Capabilities of multispectral satellite data in the estimation of the water column parameters

M.A. Ghannami*, G. Sicot*, M. Lennon†

* ENSTA Bretagne - PRASYS Team - Lab-STICC, UMR-CNRS 6285, Brest, France
† Hytech-imaging, F-29200 Brest, France

Study funded by the Shom
Hyperspectral data on coastal zone

- The radiative transfer equation
 - It links the Apparent Optical Properties (AOPs) to Inherent Optical Properties (IOPs)
 - Its resolution is implemented in Hydrolight\(^1\)

- Development of a semi-analytical model\(^2\)
 - Allows the development of efficient inversion algorithms which estimate the parameters of the IOPs, the water column depth and information on the seafloor

Water column depth estimation

Estimation performed from hyperspectral data acquired at Lee Stocking Island, Bahamas

Multispectral data on the coastal zone

- Two classical methods to retrieve information on the water column and on the seafloor.
 - Estimation thanks to empirical methods\(^4,5\)
 - Estimation thanks to a physical based model\(^6\)

- The physical based model needs at least five parameters to be estimated
 - Three for the water constituents
 - At least one for the seafloor model
 - The water column depth

Multispectral data on the coastal zone

- Two classical methods to retrieve information on the water column and on the seafloor.
 - Estimation thanks to empirical methods
 - Estimation thanks to a physical based model

- The physical based model needs at least five parameters to be estimated
 - Three for the water constituents
 - At least one for the seafloor model
 - The water column depth

Does multispectral data bring enough information to estimate all these parameters?
Outline

1. Description of the problem
 - The radiative transfer model
 - The estimability function

2. Tested configurations
 - Sensors
 - Environmental parameters
 - Mathematical definition

3. Results & Discussions
 - Results
 - Analysis of the minimal direction

4. Conclusions
Outline

1. Description of the problem
 - The radiative transfer model
 - The estimability function

2. Tested configurations
 - Sensors
 - Environmental parameters
 - Mathematical definition

3. Results & Discussions
 - Results
 - Analysis of the minimal direction

4. Conclusions
Elements included in the model

- The spectral optical sensor measures radiance, $L(\lambda)$
- The atmospheric correction convert radiance into reflectance

$$R_{rs}(\lambda) = \frac{L_u(\lambda)}{E_d(\lambda)}$$

- Elements that affect the reflectance above the surface
 - The air/water interface
 - The water column
 - The seafloor

source: [Mobley2004]
The radiative transfer model

The air/water interface

• The formulation is given by

\[
R^{\text{model}}_{rs}(\lambda) = \frac{\zeta \, r^{\text{model}}_{rs}(\lambda)}{1 - \Gamma \, r^{\text{model}}_{rs}(\lambda)}
\]

with \(R^{\text{model}}_{rs}(\lambda) \), the remote sensing reflectance above the surface, and \(r^{\text{model}}_{rs}(\lambda) \), the remote sensing reflectance under the surface.

The radiative transfer model

In the water column

- The semi-analytical model of Lee is used

\[r_{rs}^{model} = r_{rs}^{dp} \left(1 - e^{-(K_d + K_u^C)z} \right) + \frac{\rho}{\pi} e^{-(K_d + K_u^B)z} \]

with
- \(z \), the water column depth
- \(r_{rs}^{dp} \), the deep water remote sensing reflectance
- \(K_*^d \), the diffuse attenuation coefficient
- \(\rho \), the bottom reflectance spectrum

- The \(r_{rs}^{dp} \), \(K_*^d \) are evaluated thanks to attenuation and the scattering in the water column
In the water column

• The attenuation and the scattering in the water column are modeled with $^5,^6,^7$

 - C_{phy}, concentration in phytoplankton
 - $a^*_cdom(\lambda_0)$, attenuation due to CDOM at $\lambda_0 = 443$nm
 - C_{nap}, concentration in non-algal particles

• The bottom reflectance spectrum is considered as a linear mixture of 2 “pure” endmembers

$$\rho = \alpha \rho_1 + (1 - \alpha) \rho_2$$

To conclude about the model

- There are 5 unknown parameters in the model used in this study $C_{phy}, a^*_{cdom}(\lambda_0), C_{nap}, \alpha, z$

- The model is clearly non-linear
The estimability function

Estimability

- Let consider a physical model \(\eta_X(\theta) = \{ \eta_{X_1}(\theta), \ldots, \eta_{X_N}(\theta) \} \), with \(\theta \), the vector of parameters and \(X = \{ x_1, \ldots, x_N \} \) a sampling design.
 - The physical model is, in this study, the radiative transfer model.
 \[
 r_{rs}^{model} = r_{rs}^{dp} \left(1 - e^{-(K_d+K_u^C)z} \right) + \frac{\rho}{\pi} e^{-(K_d+K_u^B)z}
 \]
 - The sampling design is associated to the available bands.

