
2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 1

Rego Basics

Get hands-on experience with the
Language and how it works.

When it comes to cloud security risk assessment, an often overlooked
consideration is how your rules are created and what goes into customizing
them. Cloud Configuration Rules in Wiz are powered by Open Policy
Agent (OPA , pronounced “oh-pah”). OPA provides a high-level declarative
language called Rego (pronounced “ray-go”) that lets you define security
policies as code. Rego is purpose-built for expressing policies over complex
hierarchical data structures. To create custom rules and policies in Wiz, you
write them in Rego. Outside of Wiz, Rego is a useful language to learn that
can find a place in the course of your work.

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 2

Table of Contents

Hello, World!

Variables & Documents

Basic Syntax

Logical Evaluations

References & External Input

Operators & Logical Expressions

Looping & Iteration

Referencing Rules

Built-In Functions

Reserved Names

Additional Resources

3

6

10

16

17

19

21

27

28

30

31

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 3

Hello, World!

Policies

In Rego, you define policies. Each policy consists of one or more rules, which
are in turn composed of assignments and conditions.

Rules, assignments, and conditions define the logic of the policy:

In standard Rego, the output of a policy is either true or false (booleans).

From Policies to Rules
Each rule consists of an assignment, followed by a one or more conditions.
The relation between an assignment and its condition(s) is implicitly IF; the
assignment is evaluated only if the conditions are true .

When defining a rule, you should generally write the assignment first, and
then the condition(s). The condition(s) are written between curly braces {...}:

assignment {

 conditions

}

The assignment is the name of a document (essentially, a variable; see below)
whose value will be changed if all of the conditions evaluate to true .

Documents can be named practically anything—”foo”, “allow”, “check_tls_
version”, etc.—but it is a good practice to give them meaningful names.

Hello World—Exercise 1

Follow the instructions in the comments to change the OUTPUT from
false to true .

Hello World!

Policies

From Policies to Rules

Rule Structure

More About Rules

https://play.openpolicyagent.org/p/RGTrUhb4sO

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 4

Rule Structure
This policy consists of a package declaration, and a single rule whose
assignment is allow = true , followed by the condition { 1 == 1 }:

package play

allow = true {

 1 == 1

}

Because one does, indeed, equal one, this rule will always set the value of
allow to true .

It is also possible to write a rule without conditions. In this case, the condition
is implicitly set to true and the assignment is always evaluated. For example,
the following two rules are equivalent:

n = 1

n = 1 {true}

Similarly, an assignment can be written without = , in which case the value of
true will be assigned. For example, the following two rules are equivalent:

allow {1 == 1}

allow = true {1 == 1}

Hello World!

Policies

From Policies to Rules

Rule Structure

More About Rules

Hello World—Exercise 2

Follow the instructions in the comments to change the OUTPUT from
false to true .

Hello World—Exercise 3

Follow the instructions in the comments to change the OUTPUT from
false to true .

https://www.openpolicyagent.org/docs/latest/policy-language/#packages
https://play.openpolicyagent.org/p/2D9EUIxV27
https://play.openpolicyagent.org/p/FApZDMNHs3

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 5

More About Rules

A policy can consist of multiple rules, and each rule can include multiple
conditions:

This rule sets the value of ‘understanding_rego’ to

true if all of the conditions are true

The conditions check if one equals one, and if two

equals two

understanding_rego = true {

 1 == 1

 2 == 2

}

There is an implicit AND between all conditions within the scope of a rule.
Thus, if even a single condition evaluates to false , the assignment will not
occur. On the other hand, there is animplicit OR between multiple rules that
could assign a new value to the same document. Thus, ifthe first rule does not
make an assignment, the second (or third, and so on) could.

Hello World!

Policies

From Policies to Rules

Rule Structure

More About Rules

Hello World—Exercise 4

Follow the instructions in the comments to change the OUTPUT from
false to true .

https://play.openpolicyagent.org/p/XpylmFKzsH

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 6

Variables & Documents

A document in Rego functions much like a variable in other languages. The
document is the basic method forholding data, handling calculations, and
making decisions between data objects. To make a document storedata, you
need first to define it. In Rego, there are three ways to define documents.

