected adults with <u>unexplained hypoglycemia</u>
- Neonates, infants, children and selected adults with <u>unexplained lactic acidemia</u>

Common Clinical Laboratory and Patient Assessment Indications for Ordering a Urinary Organic Acid Test

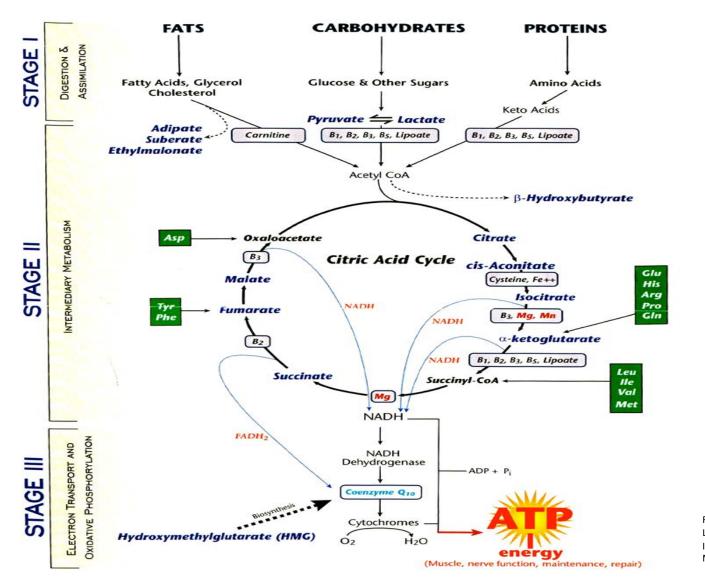
Non-Genetic Pathologic / Functional Conditions

- Fatigue/Weakness (decreased energy production Krebs cycle, fatty acid metabolism, carbohydrate metabolism)
- Fibromyalgia/chronic fatigue
- Chemical Sensitivity: detoxification /dysfunction
 markers
- Neurological Signs and Symptoms: cognitive impairment, headaches, irritability and motor impairment. Assess for nutritional deficiencies esp.
 B-vitamins and neurotransmitter metabolism dysfunction
- Candida/GI dysbiosis: dysbiosis markers
- **Oxidative Stress**: Oxidative damage marker and antioxidant levels

Organic Acid Laboratory Interpretation

The information content of an organic acid profile is high, but the interpretation is **simplified** by keeping in mind that the results **supplies answers to a few clinically relevant questions**

Clinically Relevant Questions (page 1 of 2)


- Are there signs of inborn errors of metabolism?
- Is mitochondrial energy production adversely affected? (Mitochondrial Function Assessment)
- Are functional nutrient deficiencies present? (B-complex Vitamin Markers)
- Does altered neurotransmitter turnover reveal symptom origins? (Neurotransmitter Metabolism Markers)

Clinically Relevant Questions (page 2 0f 2)

- Are antioxidants nutrients protecting against oxidative stress?
 (Oxidative Damage and Antioxidant Markers)
- Is there a high toxin load and is this adversely affecting detoxification capacity? (Detoxification Markers)
- Are symptoms related to excessive growth of bacteria and fungi in the gut? (Intestinal Dysbiosis Markers)

