
September 3rd 2022 — Quantstamp Verified

Covalent Operational Staking Contract Part 2

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Ethereum Staking Contract

Auditors David Knott, Senior Research Engineer

Fatemeh Heidari, Security Auditor

Bohan Zhang, Auditing Engineer

Timeline 2022-07-12 through 2022-08-02

EVM Grey Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Manual Review

Specification None

Documentation Quality Medium

Test Quality Medium

Source Code
Repository Commit

covalenthq/bsp-staking ab5b33b

covalenthq/bsp-staking 13d3821

covalenthq/bsp-staking 94e16e5

Total Issues 13 (7 Resolved)

High Risk Issues 1 (1 Resolved)

Medium Risk Issues 2 (2 Resolved)

Low Risk Issues 5 (2 Resolved)

Informational Risk Issues 4 (1 Resolved)

Undetermined Risk Issues 1 (1 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Fixed Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/covalenthq/bsp-staking
https://github.com/covalenthq/bsp-staking
https://github.com/covalenthq/bsp-staking

Summary of Findings

Quantstamp has performed an audit of Covalents' contract. Notably, we found a high severity issue in which a is able to overwrite

a 's staking information. The audit resulted in a total of findings and an additional best practice violations, described below. We recommend that all issues reported in this

document be addressed.

After initial audit: OperationalStaking validator
delegate 11 11

Quantstamp has performed a re-audit of Covalents' contract. We found two additional issues, the first allows 's to delete their own

validator information and has already been fixed. The second issue is due to the copying of an unbounded array which could become unexecutable and is as of now unfixed. We

recommend that the remaining unresolved issues be addressed.

After re-audit: OperationalStaking validator

Quantstamp has performed a re-audit of Covalents' contract. During the re-audit the Quantstamp team discussed how to best prevent

transfers from becoming unexecutable with the Covalent team. All issues have been resolved.

After re-audit: OperationalStaking
validator

ID Description Severity Status

QSP-1 Validator Can Overwrite Delegator's Staking Information High Fixed

QSP-2 Validator Information Deleted on Self Role Transfer Medium Fixed

QSP-3 Denial of Service From List Iteration and Copying Medium Fixed

QSP-4 Superuser Configuration Leads to Invariant Violations Low Acknowledged

QSP-5 Missing Input Validation Low Mitigated

QSP-6 Use of Block Numbers to Track Time Low Acknowledged

QSP-7 Redeems Under Reward Redeem Threshold Allowed Low Fixed

QSP-8 Privileged Roles and Ownership Low Acknowledged

QSP-9 Same Address Can Be Added as Validator Multiple Times Informational Acknowledged

QSP-10 Ownership Can Be Renounced Informational Fixed

QSP-11 Staked and Reward Amounts Under Threshold Are Locked Informational Acknowledged

QSP-12 Configurable Disable Blocknumbers Allow for Instant Withdrawals Informational Acknowledged

QSP-13 Unchecked Math Could Lead to Underflow Undetermined Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

DISCLAIMER:

If the final commit hash provided by the client contains features that are not in scope of the audit or a re-audit, those features are excluded from the consideration in this

report.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.3• Slither

Steps taken to run the tools:

1. Install the Slither tool: pip3 install slither-analyzer

2. Run Slither from the project directory: slither contracts/OperationalStaking.sol --solc-remaps @openzeppelin/=node_modules/@openzeppelin/

Findings

QSP-1 Validator Can Overwrite Delegator's Staking Information

Severity: High Risk

FixedStatus:

File(s) affected: OperationalStaking.sol

's function transfers the 's 's and fields to . However,

does not check whether already has existing and values. If a validator calls with equal

to the of an existing then the 's and information will be overwritten.

Description: OperationalStaking setValidatorAddress msg.sender validator stakings unstakings newAddress
setValidatorAddress newAddress stakings unstakings setValidatorAddress newAddress

address delegate delegate stakings unstakings

Modify to check that 's amount is zero and array has a length of zero.Recommendation: setValidatorAddress newAddress staking staked unstaking

QSP-2 Validator Information Deleted on Self Role Transfer

Severity: Medium Risk

FixedStatus:

's function transfers a 's address to by moving a 's and fields to

the . It then deletes and from the old 's address. However, does not check whether the old 's address is

the same as . If they are the same then the and fields of the being transferred will be deleted, resulting in a loss of funds.