Can we associate \(\eta_X(\theta) \) to an unique \(\theta \), i.e. let \(\theta' \in \mathcal{V}(\theta) \), does \(\eta_X(\theta') = \eta_X(\theta) \) imply \(\theta' = \theta \)?
Estimability function - definition

• Let define the estimability function, $E_{\eta X, \theta}$ as below

\[E_{\eta X, \theta}(\delta) = \min_{\theta' \in \Omega, \|\theta' - \theta\| = \delta} \|\eta X(\theta') - \eta X(\theta)\| \]

• Construction of the estimability function

In the space of parameters

In the space of the model
The estimability function

Estimability function - definition

- Let define the estimability function, $E_{\eta X, \theta}$ as below\(^8\)

$$E_{\eta X, \theta}(\delta) = \min_{\theta' \in \Theta, \|\theta' - \theta\| = \delta} \|\eta X(\theta') - \eta X(\theta)\|$$

- Construction of the estimability function

Estimability function - definition

- Let define the estimability function, $E_{\eta_X, \theta}$ as below \(^8\)

$$E_{\eta_X, \theta}(\delta) = \min_{\theta' \in \Theta, \|\theta' - \theta\| = \delta} \|\eta_X(\theta') - \eta_X(\theta)\|$$

- Construction of the estimability function

Estimability function - definition

- Let define the estimability function, $E_{\eta X, \theta}$ as below\(^8\)

$$E_{\eta X, \theta}(\delta) = \min_{\theta' \in \Theta, \|\theta' - \theta\| = \delta} \|\eta X(\theta') - \eta X(\theta)\|$$

- Construction of the estimability function

Estimability function - definition

• Let define the estimability function, $E_{\eta_X, \theta}$ as below\(^8\)

$$E_{\eta_X, \theta}(\delta) = \min_{\theta' \in \Theta, \|\theta' - \theta\| = \delta} \| \eta_X(\theta') - \eta_X(\theta) \|$$

• Construction of the estimability function

The estimability function

Estimability function - properties

- Let \(\mathbf{y} \) be measurement of \(\eta_X(\theta) \), the estimability function can be linked to the location of the global minimum, \(\theta_{LS}(\mathbf{y}) \), where

\[
\theta_{LS}(\mathbf{y}) = \arg \min_{\theta' \in \Theta} \| \eta_X(\theta') - \mathbf{y} \|^2.
\]

- The estimability function allows to compare sampling design, \textit{i.e.} sensors, in order to retrieve parameters of a specific model
 - For us, the water column and seafloor parameters
Outline

1. Description of the problem
 - The radiative transfer model
 - The estimability function

2. Tested configurations
 - Sensors
 - Environmental parameters
 - Mathematical definition

3. Results & Discussions
 - Results
 - Analysis of the minimal direction

4. Conclusions
Sampling designs

• The sampling design is set according to the sensors
 • Four sampling designs are studied: one hyperspectral and three multispectral configurations
Sampling designs

- The sampling design is set according to the sensors
 - Four sampling designs are studied: one hyperspectral and three multispectral configurations
Sampling designs

• The sampling design is set according to the sensors
 • Four sampling designs are studied: one hyperspectral and three multispectral configurations

![Quickbird sampling design](image)
Sampling designs

• The sampling design is set according to the sensors
 • Four sampling designs are studied: one hyperspectral and three multispectral configurations
Model parameters

• The estimability function is computed for a specific parametrization of the model

• Results for a moderately turbid water will be presented

 • $C_{phy} = 1 \text{mg/m}^3$
 • $a_{cdom}^*(\lambda_0) = 0.1 \text{m}^{-1}$
 • $C_{nap} = 1 \text{g/m}^3$

