BUE BOUN

— Masterclass

GLOSSARY & CHEAT SHEET

Glossary & Cheat Sheet

Your complete reference guide for bug bounty hunting fundamentals

Table of Contents

Terminal & Command Line Basics 2
Web Application Funhdamentals 3
Common Vulnerability Types D
Essential Tools Reference O
Bug Bounty Program Terms 9
Community & Collaboration 10
Quick Command Reference 1
Getting Help & Troubleshooting 12
Final Tips for Success 13
In Summary 14

© Wiz Inc. All Rights Reserved.

1 Terminal & Command Line Basics

Navigation Commands

 pwd - Shows your current directory path

 1s - Lists files in current directory

 1s -1la - Lists files with detailed information including hidden files
» cd folder - Changes to specified directory

e cd .. -Goes up one directory level

* mkdir foldername - Creates a new directory

File Operations

 cat filename - Displays entire file content
 head filename - Shows first 10 lines of a file
 tail filename - Shows last 10 lines of afile
 nano filename - Opens file In simple text editor

 grep "search" filename - Searches for text within files

Essential Shortcuts

e Ctrl+C - Stops currently running command
* Ctrl+Z - Suspends current command
* Ctrl+R - Search command history

« Tab - Auto-complete file/directory names

tmux (Terminal Multiplexer)

e tmux new -s name - Create new session with name
e Ctrl+b, c¢ - Create new window

e Ctrl+b, n - Switch to next window

e Ctrl+b, d-Detach from session

e tmux attach -t name - Reattach to session

nano Text Editor

e Ctrl+0 - Save file (Write Out)
 Ctrl+X - Exit nano

e Ctrl+K - Cut (delete) current line
e Ctrl+U - Paste cut lines

e Ctrl+Ww - Search for text

© Wiz Inc. All Rights Reserved.

2 Web Application Fundamentals

Core Concepts

Client-Server Model
» Client: Your browser making requests
* Server: Web server responding to requests
e Stateless: Each HTTP request is independent
DNS (Domain Name System)
» Translates domain names (example.com) into IP addresses

» Essential for finding subdomains during reconnaissance

URL Structure

https://admin.example.com:8080/api/users?id=123#profile

e Protocol: https:// (HTTP over encrypted connection)

» Subdomain: admin. (often indicates different functionality)
e Root Domain: example.com (main website)

e Port: : 3080 (non-standard port, potential admin panels)

e Path: /api/users (specific endpoint or page)

* Query Parameters: ?id=123 (data that can be manipulated)

* Fragment: #profile (client-side only, not sent to server)

HTTP Basics

HTTP Request Components:
 Method: GET (retrieve data), POST (send data), PUT, DELETE
 Headers: Metadata like cookies, user-agent, content-type
* Body: Data being sent (commmon with POST requests)

HTTP Request Components:
* Status Code: 200 OK, 404 Not Found, 500 Error, etc.
 Headers: Instructions for the browser

» Body: The actual content (HTML, JSON, etc.)

© Wiz Inc. All Rights Reserved.

Key HTTP Status Codes

Code Meaning

200 OK Success
401 Unauthorized Login Required
403 Forbidden Access Denied
404 Not Found Doesnt Exist

500 Server Error Server Problem

Cookies and Sessions
Cookie: Small piece of data stored by browser, sent with every request
Session: Server-side record of user state, iIdentified by session ID in cookie

Cookie Security Flags:
» HttpOnly: Prevents JavaScript access (stops XSS attacks)
e Secure: Only sends cookie over HTTPS

 SameSite: Prevents cross-site request forgery

Frontend vs Backend

* Frontend (Client-Side): What users see - HTML, CSS, JavaScript in browser

« Backend (Server-Side): Hidden server logic, databases, authentication

Bug Hunter Focus

Did an unauthorized
action succeed?

Can this be
bypassed?

Can this restriction
be bypassed?

Does the error
message leak info?

Does the error expose
stack traces?

* Key Principle: Never trust frontend restrictions - always test backend enforcement

APls (Application Programming Interfaces)

» Endpoints that return raw data (usually JSON) instead of HTML pages
» Often less protected than main web interface

 Direct testing bypasses frontend limitations

© Wiz Inc. All Rights Reserved.

