

Description

The BYVAP steam desuperheater type MNBX is designed for accurate and cost effective steam temperature control. The MNBX is a complete temperature control valve and cools the superheated steam by introducing water into the steam flow via a high efficiency nozzle design.

Characteristics

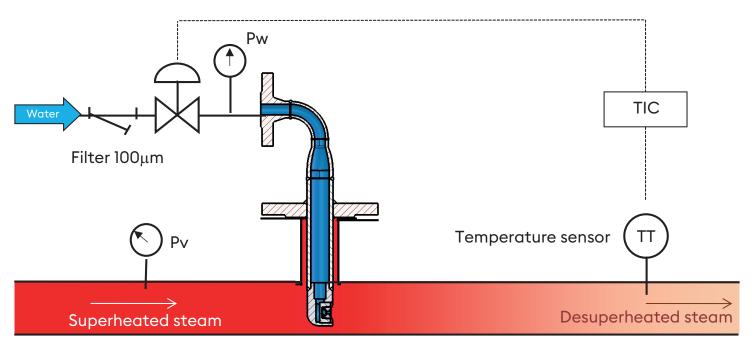
- Water flanges ½" to 1" DN15 to DN25
- Steam flanges 1 ½" DN40
- Material:
 - Stainless steel 1.4404 / AISI 410
 - Flanges: PN16, 25, 40, 100 according to EN 1092-1 Class 300, 600, 900 according to EN 1759-1
- Design ANSI B16-34 Class 900
- Minimum temperature above saturation 5°C
- Accuracy: +/- 1,5%
- Temperature range: 840°F / 450°C

Particular advantages

Excellent spraying by high quality vortex nozzles, greatly reducing the risk of water accumulation in the pipe, and large turndown ratio.

How to order

MNBX Material..., PN/Class ..., Kv..., Water flange Size/Class


Certification

This desuperheater complies with 2014/68/EU PED.

Schematic diagram

Operation

The desuperheater type MNBX has a very simple and reliable operation. It is supplied complete, adjusted and operational.

MNB provides a very good atomization of desuperheating water from only 22 PSI / 1.5 bar above the steam pressure at the temperature control. A 100 micron or finer strainer must be installed on the superheating water and its pressure drop must be taken into account. The MNBX is designed:

- Without gaskets or springs
- Can be installed vertically or horizontally
- With high specification Vortex nozzles welded in position
- With a high resistance staZinless steel spray head
- Up to Class 900 according to flanges

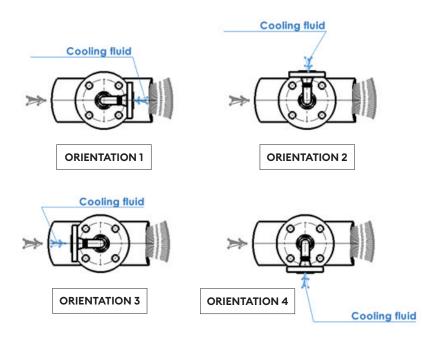
Recommandations

FILTRER

The installation of a $100\mu m$ filter in the desuperheating water line is recommended to protect the desuperheater MNBX

STRAIGHT LENGTH

The first elements that can impair the desuperheating, must not be located less than 6xD upstream and 5m downstream


PRESSURE DIFFERENCE

The difference of pressure between water of desuperheating and steam must be between 3,5bar and 100bar.

STEAM SPEED

Minimal speed of steam must not be below 39ft/s / 12m/s.