Constant Definition

The most common way to define a document is with := , which prevents the
document from changing for therest of the policy, much like const in C++.

Define a scalar value for the document a

a := 1

Define a string value for the document b

b := “Rego”

Define collection of values (set, arrays, objects

for the document c

c := {“company_name”:”Wiz”, “office”:[“tlv”,”nyc”]}

Default Definition

When multiple rules share the same documents, the shared documents
should be defined using the default method. This method is valid only in
the scope of the assignment, and the document can be changed later in the
policy.

Define a default scalar value for the document d

default d = 1

Define a boolean value for the document allow

default allow = true

Define the null value for the document e

default e = null

Variables & Documents

Constant Definition

Default Definition

Equal Definition

Definition Requirements

Variables & Documents—Exercise 1

Follow the instructions in the comments to change the OUTPUT from
error to true .

https://play.openpolicyagent.org/p/MgmWqZvKg2
https://play.openpolicyagent.org/p/MgmWqZvKg2

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 7

Equal Definition

The method = defines a document and has the same behavior as the

method := except:

 y In the scope of an assignment, this method can override documents
defined with a default method:

Override the default boolean value of “allow”:

default allow = false

allow = true {...}

 y In the scope of a condition, if the document is already defined, = behaves
the same as the comparison operator == and returns true .

Define the value of 1 for the document g

g = 1

Check in the condition if the document g is equal to

1

The document g is equal to 1, and true is returned to

the assignment

allow {g = 1}

Variables & Documents—Exercise 4

Follow the instructions in the comments to change the OUTPUT from
error to true .

Variables & Documents

Constant Definition

Default Definition

Equal Definition

Definition Requirements

Variables & Documents—Exercise 2

Follow the instructions in the comments to change the OUTPUT from
error to true .

Variables & Documents—Exercise 3

Follow the instructions in the comments to change the OUTPUT from
error to true .

https://play.openpolicyagent.org/p/gBCBZpfrjH
https://play.openpolicyagent.org/p/gBCBZpfrjH
https://play.openpolicyagent.org/p/aZQlxOrUV8
https://play.openpolicyagent.org/p/aZQlxOrUV8
https://play.openpolicyagent.org/p/ywv4LvrHvN
https://play.openpolicyagent.org/p/ywv4LvrHvN

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 8

Definition Requirements

 y Each document can be defined only once per rule scope:

Wrong

g := 1

g := 2

1 error occurred: rego_type_error: rule named g

redeclared at policy

Correct

default g = 1

g = 2

 y Avoid declaring documents with the same names in different scopes. It
might not generatean error, but it is hard to follow:

Confusing

default allow = false

a := 1

allow = true {

 a := 2

 a == 1

}

At first, a is 1 and allow is false. Then, in the scope of the rule another a is
defined to be 2, sothe next line evaluates to false and the overall rule does not
change the value of allow. Confusing!

Variables & Documents

Constant Definition

Default Definition

Equal Definition

Definition Requirements

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 9

Variables & Documents

Variables & Documents—Exercise 5

Follow the instructions in the comments to change the OUTPUT from
false to true .

Constant Definition

Default Definition

Equal Definition

Definition Requirements

 y Use = only for overriding document values that were defined using the
default method:

Wrong:

default allow = false

a := 1

allow = true {

 a = 1

}

Correct:

default allow = false

a := 1

allow = true {

a == 1

}

https://play.openpolicyagent.org/p/kFvwjESJkj
https://play.openpolicyagent.org/p/kFvwjESJkj

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 10

Basic Syntax

Rego supports all common data and collection types found in other
languages.

Scalar Values

Scalar values are the simplest types in Rego. Scalar values can be strings,
numbers, booleans, or null:

 y Strings—Characters surrounded by double quotes. In such strings,
certain characters must be escaped to appear in the string, such as
double quotes themselves, backslashes, etc.

s := “s is string”

t := “t is a string that has \”double quotes\” in it”

 y Numbers—There is no distinction between a decimal number (float) and
an integer (int),they are all numbers.

x := 3.14

y := 2

z := 0.5

Basic Syntax

Scalar values

Composite values

Dictionaries

Objects

Basic Syntax—Exercise 1

Follow the instructions in the comments to change the OUTPUT from
error to true .