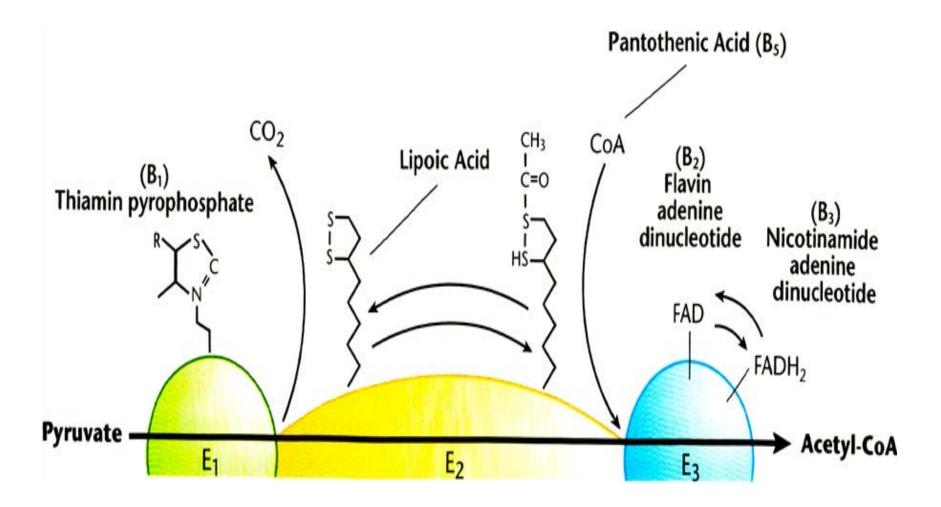
Reprinted with permission: Laboratory Evaluations for Integrative and Functional Medicine, 2nd Ed.

Sample Report

Ranges are for ages 13 and over	Results mcg/mg creatinine	Quintile Ranking 95% Reference 1st 2nd 3rd 4th 5th Range
Nutrient Markers		
Fatty Acid Metabolism (Carnitine & B2)		
1. Adipate	6.3 H	
2. Suberate	0.7	2.1 <= 4.6
3. Ethylmalonate Carbohydrate Metabolism (B1, B3, Cr, Lipoic Acid, CoQ10)	0.9	3.6 <= 6.3
4. Pyruvate	2.4	-
5. L-Lactate	2.6	
6. ß-Hydroxybutyrate Energy Production (Citric Acid (B comp., CoQ10, Amino acids, M		2.1 -
7. Citrate	814 <mark>H</mark>	601 56-987
8. Cis-Aconitate	85 <mark>H</mark>	
9. Isocitrate	214 H	
10. a-Ketoglutarate	16.0	- ↓ ↓ ↓ ↓ ↓ <= 35.0
11. Succinate	17.3 <mark>H</mark>	
12. Fumarate	0.68 H	······································
13. Malate	0.8	1.4 <= 3.1
14. Hydroxymethylglutarate	1.8	3.6 <= 5.1

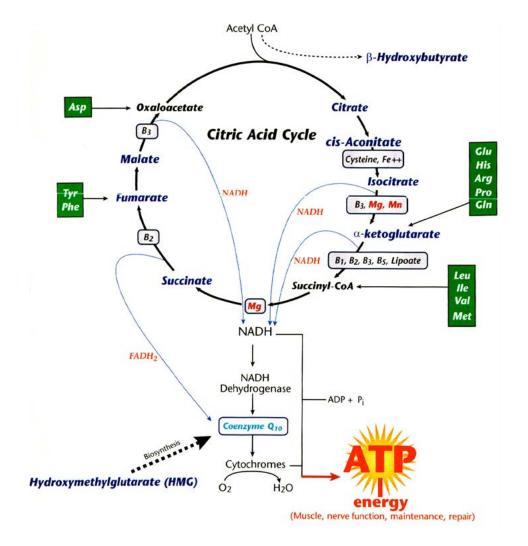
Sample Report

Ranges are for ages 13 and over B-Complex Vitamin Markers (B1, B2, B3, B5, B6, Biotin)	Results mcg/mg creatinine	Quintile Ranking 1st 2nd 3rd 4th	95% Reference Range
15. a-Ketoisovalerate	0.16		<= 0.49
16. a-Ketoisocaproate	0.12	0.34	<= 0.52
17. a-Keto-ß-methylvalerate	0.23		<= 1.10
18. Xanthurenate	0.21	0.34	<= 0.46
19. ß-Hydroxyisovalerate Methylation Cofactor Markers (B12, Folate)	6.0	7.6	<= 11.5
20. Methylmalonate	0.7		<= 2.3
21. Formiminoglutamate	0.1		<= 2.2
Cell Regulation Markers			
Neurotransmitter Metabolism (Tyrosine, Tryptophan, B6, antiox			
22. Vanilmandelate	4.2		1.2-5.3
23. Homovanillate	3.2		1.4-7.6
24. 5-Hydroxyindoleacetate	2.1		1.6-9.8
25. Kynurenate	0.9		<= 1.5
26. Quinolinate	1.8	4.0 + • + · · · · · · · · · · · ·	<= 5.8
27. Picolinate Oxidative Damage and Antiox			2.8-13.5
(Vitamin C and other antioxidants 28. p-Hydroxyphenyllactate	0.31	0.39 	<= 0.66
29. 8-Hydroxy-2-deoxyguanosine	1.7		<= 7.6
(Units for 8-hydroxy-2-deoxyguanosine are	ng/mg creatinine)		