WATER INLET FLANGE TOP VIEW

Standard capacity

Kv	Cv	Tube vapeur Mini
0.011	0.013	65
0.019	0.022	65
0.026	0.03	65
0.04	0.047	65
0.07	0.082	65
0.11	0.128	65
0.20	0.233	65
0.32	0.373	65

Flow calculation

To select a Sprayhead to install on the desuperheater two calculations have to be done:

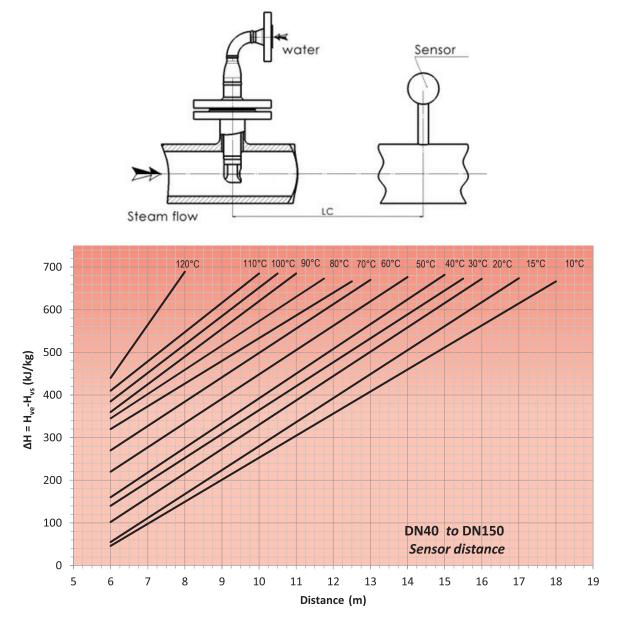
- A calculation to define the water flow based on the process data.
- A calculation to define the Kv

The water flow Qw is first calculated from process data using the following formula:

 $\begin{array}{ll} Q_w = Q_v \frac{H_{ve} - H_{vs}}{H_{vs} - H_w} & \begin{array}{l} Q_v = \mbox{Steam flow} \ (m^3/h) \\ Q_w = \mbox{Water flow} \ (m^3/h) \\ H_{ve} = \mbox{Upstream Steam enthalpy} \\ H_{vs} = \mbox{Downstream Steam enthalpy} \\ H_w = \mbox{Water enthalpy} \end{array}$

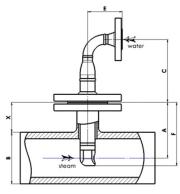
A simplified Kv calculation can be done using the following formula:

$K_{v} = - Q_{w}$	$Q_w = Water flow (m^3/h)$
$K_v = \frac{\alpha_w}{\sqrt{P_w - P_v}}$	P_v = Steam pressure (bar)
	P _w = Water pressure (bar)



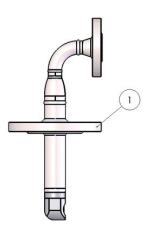
Sensor distance

The temperature sensor is positioned as a function of the enthalpy difference and depending on the proximity of the temperature to be controlled to the saturation temperature. The graphs below indicate the position of the temperature sensor.


- 1 Calculate the total enthalpy difference between the inlet and outlet and draw a horizontal line to the superheat temperature to control.
- 2 From the point found, draw a vertical line down to find the distance.