Description: OperationalStaking setValidatorAddress validator newAddress validator stakings unstaking
newAddress stakings unstaking validator setValidatorAddress validator

newAddress stakings unstaking validator

Modify 's to check that is not the address of the being transferred.Recommendation: OperationalStaking setValidatorAddress newAddress validator

QSP-3 Denial of Service From List Iteration and Copying

Severity: Medium Risk

FixedStatus:

The gas costs of iterating or copying storage arrays is expensive as an (gas) and an (gas) in the latter case is required for each element. By default

dynamic lists have no maximum size and so the maximum cost of iterating through or copying an array is unpredictable. In the event that performing either of the aforementioned operations

exceeds Ethereum's block gas limit, then calling said operations will result in a transaction reversion. It will also make code executed after said operations over the block gas limit to become

unexecutable. Array iteration or copying are performed in the following places in :

Description: SSLOAD 800 SSTORE 20,000

OperationalStaking

1. In where is iterated through to transfer to the new address.setValidatorAddress v.unstakings unstakings validator

2. In where is iterated through to collect a 's metadata.getDelegatorMetadata v.unstakings delegator

Modify 's copying of to to be performable over multiple Ethereum transactions so that though transferring a validator's

address may become expensive it will never be impossible. Another approach to consider is adding an upper bound to the length of and to add a mechanism for 's

owners to remove entries after they have been processed. Additionally, considering modifying to use pagination similar to .

Recommendation: setValidatorAddress unstakings newAddress
unstakings unstakings

unstakings getDelegatorMetadata getValidatorsMetadata

The Covalent team added an upper bound to the length of prior to it be copied, protecting against an out of gas error. They also added the ability for 's to

opt-out of transferring , in which case a 's would associated with their old address instead of . They also stated that

is only meant to be called off-chain and so its gas usage is not a concern.

Update: unstakings validator
unstakings validator unstakings newAddress

getDelegatorMetadata

QSP-4 Superuser Configuration Leads to Invariant Violations

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: OperationalStaking.sol

has an role that is able to configure and . The decrease of and

can lead to situations where a 's or amounts are higher than the protocols upper bounds.

Description: OperationalStaking owner maxCapMultiplier validatorMaxStake maxCapMultiplier
validatorMaxStake validator valueStaked delegation

Track the the maximum amount a single has and . Then modify and to check whether

the new values being set are less than the tracked maximums.

Recommendation: validator staked delegated setMaxCapMultiplier setValidatorMaxStake

The Covalent team stated that they decided not to add validation checks to and .Update: setMaxCapMultiplier setValidatorMaxStake

QSP-5 Missing Input Validation

Severity: Low Risk

https://github.com/crytic/slither

MitigatedStatus:

File(s) affected: OperationalStaking.sol

Many of 's function's inputs are either are missing sufficient validation. This can lead to the ending up in unexpected states. The

following function inputs are missing validation:

Description: OperationalStaking OperationalStaking

1. does not check that:initialize
is a contract address.cqt•

is greater than zero.dCoolDown•

is greater than zero.vCoolDown•

is greater than zero.maxCapM•

is greater than zero.vMaxStake•

2. does not check that:setStakingManagerAddress
is a contract address.newAddress•

3. does not check that:setMaxCapMultiplier
is small enough that it will not cause an overflow when it is multiplied by 's amounts on and .maxCapMultiplier validator staked L303 L332•

4. does not check that:redeemCommission
is greater than zero.amount•

5. does not check that:rewardValidators
all are in .ids _validators•

6. does not check that:setValidatorAddress

is not .• newAddress addresss(0)

Add the missing validation enumerated above or add documentation explaining why the lack of validation is intended.Recommendation:

The Covalent team fixed issues , and and acknowledged issues , , , and with the following comments:Update: 3.4 3.6 3.1 3.2 3.3 3.5
1. is already deployed and has already been called on it. Given that is only intended to be called once during the initial deployment there is no need to add

input validation to as it will not be called again.

OperationalStaking init init
init

2. The is intended to be able to be either a smart contract or an externally owned account ().stakingManager EOA

3. Validation validation checks were intentionally omitted.setMaxCapMultiplier
5. is responsible for ensuring that all are in and adding the same check to would be redundant. Furthermore, given that

is intended to be called multiple times per day, the gas increase for adding an inclusion check to was deemed not worth it.

ProofChain ids _validators rewardValidators
rewardValidators ids rewardValidators

QSP-6 Use of Block Numbers to Track Time

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: OperationalStaking.sol

uses block numbers to track and time periods. However, Ethereum block times are subject to . Given

that has no functionality to update and , cooldown times could drift substantially from the month and day time

periods that were initially intended.