• Five water depths are considered

 • very shallow ($z = 50\text{cm}$)
 • shallow ($z = 1\text{m}$)
 • moderately shallow ($z = 5\text{m}$)
 • optically deep ($z = 15\text{m}$)

• One type of seafloor

 • $\alpha = 0.5$
Norm definition

• The norm in the model space is defined as:

\[\| \eta_X(\theta') - \eta_X(\theta) \|^2 = \frac{1}{N} \sum_{i=1}^{N} (\eta_{xi}(\theta') - \eta_{xi}(\theta))^2 \]

• In the parameters space

\[\| \theta' - \theta \|^2 = \sum_i \left(\frac{\theta'_i - \theta_i}{\theta_i} \right)^2, \]

with \(\theta = (\theta_1, \ldots, \theta_5) = (C_{phy}, a^{*}_{cdom}(\lambda_0), C_{nap}, z, \alpha) \)
Outline

1. Description of the problem
 - The radiative transfer model
 - The estimability function

2. Tested configurations
 - Sensors
 - Environmental parameters
 - Mathematical definition

3. Results & Discussions
 - Results
 - Analysis of the minimal direction

4. Conclusions
Description of the results

- The optimization algorithm gives an upper and a lower bound for the estimability function $E_{\eta_X, \theta}(\delta)$ at each δ.
Description of the results

- For visualization purpose, the bounds of $E_{\eta X, \theta}(\delta)$ are linearly linked.
Results for a moderately turbid water

Very shallow water

\[E_{\text{vis}}(\delta) \]

- Hyperspectral
- WorldView2
- Quickbird
- Pleiades

0.0 0.2 0.4 0.6 0.8 1.0

April, 16th 2019
Results for a moderately turbid water

Very Shallow water

Shallow water
Results for a moderately turbid water

Very shallow water

Shallow water

Moderately shallow water

Vecteur 2019, Rimouski, Québec
Results for a moderately turbid water

Very Shallow water

Shallow water

Moderately shallow water

Optically deep water
Analysis of the estimability function

• It appears that the parameters of the radiative transfer model is generally not estimable with multispectral data
 • These preliminary results argue for increasing the number of spectral bands.

Can we identify parameters that cannot be estimated?
Minimal direction

- Let us note $\theta^*(\delta)$ defined as below:

$$\theta^*(\delta) = \arg \min_{\theta' \in \Theta, \|\theta' - \theta\| = \delta} \|\eta_X(\theta') - \eta_X(\theta)\|$$

- $\theta^*(\delta)$ provides the parameters that make $\eta_X(\theta^*(\delta))$ the closest to $\eta_X(\theta)$

- The minimal direction $\theta - \theta^*(\delta)$ indicates one direction that gives the minimum distance $\|\eta_X(\theta') - \eta_X(\theta)\|$.

- It indicates which compounds in θ, i.e. which parameters, imply the smallest modification of $\eta_X(\theta)$ under the constraints $\|\theta' - \theta\| = \delta$.
Minimal direction for the very shallow water case

Hyperspectral

![Graph showing minimal direction for Hyperspectral data]

WorldView2

![Graph showing minimal direction for WorldView2 data]

Quickbird

![Graph showing minimal direction for Quickbird data]

Pleiades

![Graph showing minimal direction for Pleiades data]
Analysis of the minimal direction

Minimal direction for the very optically deep water case

Hyperspectral

WorldView2

Quickbird

Pleiades
Outline

1. **Description of the problem**
 - The radiative transfer model
 - The estimability function

2. **Tested configurations**
 - Sensors
 - Environmental parameters
 - Mathematical definition

3. **Results & Discussions**
 - Results
 - Analysis of the minimal direction

4. **Conclusions**
Conclusions

• A method to analyze the ability to estimate of the water column parameters with spectral data has been presented
 • Only the analytical expression of the radiative transfer model is needed
 • no probabilistic assumption is necessary

• This method allows to compare spectral sensors for coastal applications

• The estimation of the parameters of the water column parameters including the water column depth is a challenging problem
 • Few measurements compared to the number of parameters to estimate
Conclusions

• This study will allow us to analyze the ability to estimate the parameters of the radiative transfer model according to the environmental parameters
 • As defining the conditions to realize properly SDB

• The minimal direction will be studied to evaluate its ability to ensure that available ancillary data can help to estimate the water column parameters.
Thank you for your attention