Dimensions

E (DN15 PN16-40 FS) 77 E (DN15 PN63-100 FS) 84 E (DN20 PN16-40 FS) 79 E (DN20 PN63-100 FS) 87 E (DN25 PN16-40 FS) 79 E (DN25 PN16-40 FS) 97 E (DN25 PN63-100 FS) 97 E (DN25 PN63-100 FS) 97 E (DN25 PN63-100 FS) 97 E (1/2" ANSI Class300-600 RF) 92 E (1/2" ANSI Class 900 RF) 100 E (3/4" ANSI Class 900 RF) 109 E (1" ANSI Class 900 RF) 101 E (1" ANSI Class 900 RF) 112 C 200 X A-(B/2)		
E (DN20 PN16-40 FS) 79 E (DN20 PN63-100 FS) 87 E (DN25 PN16-40 FS) 79 E (DN25 PN63-100 FS) 97 E (1/2" ANSI Class300-600 RF) 92 E (1/2" ANSI Class 900 RF) 100 E (3/4" ANSI Class 900 RF) 97 E (1/2" ANSI Class 900 RF) 109 E (1" ANSI Class 900 RF) 101 E (1" ANSI Class 900 RF) 101 E (1" ANSI Class 900 RF) 102 C 200	E (DN15 PN16-40 FS)	77
E (DN20 PN63-100 FS) 87 E (DN25 PN16-40 FS) 79 E (DN25 PN63-100 FS) 97 E (DN25 PN63-100 FS) 97 E (1/2" ANSI Class300-600 RF) 92 E (1/2" ANSI Class 900 RF) 100 E (3/4" ANSI Class 900 RF) 97 E (3/4" ANSI Class 900 RF) 109 E (1" ANSI Class 900 RF) 101 E (1" ANSI Class 900 RF) 112 C 200	E (DN15 PN63-100 FS)	84
E (DN25 PN16-40 FS) 79 E (DN25 PN63-100 FS) 97 E (1/2" ANSI Class300-600 RF) 92 E (1/2" ANSI Class 900 RF) 100 E (3/4" ANSI Class 900 RF) 97 E (3/4" ANSI Class 900 RF) 109 E (1" ANSI Class 900 RF) 101 E (1" ANSI Class 900 RF) 112 C 200	E (DN20 PN16-40 FS)	79
E (DN25 PN63-100 FS) 97 E (1/2" ANSI Class300-600 RF) 92 E (1/2" ANSI Class 900 RF) 100 E (3/4" ANSI Class 900 RF) 97 E (3/4" ANSI Class 900 RF) 109 E (1" ANSI Class 900 RF) 101 E (1" ANSI Class 900 RF) 112 C 200	E (DN20 PN63-100 FS)	87
E (1/2" ANSI Class300-600 RF) 92 E (1/2" ANSI Class 900 RF) 100 E (3/4" ANSI Class300-600 RF) 97 E (3/4" ANSI Class 900 RF) 109 E (1" ANSI Class 900 RF) 101 E (1" ANSI Class 900 RF) 112 C	E (DN25 PN16-40 FS)	79
E (1/2" ANSI Class 900 RF) 100 E (3/4" ANSI Class 300-600 RF) 97 E (3/4" ANSI Class 900 RF) 109 E (1" ANSI Class 300-600 RF) 101 E (1" ANSI Class 900 RF) 112 C 200	E (DN25 PN63-100 FS)	97
E (1/2" ANSI Class 900 RF) 100 E (3/4" ANSI Class 300-600 RF) 97 E (3/4" ANSI Class 900 RF) 109 E (1" ANSI Class 300-600 RF) 101 E (1" ANSI Class 900 RF) 112 C 200		
E (3/4" ANSI Class300-600 RF) 97 E (3/4" ANSI Class 900 RF) 109 E (1" ANSI Class300-600 RF) 101 E (1" ANSI Class 900 RF) 112 C 200	E (1/2" ANSI Class300-600 RF)	92
E (3/4" ANSI Class 900 RF) 109 E (1" ANSI Class 300-600 RF) 101 E (1" ANSI Class 900 RF) 112 C 200	E (1/2" ANSI Class 900 RF)	100
E (1" ANSI Class300-600 RF) 101 E (1" ANSI Class 900 RF) 112 C 200	E (3/4" ANSI Class300-600 RF)	97
E (1" ANSI Class 900 RF) 112 C 200	E (3/4" ANSI Class 900 RF)	109
c 200	E (1" ANSI Class300-600 RF)	101
	E (1" ANSI Class 900 RF)	112
X A-(B/2)	С	200
	X	A-(B/2)
Maxi Mass (kg) 10	Maxi Mass (kg)	10


The variable dimension is X, in order to have the Sprayhead in the center of the pipe

Ку	0.011	0.017	0.026	0.04	0.07	0.11	0.19	0.32
F	217	217	217	217	217	217	217	217
Α	200	200	200	200	200	200	200	200

*On request All dimensions in mm

Part list

ltem	Designation	Material
1	Set	1.4404 / AISI 410

Leslie is a division of Volves Inc. and it's a registered trademark owned by CIRCOR International, Inc. used under license.