Description: OperationalStaking validatorCoolDown delegatorCoolDown change

OperationalStaking validatorCoolDown delegatorCoolDown 6 28

Modify and to be timestamps. Even though timestamps are manipulatable neither of the cooldowns require time

accuracy of greater than seconds which is the maximum amount of time manipulation possible without creating a . If numbers are kept, allow them to be configured so that

they can be updated based on Ethereum block time changes.

Recommendation: validatorCoolDown delegatorCoolDown block
15 hardfork block

The Covalent team states that if Ethereum's actual times differ to greatly from 's expected times then they will be replaced with timestamps. Not

modifying cooldowns was an intentional business decision, as any modification to them could negatively impact user trust.

Update: block OperationalStaking block

QSP-7 Redeems Under Reward Redeem Threshold Allowed

Severity: Low Risk

FixedStatus:

File(s) affected: OperationalStaking.sol

's function checks whether the reward amount being redeemed is greater than or equal to on

inside the conditional but does not perform an equivalent check when a staker specified amount is being redeemed. This leads to redeems being processed that are less than the

.

Description: OperationalStaking _redeemRewards REWARD_REDEEM_THRESHOLD L437
redeemAll

REWARD_REDEEM_THRESHOLD

Modify to check whether user specified redeem amounts are greater than or equal to the . If user specified redeem

amounts are not meant to be subject to the add technical documentation stating this.

Recommendation: _redeemRewards REWARD_REDEEM_THRESHOLD
REWARD_REDEEM_THRESHOLD

QSP-8 Privileged Roles and Ownership

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: OperationalStaking.sol

Smart contracts will often have variables to designate an with special privileges. The contract has an who is able to:Description: owner address OperationalStaking owner

1. Renounce his role and disable all the following listed actions by calling .renounceOwnership

https://ethereum.org/en/developers/docs/accounts/#externally-owned-accounts-and-key-pairs
https://blog.ethereum.org/2021/11/29/how-the-merge-impacts-app-layer/
https://github.com/ethereum/go-ethereum/blob/94451c2788295901c302c9bf5fa2f7b021c924e2/consensus/ethash/consensus.go#L265

2. Transfer the ownership to another address by calling .transferOwnership

3. Set or change the by calling .stakingManager setStakingManagerAddress

4. Transfer from the owner to the contract for reward allocation by calling .CQT depositRewardTokens

5. Transfer reward from the contract to the owner by calling .CQT takeOutRewardTokens

6. Updates 's that determines how many tokens can be delegated by calling .validator maxCapMultiplier setMaxCapMultiplier

7. Update 's by calling .validator validatorMaxStake setValidatorMaxStake

8. Update 's s by calling .validator comissionRate setValidatorCommissionRate

This centralization of power needs to be made clear to the users, especially depending on the level of privilege the contract allows to the owner.Recommendation:

The Covalent team added documentation to their explaining the abilities of the role. However, no documentation or code changes were made that mitigate or

remove the roles centralization.

Update: README.md owner
owner

QSP-9 Same Address Can Be Added as Validator Multiple Times

Severity: Informational

AcknowledgedStatus:

File(s) affected: OperationalStaking.sol

's function does not check whether the new 's already exists in the list of validators. This makes it possible for a single

to bypass and the constraints.

Description: OperationalStaking addValidator validator address
validator validatorMaxStake delegationMaxCap

Modify to check whether a has already been added. Potential solutions would be to use a mapping instead of an array or to use an

extra mapping that tracks whether an address has previously been added as a validator.

Recommendation: addValidator validator address

The Covalent team states that being able to add the same multiple times was an intentional business decision and they added said decision to their

.

Update: addValidator address
README.md

QSP-10 Ownership Can Be Renounced

Severity: Informational

FixedStatus:

File(s) affected: OperationalStaking.sol

inherits from OpenZeppelin's contract, which contains a function. If the owner renounces their ownership, all

contracts will be left without an owner. Consequently, any function guarded by the modifier will no longer be able to be executed.

Description: OperationalStaking Ownable renounceOwnership Ownable
onlyOwner

Double check if this is the intended behavior. If it is not, and disable it.Recommendation: override renounceOwnership

QSP-11 Staked and Reward Amounts Under Threshold Are Locked

Severity: Informational

AcknowledgedStatus:

File(s) affected: OperationalStaking.sol

Users may interact with the with a relatively small amounts for a variety of reasons such as testing. In the file, there is no mention made that

and amounts must exceed the . The lack of documentation could cause users to accidentally lock amounts under

in .