Basic Syntax—Exercise 2

Follow the instructions in the comments to change the OUTPUT from
error to true .

https://www.openpolicyagent.org/docs/latest/policy-language/#strings
https://play.openpolicyagent.org/p/Vj28z8xvEN
https://play.openpolicyagent.org/p/Vj28z8xvEN
https://play.openpolicyagent.org/p/zM5b0URGXi
https://play.openpolicyagent.org/p/zM5b0URGXi

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 11

Basic Syntax

Scalar values

Composite values

Dictionaries

Objects

 y Boolean—Either true and false . Also, true and false are reserved words
that cannot be changed.

allow := true

deny := false

 y Null—A built-in constant that has a value of nothing.

location := null # location is nowhere

Composite Values

Composite values define collections of values, including other composite
values, scalar values,or both. All composite values can be indexed starting
from zero.

 y In simple cases, composite values can be treated as constants like scalar
values:

user_details_dict := {“user”: “John”, “company”: “Wiz”}

user_details_list := [“John”, “Wiz”]

Basic Syntax—Exercise 4

Follow the instructions in the comments to change the OUTPUT from
error to true .

Basic Syntax—Exercise 5

Follow the instructions in the comments to change the OUTPUT from
false to true .

Basic Syntax—Exercise 3

Follow the instructions in the comments to change the OUTPUT from
false to true .

https://play.openpolicyagent.org/p/h5SpMR5bh6
https://play.openpolicyagent.org/p/h5SpMR5bh6
https://play.openpolicyagent.org/p/MlkATJbJQB
https://play.openpolicyagent.org/p/MlkATJbJQB
https://play.openpolicyagent.org/p/C0FrvkV1jk
https://play.openpolicyagent.org/p/C0FrvkV1jk

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 12

Rego differentiates between sets and arrays. The two types have some
features in common, but there are a few important distinctions:

 y Sets—Unordered collections of unique values:

x := {1,2,3}

y := {3,2,1}

z := {“a”, “b”, “c”}

x[3] # evaluates to true because the number

3 is a member of x

y[0] # evaluates to false because the number

0 is not a member of y

x == y # evaluates to true because x and y

contain the same numbers; order doesn’t matter

x != z # evaluates to true because x and z do

not contain the same members

x == z # error! you can’t compare sets with

different types of values

Basic Syntax

Scalar values

Composite values

Dictionaries

Objects

Basic Syntax—Exercise 6

Follow the instructions in the comments to change the OUTPUT from
error to true .

https://play.openpolicyagent.org/p/Ldaz2k1F28
https://play.openpolicyagent.org/p/Ldaz2k1F28

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 13

 y Arrays—Ordered collections of values:

x := [1,1,3]

y := [3,1,1]

z := [“a”, “b”, “a”]

x[3] # evaluates to undefined because there

is no 3 index in the x (index starts from 0

y[0] # evaluates to true and returns 3

because the index 0 is in y

x == y # evaluates to false because x and y

contain the same numbers but order different

x != z # evaluates to true because x and z do

not contain the same members

x == z # error! you can’t compare arrays with

different types of values

Dictionaries

A dictionary is a key-value hash table, aka “dict”. The contents of a dict can be
written as aseries of key:value pairs within braces { }:

dict = {key1:value1, key2:value2, ... }

Basic Syntax—Exercise 8

Follow the instructions in the comments to change the OUTPUT from
false to true .

Basic Syntax

Scalar values

Composite values

Dictionaries

Objects

Basic Syntax—Exercise 7

Follow the instructions in the comments to change the OUTPUT from
error to true .

https://play.openpolicyagent.org/p/D9BfYSpopH
https://play.openpolicyagent.org/p/D9BfYSpopH
https://play.openpolicyagent.org/p/BQv1SnFqUc
https://play.openpolicyagent.org/p/BQv1SnFqUc

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 14

Whenever possible, use dictionaries instead of nested arrays:

DO NOT COPY THIS. This is an example of what NOT to

do.