3 Common Vulnerability Types

IDOR (Insecure Direct Object Reference)

What it is: Change a parameter to access other users data

Example: /api/profile?user id=123 > changetouser id=124
Why it happens: Server doesnt check if you own the requested resource

Testing: Look for numeric IDs in URLs and API calls, try different values

SSRF (Server-Side Request Forgery)
What it is: Trick server into making requests to internal systems
Example: Image upload that accepts URLs - provide internal server address

Common targets:

e http://169.254.169.254/ (AWS metadata)
e http://localhost:8080/admin

» Internal network ranges (10.x.x.x, 192.168.x.x)

Subdomain Takeover

What it is: Control company subdomain by claiming underlying service
Example: blog.company.com points to unclaimed GitHub Pages site
How to find: Use tools like subfinder and check for unclaimed services

Impact: Can serve content as If it came from the company

Directory & File Discovery
What it is: Find hidden directories, backup files, or admin panels

Common targets:

¢« /admin/, /backup/,/staging/

« Files with extensions like .bak, .o0ld, .backup
« /.git/ (exposed source code)

e /uploads/ with directory listing

© Wiz Inc. All Rights Reserved.

GitHub Secrets & Information Disclosure
What it is: Sensitive information in public repositories

What to look for:

» APl keys and tokens
* Internal domain names and URLs
 Database credentials

» Configuration files with sensitive data

Authentication & Session Management Flaws

Common issues:
» Session cookies working across environments (staging - production)
» Predictable session tokens
» Sessions not expiring properly

» Missing authentication on sensitive endpoints

Business Logic Vulnerabilities
What it is: Application works as designed, but logic is flawed

Example:

» Race conditions in payment processing
» Referral systems that can be gamed
» Multi-factor authentication bypasses

* Price manipulation through parameter tampering

CVEs (Common Vulnerabilities and Exposures)
What it is: Publicly disclosed vulnerabillities in popular software
Opportunity: Test new CVEs against targets before they patch

Approach: Monitor CVE feeds, set up alerts, test quickly

4 Essential Tools Reference

Web Proxy Tools

Burp Suite Community (Free + Paid)
« Download: portswigger.net/burp/communitydownload
» Purpose: Intercept and modity HT TP requests

 Essential for manual web application testing

© Wiz Inc. All Rights Reserved.

http://portswigger.net/burp/communitydownload

Caido (Free + Paid)
» Download: https://caido.io/download
 Modern interface with sleek UX written in Rust

» Purpose: Intercept and modify HTTP requests

Reconnaissance Tools

Installation Commands:

Subdomain discovery

go install github.com/projectdiscovery/subfinder/v2/cmd/subfinder@latest

HTTP probing

go install github.com/projectdiscovery/httpx/cmd/httpx@latest

Vulnerability scanning

go install github.com/projectdiscovery/nuclei/v2/cmd/nuclei@latest
Port scanning

go install github.com/projectdiscovery/naabu/v2/cmd/naabul@latest

DNS resolution

go install github.com/d3mondev/puredns/v2@latest

Tool Purposes:
* subfinder: Discovers subdomains using multiple sources
* httpx: Checks which hosts are alive and responds with HTTP
* nuclei: Scans for known vulnerabillities using templates
* naabu: Fast port scanning

e puredns: DNS resolution and validation

Fuzzing & Directory Discovery

Web fuzzing
go install github.com/ffuf/ffuf@latest
Alternative directory discovery

go install github.com/0J/gobuster/v3@latest

© Wiz Inc. All Rights Reserved.

https://caido.io/download

Common Usage:

Directory fuzzing

ffuf -w /path/to/wordlist -u https://target.com/FUZZ

Subdomain fuzzing

ffuf -w /path/to/wordlist -u https://FUZZ.target.com

Wordlists

Download SeclLists (comprehensive wordlists)

git clone https://github.com/danielmiessler/Seclists.git ~/wordlists

Common wordlist locations:

~/wordlists/SeclLists/Discovery/Web-Content/common. txt

~/wordlists/SeclLists/Discovery/DNS/subdomains—-toplmillion-5000.txt

Supporting Tools

System utilities

sudo apt install jg curl wget git
JSON processing

19

Network testing

curl -X GET https://example.com
wget https://example.com/file.txt

© Wiz Inc. All Rights Reserved.