Description: OperationalStaking Readme.md
staking unstaking REWARD_REDEEM_THRESHOLD
REWARD_REDEEM_THRESHOLD OperationalStaking

Exploit Scenario:

1. User stakes 10**8 + 2 tokens.

2. User unstakes 10**8 + 1 tokens.

3. User is unable to unstake the 1 token remaining.

Add end-user documentation explaining that any staked funds and rewards less than will be locked.Recommendation: REWARD_REDEEM_THRESHOLD

The Covalent team added documentation to their stating that any staked funds and rewards less than will be locked. However, though the

risk is better documented there's still a risk of users unexpectedly having funds locked.

Update: README.md REWARD_REDEEM_THRESHOLD

QSP-12 Configurable Disable Blocknumbers Allow for Instant Withdrawals

Severity: Informational

AcknowledgedStatus:

File(s) affected: OperationalStaking.sol

The mentions that s need to wait days and delegates need to wait to withdraw staked tokens. However, if the sets a

's to then the and its can instantly and transfer out all tokens without needing to wait the documented cooldown period.

Description: Readme.md validator 180 28 stakingManager
validator disabledAtBlock 1 validator delegates unstake

Add end-user documentation stating why should be configured by the . If it does not need to be modify to set

programmatically.

Recommendation: disabledAtBlock stakingManager disableValidator
disabledAtBlock

The Covalent team states that allowing to be configured by the contract was an intentional business decision and that it is intentionally set to

every time a new validator is added. They also stated that the ability for to arbitrarily set has been intentionally left in to protect against future contract

Update: disabledAtBlock stakingManager 1
stakingManager disabledAtBlock

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v4.4.2/contracts/access/OwnableUpgradeable.sol#L60
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v4.4.2/contracts/access/OwnableUpgradeable.sol#L60

upgrades' edge cases.

QSP-13 Unchecked Math Could Lead to Underflow

Severity: Undetermined

FixedStatus:

File(s) affected: OperationalStaking.sol

The keyword tells the Solidity compiler not add overflow and underflow checks. 's function subtracts

from and in unchecked blocks. However, due to division truncation converting between tokens and shares

could possibly be greater than or which would cause an underflow.

Description: unchecked OperationalStaking _redeemRewards
validatorSharesRemove v.totalShares s.shares validatorSharesRemove

v.totalShares s.shares

Either remove the blocks on and or add comments explaining why underflow protection is not necessary.Recommendation: unchecked L448 L451

Automated Analyses

Slither

Slither reported 43 results on . We filtered out the false positives and included the rest of the findings in the report.OperationalStaking

Code Documentation

1. Add to increase 's readability.Not Implemented: Ethereum Natural Language Specification Format (NatSpec) OperationalStaking

2. is used not only as a threshold for rewards but also for and . 's name should

be changed to reflect that it is also a threshold for and to increase code readability.

Acknowledged: REWARD_REDEEM_THRESHOLD staking unstaking REWARD_REDEEM_THRESHOLD
staking unstaking

The Covalent team states that the contract is already deployed and so they cannot modify s.Update: OperationalStaking constant

3. On is misspelled as .Fixed: L341 inconsistencies inconsisencies

Adherence to Best Practices

1. In 's function is defined but never used. Remove this variable, or use it in the next line instead of

recalculating .

Fixed: OperationalStaking rewardValidators rewardAmount
amount - commissionPaid

2. Change 's and type from to to save gas.Acknowledged: DIVIDER disabledAtBlock uint256 uint128
The Covalent team states that the contract is already deployed and so they cannot add s and that they do not want to make

any more modifications than absolutely necessary to 's storage.

Update: OperationalStaking constant
OperationalStaking

3. Move 's variable to the bottom of the declaration to save gas.Acknowledged: Validator _address
The Covalent team states that the contract is already deployed and they do not want to make any more modifications than absolutely

necessary to 's storage.

Update: OperationalStaking
OperationalStaking

4. is meant to be used as an implementation contract behind a proxy. To prevent the implementation contract

from being initialized with arbitrary values add the following code:

Acknowledged:OperationalStaking OperationalStaking

contructor() initializer {}

The Covalent team states that the contract is already deployed and so adding a would have no impact on the execution of

.

Update: OperationalStaking constructor
OperationalStaking

5. Instead of calling on L299, use the token to save gas.Fixed: _sharesToTokens(sharesAdd, v.exchangeRate) amount

6. The subtraction of from on can be as is already checked to be greater than or equal to in the

statement on .

Fixed: amount us.amount L373 unchecked us.amount amount require
L371

7. On is unnecessarily initialized. should be used directly in 's place.Fixed: L442 stakeRewardToRedeem amountToRedeem stakeRewardToRedeem

8. is declared on but is never set. It should either be set or removed to save gas and increase code readability.Fixed: comissionRewardToRedeem L443

9. The subtraction of from on can be as the statement on protects against integer

underflow.