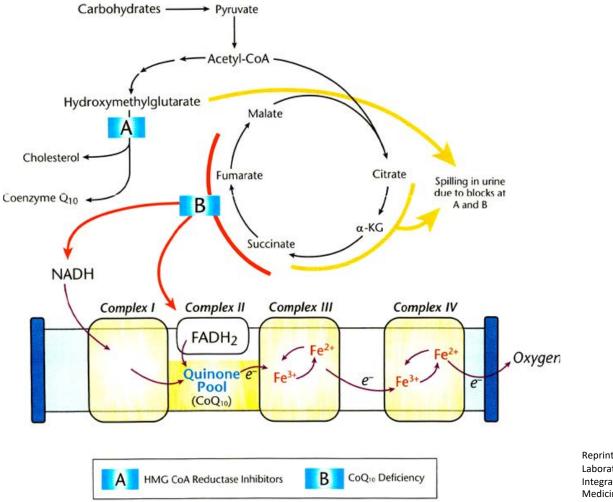


Sample Report

Ranges are for ages 13 and over	Results mcg/mg creatinine	Quintile Ranking 1st 2nd 3rd 4th 5th	95% Reference Range
Toxicants and Detoxification			
Detoxification Indicators (Arg, NAC, Met, Mg, antioxidants)			
30. 2-Methylhippurate	0.083		<= 0.192
31. Orotate	0.27	0.69	<= 1.01
32. Glucarate	10.1 🕨		<= 10.7
33. a-Hydroxybutyrate	0.35 -		<= 0.9
34. Pyroglutamate	115 -	59 1 1 1 1 1 1	28-88
35. Sulfate	958	958 2347	690-2988
Compounds of Bacterial or Y	/east/Fungal Or	igin	
Bacterial - general			
36. Benzoate	<dl*< td=""><td>0.6 </td><td><= 9.3</td></dl*<>	0.6 	<= 9.3
37. Hippurate	164	548 	<= 1070
38. Phenylacetate	<dl*< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td><= 0.18</td></dl*<>	· · · · · · · · · · · · · · · · · · ·	<= 0.18
39. Phenylpropionate	<dl*< td=""><td>-1F</td><td><= 0.06</td></dl*<>	-1F	<= 0.06
40. p-Hydroxybenzoate	<dl*< td=""><td></td><td><= 1.8</td></dl*<>		<= 1.8
41. p-Hydroxyphenylacetate	6	19 1 • 1 1 1 1	<= 34
42. Indican	29		<= 90
43. Tricarballylate L. acidophilus / general bacteria	0.18	0.73	<= 1.41
44. D-Lactate	0.5	1.9	<= 4.3
Clostridial species		1 1 1 41 1	
45. 3,4-Dihydroxyphenylpropionate Yeast / Fungal	<dl*< td=""><td>-{⊢}</td><td><= 0.05</td></dl*<>	-{ ⊢ }	<= 0.05
46. D-Arabinitol	38 🕨	36 ↓ ↓ ↓ ↓ ↓	<= 73
Creatinine = 190 mg/dL * <dl =="" detection="" less="" limit<="" td="" than=""><td></td><td></td><td></td></dl>			