5 Bug Bounty Program Terms

Core Terminology

Bounty: Reward (money, swag, or recognition) for finding valid bugs
Hunter/Researcher: Person testing systems and finding vulnerabilities
Program: Company/platform inviting ethical hackers to test their systems
Scope: Specific assets (websites, APIs, apps) that are legal to test

Out of Scope: Assets you're NOT allowed to test (can result in program ban)
PoC (Proof of Concept): Clear demonstration showing how to reproduce a bug

Triage: Team/process that validates bug reports before payout

Severity Classifications

Critical: Complete system compromise, mass data exposure
» Typical payout: $5,000 - $100,000+

High: Significant data access, privilege escalation
» Typical payout: $1,000 - $15,000

Medium: Limited data exposure, some functionality bypass
» Typical payout: $200 - $2,000

Low: Information disclosure, minor functionality issues

» Typical payout: $50 - $500

Program Types
VDP (Vulnerability Disclosure Program): Recognition/thanks only, no money

BBP (Bug Bounty Program): Monetary rewards for valid findings

Private Program: Invitation-only, usually higher payouts

Public Program: Open to all researchers

Report Status Types

New: Just submitted, awaiting triage

Triaged: Validated by triage team, sent to company
Resolved: Company has fixed the issue

Duplicate: Same bug already reported by someone else
N/A (Not Applicable): Not a valid security issue

Informative: Valid observation but low/no security impact

© Wiz Inc. All Rights Reserved.

6 Community & Collaboration

Why Collaboration Matters

- Different hunters excel at different skills (automation, manual testing, reporting)
» Faster learning through knowledge sharing
 Better results when combining complementary skills

« More fun and motivation

Ways to Collaborate

Live Hacking Events:

» Teams often outperform individual hunters

 Typical split: one person does recon, another does manual testing, another handles reporting
Online Communities:

 Discord/Slack servers for real-time help

» X (Formerly Twitter) for following discoveries and joining conversations
Knowledge Sharing:

» Write blog posts about your findings

» Share tools and methodologies

» Contribute to open source security tools

» Speak at conferences and meetups

Community Etiquette

 Credit others work when building on it

« Dont share active targets or live vulnerabilities

» Help others without expecting iImmediate returns
» Accept feedback gracefully

» Be respectful and professional

Getting Started in Community

Join 2-3 bug bounty Discord servers

Follow 10-15 active hunters on X (Formerly Twitter)

Ask thoughtful questions about what youre learning

@ Introduce yourself in newcomer channels

Share resources that helped you recently

© Wiz Inc. All Rights Reserved.

7 Quick Commmand Reference

Basic Reconnaissance Workflow

Create organized workspace

mkdir -p ~/bugbounty/target.com/{recon, scans,notes}

cd ~/bugbounty/target.com/recon

Subdomain discovery

subfinder -d target.com -o subdomalns.txt

Check which subdomains are alive

cat subdomains.txt | httpx -status-code -o live hosts.txt

Vulnerability scanning

cat live hosts.txt | nuclei -t ~/nuclei-templates/ -o vulnerabilities.txt
Directory fuzzing on interesting targets

ffuf -w ~/wordlists/Seclists/Discovery/Web-Content/common.txt -u https://
target.com/FUZZ