Array of objects where each object has a unique

identifier

d := [{“id”: “a123”, “first”: “alice”, “last”:

“smith”},

 {“id”: “a456”, “first”: “bob”, “last”: “jones”},

 {“id”: “a789”, “first”: “clarice”, “last”:

“johnson”}

]

Search through all elements of the array to find the

ID

d[i].id == “a789”

d[i].first ...

Instead, use a dictionary where the key is the ID and the value is the first-
name/last-name. Given the ID, you can look up the name information directly:

DO THIS INSTEAD OF THE ABOVE. This is an example of

what you SHOULD do.

Use object whose keys are the IDs for the objects.

Looking up an object given its ID requires NO search

d := {“a123”: {“first”: “alice”, “last”: “smith”},

 “a456”: {“first”: “bob”, “last”: “jones”},

 “a789”: {“first”: “clarice”, “last”: “johnson”}

 }

no search required

d[“a789”].first ...

Basic Syntax

Scalar values

Composite values

Dictionaries

Objects

Basic Syntax—Exercise 9

Follow the instructions in the comments to change the OUTPUT from
error to true .

https://play.openpolicyagent.org/p/Ah0wPWw459
https://play.openpolicyagent.org/p/Ah0wPWw459

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 15

Objects

Objects are unordered key-value collections. Any value type can be used as
an object key. Forexample, the following assignment maps port numbers to a
list of IP addresses (represented asstrings):

ips_by_port := {

 80: [“1.1.1.1”, “1.1.1.2”],

 443: [“2.2.2.1”],

}

ips_by_port[80]

Basic Syntax

Scalar values

Composite values

Dictionaries

Objects

Basic Syntax—Exercise 10

Follow the instructions in the comments to change the OUTPUT from
error to true .

Basic Syntax—Exercise 11

Follow the instructions in the comments to change the OUTPUT from
false to true .

https://play.openpolicyagent.org/p/T1YgCmRTp3
https://play.openpolicyagent.org/p/T1YgCmRTp3
https://play.openpolicyagent.org/p/NqFUVSALkd
https://play.openpolicyagent.org/p/NqFUVSALkd

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 16

Logical Evaluations

Every line of code in a policy performs a logical evaluation that returns either
true or false . If the conditions in a rule never evaluate to true, the result is
undefined. As a result, the document that would otherwise be defined by the
rule’s assignment remains undefined.

Check if the value of foo equals the value bar, and

returns a logical true

Since the condition is true (foo and bar both equal

1), the assignment is performed

The assignment overrides the default value of allow,

changing it to true

default allow = false

foo := 1

bar := 1

allow = true {

 foo == bar

}

The string “hello” does not equal the string “world”

Since the document undefinedDocument was not

previously defined, it remains undefined

undefinedDocument { “hello” == “world” }

Logical Evaluations

Logical Evaluation—Exercise 1

Follow the instructions in the comments to change the OUTPUT from
false to true .

Logical Evaluation—Exercise 2

Follow the instructions in the comments to change the OUTPUT from
false to true .

Logical Evaluation—Exercise 3

Follow the instructions in the comments to change the OUTPUT from
false to true .

https://play.openpolicyagent.org/p/HJ2ImQrRt0
https://play.openpolicyagent.org/p/HJ2ImQrRt0
https://play.openpolicyagent.org/p/7onimUqwxu
https://play.openpolicyagent.org/p/7onimUqwxu
https://play.openpolicyagent.org/p/X8S86rJL1R
https://play.openpolicyagent.org/p/X8S86rJL1R

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 17

References & External Input

References are used to access nested documents:

Define an employee array and default value for allow

employee := [“foo”, “bar”, “john”]

default allow = false

Check in the condition if the first object in the

array equals to “foo”

allow {employee[0] == “foo”}

The condition is true, so the assignment is

performed, overriding the default value of all

When using Rego to write Cloud Configuration Rules, you essentially always
need external inputin the form of a JSON that contains a cloud resource’s
properties, an IaC template, etc. When reading external JSON files or other
input , you must start your call with input . You can refer to data in the input
using the . (dot) operator.