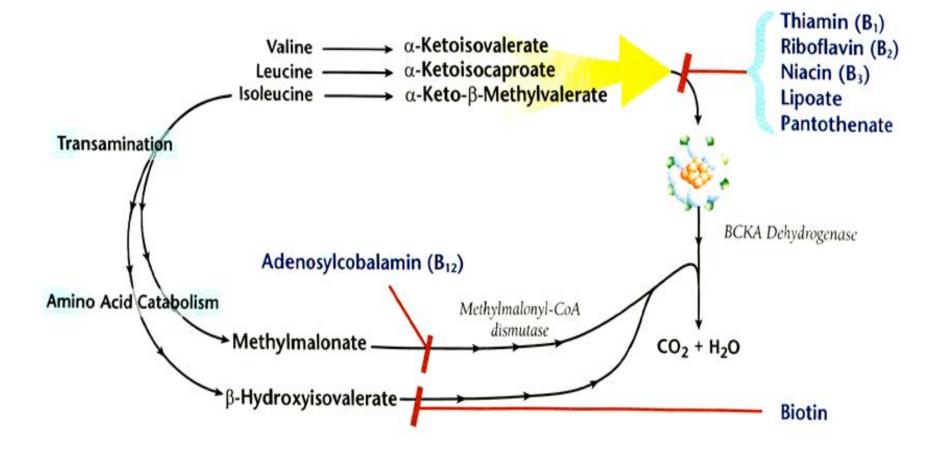


** >LIN = greater than linearity limit


Reprinted with permission: Laboratory Evaluations for Integrative and Functional Medicine, 2nd Ed.

Reprinted with permission: Laboratory Evaluations for Integrative and Functional Medicine, 2nd Ed.

Reprinted with permission: Laboratory Evaluations for Integrative and Functional Medicine, 2nd Ed.


Nutritional Markers

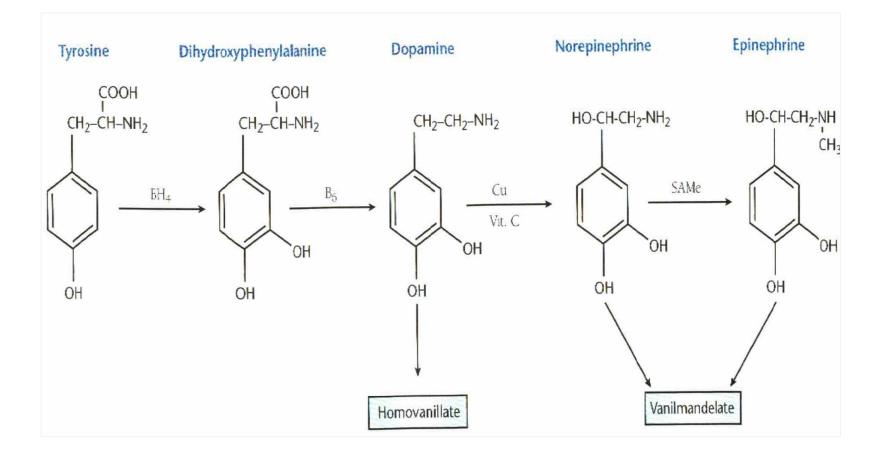
- The degrading of amino acids requires many vitamin cofactors.
- During degradation <u>intermediate</u> <u>acids are formed</u>, which require these cofactors for continued catabolism.