Tool Chaining Examples

Subdomain discovery — live checking — vulnerability scanning

subfinder -d target.com | httpx | nuclei -t vulnerabilities/

Find subdomains — save results while processing

subfinder -d target.com | tee subdomains.txt | httpx | tee live hosts.txt
Port scanning on discovered hosts

cat live hosts.txt | naabu -top-ports 100

Data Processing

Remove duplicates from results

sort results.txt | unig > unique results.txt
Count lines 1in file

wc —1 filename.txt

Search for specific content

grep "admin" results.txt

Filter out specific content

grep -v "unwanted" results.txt > filtered.txt

© Wiz Inc. All Rights Reserved. 11

File Organization

Typical bug bounty directory structure
~/bugbounty/
— targetl.com/

I -

wordlists/

8 Getting Help & Troubleshooting

Common Issues

"Command not found" errors:
e Check If tool is installed: which toolname
 Verify PATH includes Go bin: echo $PATH
* Reinstalltool: go install [tool-url]@latest
Permission denied errors:
» Make scripts executable: chmod +x script.sh
* Checkfile ownership: 1s -1a filename
Tool installation fails:
» Update Go: go version (should be 119+)
 Clear Gocache:go clean -cache

e Check internet connection

Where to Get Help

Communities:
» Bug bounty Discord servers

» X (Formerly Twitter) bug bounty community

© Wiz Inc. All Rights Reserved.

Documentation:
 Tool GitHub repositories
 Official documentation sites
o Community-written tutorials
When Asking for Help:
« Describe what youre trying to accomplish
« Show what you've already tried
* Include specific error messages

» Provide relevant screenshots or logs

9 Final Tips for Success

Mindset

» Focus on understanding concepts, not memorizing details
* It's okay to look things up - even experts use references
» Start with basics and gradually build complexity

» Be patient - bug bounty skills develop over time

Continuous Learning

» Follow security researchers on X (Formerly Twitter)
» Read bug bounty write-ups and case studies
» Practice on legal targets and lab environments

 Join the community and ask questions

Professional Development

» Document your learning journey
» Build a portfolio of findings and write-ups
» Network with other security professionals

» Consider how bug bounty skills apply to security careers

This reference guide covers the foundational knowledge from the Wiz Bug Bounty Course. Keep it handy
during your bug hunting journey and dont hesitate to add your own notes and discoveries.

© Wiz Inc. All Rights Reserved.

In Summary

The foundations section covered a lot of ground - terminal skills, web application basics, common
vulnerabllities, essential tools, and community aspects.

Rather than expecting you to memorize everything, weve compiled all the key terms, concepts, and
commands Into a comprehensive reference guide.

Download Your Cheat Sheet

What's included:
» All terminal commands from the bash primer
» Web application terminology and concepts
» Complete vulnerabllity type definitions
» Tool installation commands and basic usage
» Bug bounty program terminology

« Community and collaboration terms

Format: Clean, searchable PDF optimized for quick reference during actual bug hunting

How Professional Hunters Use References
Professional bug bounty hunters dont memorize everything. They:
» Keep command references handy for complex tool syntax
» Reference vulnerability definitions when writing reports
» Look up HTTP status codes and headers regularly

» Check terminology when communicating with other hunters

The key: Focus on understanding concepts, not memorizing detaills.

Using This Guide Effectively

During Active Hunting

» Keep the PDF open on a second monitor or device
» Quick searches for forgotten command syntax
» Double-check vulnerabllity classifications before reporting

» Reference proper terminology for professional reports

© Wiz Inc. All Rights Reserved.

While Learning

» Annotate the PDF with your own notes and discoveries
» Highlight sections relevant to your preferred hunting style
» Add bookmarks for frequently referenced sections

» Use it to review concepts before practice sessions

Building Your Knowledge

As you gain experience:
» Add your own tool discoveries and command variations
* Include notes about what works best for different target types
» Build a personal methodology section

 Share useful additions with the community

What's Not Included (And That's OK)

This reference covers the foundations - the core knowledge you need to get started and understand the rest
of the course.

Advanced topics like specific exploitation techniques, complex tool configurations, and detailed reporting
templates will be covered in their respective course sections.

The philosophy: Master the basics first, then build advanced skills on that foundation.

Key Takeaway

Bug bounty success isnt about having perfect memory - it's about:
» Understanding core concepts deeply
» Knowing where to find details when you need them
» Having reliable references during active hunting

» Continuously building your knowledge base

Download your cheat sheet now and use It as your constant companion throughout the rest of the course and
beyond.

© Wiz Inc. All Rights Reserved.