Assume the external input is:

{ “SecurityGroups”:[

 {“GroupId”:“xyz”},

 {“GroupName”:“myGroup”}

]

}

You can call the value “myGroup” from the JSON input:

input.SecurityGroups[1].GroupName

The dot . operator (aka interpunction) can be used only when a key is alphanumeric starting

with a letter.

References & External
Input

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 18

Dot . is shorthand for brackets [] . In other words, Rego makes x.y into
x[“y”] . For example:

Assume the external input is the same JSON as above

Call the value “myGroup” of the JSON input with

brackets instead of dot:

input[“SecurityGroups”][1][“GroupName”]

JSON Input—Exercise 1

Follow the instructions in the comments to change the OUTPUT from
"fail" to "pass" .

References & External
Input

JSON Input—Exercise 2

Follow the instructions in the comments to change the OUTPUT from
"fail" to "pass" .

https://play.openpolicyagent.org/p/QhN3FH4nOb
https://play.openpolicyagent.org/p/QhN3FH4nOb
https://play.openpolicyagent.org/p/D0CVPvUIlv
https://play.openpolicyagent.org/p/D0CVPvUIlv

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 19

Operators & Logical Expressions

Rego offers many built-in logical expressions:

These are logical expressions

x == y # x is equal to y ({1,3,1,4} == {4,4,1,3,1}

#true)

x != y # x is not equal to y

x < y # x is less than y

x <= y # x is less than or equal to y

Built-in set functions

s3 := s1 & s2 # s3 is the intersection of s1 and s2

s3 := s1 | s2 # s3 is the union of s1 and s2

s3 := s1 - s2 # s3 is the elements in s1 that are not

in s2

One especially useful operator is not , which has several important behaviors:

 y not turns undefined into true

 y not turns false into true

 y not turns everything else into true

Check if path does not exist

not input.foo.bar

This is a negation of the return value of the called

function

not myfunction

When a path is missing, the result is undefined, which is not an error!

Operators & Logical

Expressions

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 20

Operators & Logical

Expressions

Functions—Exercise 1

Follow the instructions in the comments to change the OUTPUT from
"error" to "pass" .

Functions—Exercise 2

Follow the instructions in the comments to change the OUTPUT from
"error" to "pass" .

Functions—Exercise 3

Follow the instructions in the comments to change the OUTPUT from
"fail" to "pass" .

https://play.openpolicyagent.org/p/ApXWxIdmgY
https://play.openpolicyagent.org/p/ApXWxIdmgY
https://play.openpolicyagent.org/p/c4oEzTmfJP
https://play.openpolicyagent.org/p/c4oEzTmfJP
https://play.openpolicyagent.org/p/CWHGIcKxmd
https://play.openpolicyagent.org/p/CWHGIcKxmd

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 21

Looping & Iteration

Iterating through arrays and dictionaries is one of Rego’s main strengths.

Looping through arrays is as simple as referencing the index of the array with
a symbol. Checkfor yourself what output the following policy generates:

Policy

default allow1 = false

default allow2 = false

default allow3 = false

default allow4 = false

employee := [“foo”, “bar”, “john”]

allow1 {

 employee[x] == “foo”

}

allow2 {

 # The underscore iterator is special, it is

explained below

 employee[_] == “bar”

}

allow3 {

 employee[j] == “john”

}

allow4 {

 employee[i] == “timmy”

}

Expected output

{

 "allow1": true,

 "allow2": true,

 "allow3": true,

 "allow4": false,

 "employee": [

 "foo",

 "bar",

 "john"

]

}

Looping & Iteration

Referencing Iteration
Symbols

Cross-Array Comparison &
Looping

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 22

The iteration symbol can be declared like a document. It must be alphanumeric
and begin with aletter. For example: i , j , x , test , or timmy123 .

Also, the iteration symbol is case sensitive, so j is different from J .