Nutritional Markers

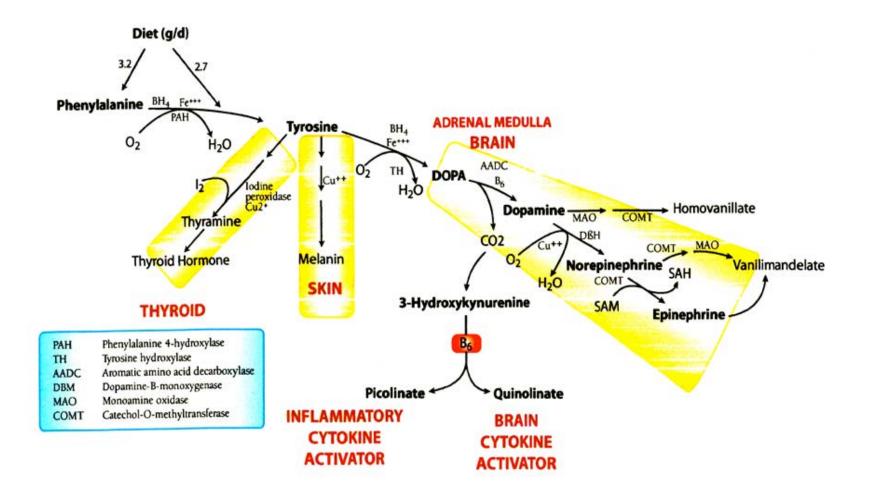
Reprinted with permission: Laboratory Evaluations for Integrative and Functional Medicine, 2nd Ed.

Neurotransmitters Markers

- Neurotransmitter Metabolism Markers (Metabolites)
- Neurotransmitters: include biogenic amines, amino acids, purines, and neuropeptides that are released from the neurons and <u>change the electrical</u> <u>activity of other neurons and myocytes</u>.
- Neurotransmitter disorders represent as enigmatic and enlarging group of neurometabolic conditions.

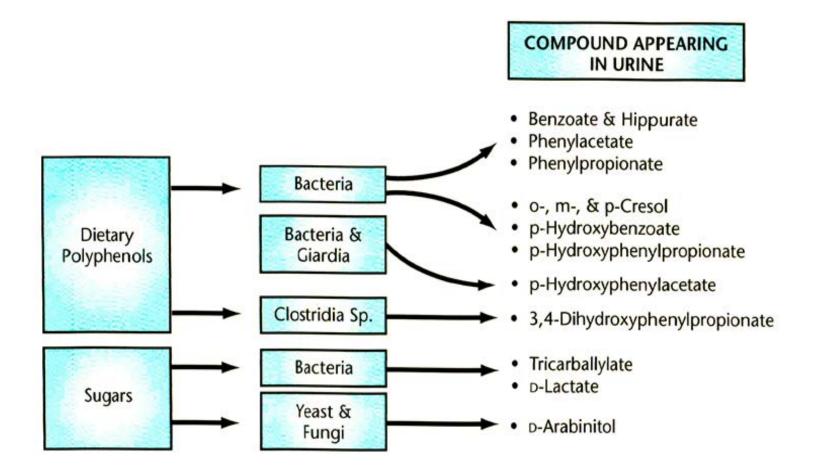

Inherited Neurotransmitter Disorders

- Primary defects of neurotransmitter metabolism and transport.
- Include defects of catecholamine, serotonin, biopterin, glycine, pyridoxine and gamma amino butyric acid (GABA) metabolism.
- Defects of catecholamine (dopamine, epinephrine and norepinephrine) and serotonin metabolism, also called monoamine or biogenic amine metabolism, are the most widely known and investigated group of neurotransmitter disorders.



Neurotransmitter

Neurotransmitter


Reprinted with permission: Laboratory Evaluations for Integrative and Functional Medicine, 2nd Ed.

- Urinary organic acid testing provides significant insight about DNA oxidative damage, detoxification, and gastrointestinal dysbiosis
- 8-hydroxy-2'-deoxyguanosine (8-OHdG) Marker of DNA Damage
- Exogenous toxin accumulation and endogenous detoxification
- Metabolic products of bacterial and yeast infections

Intestinal Dysbiosis Markers

Reprinted with permission: Laboratory Evaluations for Integrative and Functional Medicine, 2nd Ed

- Organic acid testing provides valuable insight to the functioning of many biochemical processes in the body via spillage of organic acid end products into the urine.
- Aside from assessing for inborn errors of metabolism, organic acid testing at its very basic level provides urinary markers of nutritional deficiencies of many pathways including central energy pathways.

Dr. Wayne L. Sodano DC, DABCI, DACBN, CFMP, CIHP, BCTN

Next lesson: Part 8 of 8 Laboratory Test Interpretation with Case Presetntations