Referencing Iteration Symbols

Another strength of iteration in Rego is the ability to reference the iteration
symbol for advanced use cases. Check for yourself what output the following
policy generates:

Policy

package play

default allowSameSymbol = false

default allowDifferentSymbols = false

allowSameSymbol {

 input.dogArray[j].firstName == “Timmy”

 input.dogArray[j].lastName == “Reznik”

}

allowDifferentSymbols {

input.dogArray[j].firstName == “Timmy”

input.dogArray[k].lastName == “Reznik”

}

Input

{

 “dogArray”: [

 {

 “firstName”: “Timmy”,

 “lastName”: “Mymon”

 },

 {

 “firstName”: “Mongo”,

 “lastName”: “Reznik”

 },

 {

 “firstName”: “Babar”,

 “lastName”: “Berkovitz”

 }

]

}

Expected Output

{

 “allowDifferentSymbols”: true,

Looping & Iteration

Referencing Iteration
Symbols

Cross-Array Comparison &
Looping

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 23

 “allowSameSymbol”: false

}

Cross-Array Comparison & Looping

It is sometimes necessary to compare multiple values from many arrays
and check everypossible combination. In this case, you must use different
symbols for each iteration:

Iterate arr1, and arr2 and compare all combinations

of values

arr1 = [1,2,3]

arr2 = [4,5,6]

allow {

 arr1[i] == arr2[j]

}

This iterates across the arrays employeeGroup and

groupWithHighPermissions

The condition checks if there is a group in the input

JSON that also exists in the group

with high permissions document

input JSON {“employeeGroup”: [“HR”,”IT”,”PM”]}

default rootPermissions = false

groupWithHighPermissions := [“IT”, “Admin”]

rootPermissions = true {

 input[“employeeGroup”][i] ==

groupWithHighPermissions[j]

}

Looping & Iteration

Referencing Iteration
Symbols

Cross-Array Comparison &
Looping

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 24

It is also sometimes necessary to compare values corresponding to the
same index in multiple arrays:

Iterates arr1 and arr2 to find all indices i that are

equal

Compare values based on the index:

arr1 = [1,2,3]

arr2 = [3,4,3]

allow {

 arr1[i] == arr2[i]

}

Iterates the input JSON employeeGroup and compares to

the HighPermissions document

When it finds a match, the condition returns true

The assignment redefines the value to the document

“adminUser”

The value is based on the input JSON employeeName in

the same index of the match

Looping & Iteration

Referencing Iteration
Symbols

Cross-Array Comparison &
Looping

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 25

input JSON [{“employeeName”:”bar”, “employeeGroup”:

“PM”},

{“employeeName”:”foo”, “employeeGroup”:

“IT”}]

default adminUser = null

HighPermissions := [“IT”, “Admin”]

adminUser = input[i][“employeeName”] {

 input[i][“employeeGroup”] = HighPermissions[j]

}

If you do not need to use the index of an iterator outside the condition, it is
preferrable toreplace it with an underscore _ symbol. Underscore is the only
valid non-letter symbol. It behaves just like any other letter except that unlike
the letters it does not keep the indexposition:

check if “foo” exists in the employee array

default allow = false

employee := [“foo”, “bar”, “john”]

allow {employee[_] == “foo”}

Compare all combinations of values

arr1 = [1,2,3]

arr2 = [3,4,3]

allow {

 arr1[_] == arr2[_]

}

In general, you should choose symbols that indicate the purpose of the
iteration.

The iteration symbol “name” indicates that the

iteration searches for equal names

default allow = false

employee := [“foo”, “bar”, “john”]

allow {

 employee[name] == “foo”

}

Looping & Iteration

Referencing Iteration
Symbols

Cross-Array Comparison &
Looping

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 26

Rego supplies concise and powerful iteration methods, but they can be a bit
confusing at first:

check if the user is an admin and a member in the

admins group

default result = “fail”

user := “john”

user_group := [{“john”:[“product”,”allUsers”]},

 {“dan”:[“root”,”allUsers”]},

 {“amit”:[“allUsers”]}]

admins := [“john”, “dan”, “noam”]

admins_group := [“admins”, “root”]

result = “pass” {

 admins[i] == user

 admins_group[j] == user_group[_][user][_]

}

For the user john, the result is “fail”

For the user dan, the result is “pass”

Looping—Exercise 3

Follow the instructions in the comments to change the OUTPUT from
"error" to "pass" .

Looping—Exercise 1

Follow the instructions in the comments to change the OUTPUT from
"error" to "pass" .

Looping—Exercise 2

Follow the instructions in the comments to change the OUTPUT from
"error" to "pass" .

Looping & Iteration

Referencing Iteration
Symbols

Cross-Array Comparison &
Looping

https://play.openpolicyagent.org/p/80T2hOusFI
https://play.openpolicyagent.org/p/80T2hOusFI
https://play.openpolicyagent.org/p/X9UVCgE6BM
https://play.openpolicyagent.org/p/X9UVCgE6BM
https://play.openpolicyagent.org/p/0BHpDaYZkS
https://play.openpolicyagent.org/p/0BHpDaYZkS

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 27

Referencing Rules

You can assign a name to a Rego rule, and then reference it later in your
code. This is similar towriting functions in other programing languages, and
allows you to create modular and reusablecode pieces.

default result = “pass”

default retentionDaysLessThan90 = false

retentionDaysLessThan90 = true {

 input.ServerBlobAuditingPolicy.properties.

retentionDays < 90

}

result = “fail” {

 retentionDaysLessThan90

}

The first rule does not change the value of the result document, it only checks
a property. Thesecond rule calls the first, which returns the boolean value of
the retention DaysLessThan90 document.

Referencing Rules

Referencing Rules—Exercise 1

Follow the instructions in the comments to change the OUTPUT from
"error" to "pass" .

https://play.openpolicyagent.org/p/FlfXlARAox
https://play.openpolicyagent.org/p/FlfXlARAox

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 28

Built-In Functions

Rego provides a wide variety of built-in functions to make it easier
to perform commonoperations like manipulating scalar values and
aggregation. This is only a small selection of theavailable built-in functions.

Time
Basic functions relating to time:

time.now_ns() # current time since epoch in nanoseconds

time.parse_duration_ns(duration) # duration valid time

units:”s”,”m”,”h”(“-1h”,”2h4m”)

time.parse_rfc3339_ns(value) # representing the time

value in nanoseconds since epoch

For instance, if you wanted to check that secret keys are rotated at least
every 90 days:

default result = “pass”

now_ns : = time.now_ns()

ninty_days_ns := time.parse_duration_ns(“2160h”) # 90d

in hours

result = “fail”{

 (now_ns - time.parse_rfc3339_ns(input.

timeCreated))>ninty_days_ns

}

Net

Basic functions for manipulating IP addresses:

net.cidr_contains(cidr, cidr_or_ip) # true if ‘cidr_or_

ip’ is contained within ‘cidr’

net.cidr_intersects(cidr1, cidr2) # true if ‘cidr1’

overlaps with ‘cidr2’

net.cidr_merge(cidrs_or_ips) # merging the provided

Built-In Functions

Time

Net

Unmarshal

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 29

list of IP addresses

net.cidr_merge([“192.0.128.0/24”, “192.0.129.0/24”])

generates {“192.0.128.0/23”}

Unmarshal

Convert a JSON in string format to standard JSON so that keys and values
can be queried:

jsonStr := "{\"Id\":\"\",\"Statement\":[{\"Action\":\"*\",\"Ef

fect\":\"Allow\",\"Principal\":{\"AWS\":\"*\"},\"Resource\":

\"*\"}],\"Version\":\"2012-10-17\"}"

json.unmarshal(jsonStr) # deserialized JSON string to JSON

Return the following JSON:

{

 "Id": "",

 "Statement": [

 {

 "Action": "*",

 "Effect": "Allow",

 "Principal": {

 "AWS": "*"

 },

 "Resource": "*"

 }

],

 "Version": "2012-10-17"

}

Built-In Functions

Time

Net

Unmarshal

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 30

Reserved Names

The following words are reserved and cannot be used for document names:

as

default

else

false

import

package

not

null

some

true

with

Reserved Names

2022 Rego Basics guide©2022 Wiz Inc. All rights reserved. 31

Additional Resources

 y Online courses from Styra Academy

 y A Rego style guide, also by Styra Academy

 y Official Rego documentation from OPA

Additional Resources

https://academy.styra.com/
https://github.com/StyraInc/rego-style-guide
https://www.openpolicyagent.org/docs/latest/policy-language/