Fixed: amount v.commissionAvailableToRedeem L471 unchecked require L470

10. Avoid repeatedly accessing the same in mappings. This will increase 's readability and save gas. For example in :Fixed struct OperationalStaking addValidator

Validator storage v = _validators[N];
v._address = validator;
v.exchangeRate = uint128(DIVIDER); // make it 1:1 initially
v.commissionRate = commissionRate;
v.disabledAtBlock = 1; // set it to 1 to indicate that the validator is disabled

can be replaced by:

Validator storage v = _validators[N];
v._address = validator;
v.exchangeRate = uint128(DIVIDER); // make it 1:1 initially
v.commissionRate = commissionRate;
v.disabledAtBlock = 1; // set it to 1 to indicate that the validator is disabled

Similar optimization could be applied to .redelegateUnstaked

Test Results

https://docs.soliditylang.org/en/v0.8.15/natspec-format.html

Test Suite Results

Tests were run by adding a JSON-RPC endpoint url to and entering . All 304 tests were passing.hardhat.config.js npx hardhat test

All together
✓ Should redeem, stake, unstake and recover correct # of tokens.

Ownership
✓ Should return owner address same as signer.
✓ Should access depositRewards, takeOutRewardTokens, setMaxCapMultiplier by owner.
✓ Should not access depositRewards, takeOutRewardTokens, addValidator by not owner.
✓ Should access rewardValidator, addValidator by proofChain.
✓ Should not access rewardValidator, addValidator by not proofChain.
✓ Should not access internal functions.

Add Validator
✓ Should change validators number.
✓ Should emit event with correct validator and commission rate.
✓ Should add validator with correct commission rate.
✓ Should add validator with correct address.
✓ Should revert when validator address is 0.
✓ Should revert when commission rate is 100%

Deposit reward Tokens
✓ Should change balance of the contract and the owner.
✓ Should change rewardPool.
✓ Should emit RewardTokensDeposited event with correct amount.
✓ Should revert with wrong inputs.

Disable validator
✓ Should not be able to call stake after validator got disabled.
✓ Should emit event with correct validator and disabled block.
✓ Should return correct disabled block.
✓ Should revert when trying to disable invalid validator.
✓ Should revert when disabled at block is 0 .

Enable validator
✓ Should be able to call stake after validator got enabled after being disabled.
✓ Should emit event with correct validator and disabled block.
✓ Should return correct disabled block.
✓ Should revert when enabling invalid validator id.

Get all validators metadata
✓ Should return correct validator addresses
✓ Should return correct # of tokens staked
✓ Should return correct # of tokens delegated
✓ Should return correct disabled at block number

Get delegator metadata
✓ Should return correct # of tokens staked by validator
✓ Should return correct # of tokens staked by delegator
✓ Should return correct amounts of unstakings
✓ Should return correct end epochs of unstakings
✓ Should revert when validator id is invalid

Get metadata
✓ Should return correct number of validators.
✓ Should return correct CQT address.
✓ Should return correct staking manager address.
✓ Should return correct reward pool.
✓ Should return correct delegator cool down .
✓ Should return correct validator cool down .
✓ Should return correct max cap multiplier.
✓ Should return correct validator max stake.

Get validator staking data
✓ Should return correct # of tokens staked
✓ Should return correct # of tokens delegated

Get validator metadata
✓ Should return correct validator address
✓ Should return correct validator commission rate
✓ Should return correct # of tokens staked
✓ Should return correct # of tokens delegated
✓ Should return correct disabled at block number
✓ Should revert when validator id is invalid

Get validators from start id to end id metadata
✓ Should return correct validator addresses
✓ Should return correct # of tokens staked
✓ Should return correct # of tokens delegated
✓ Should return correct disabled at block number
✓ Should revert with invalid end id
✓ Should revert with invalid start and end ids

Get validator staking data
✓ Should return correct # of tokens staked
✓ Should return correct # of tokens delegated
✓ Should revert when validator id is invalid

Initialize contract
✓ Should emit Initialized event with correct args.

Recover Unstaking
✓ Should revert when recover invalid unstaking
✓ Should revert when recover greater than staking
✓ Should emit event when recovered unstake successfully
✓ Should revert when try to recover the same unstake second time
✓ Should not change contract balance

Redeem All Rewards
✓ Should emit redeem reward event with correct number of rewards when there are no delegators
✓ Should emit redeem reward event with correct number of rewards when there are delegators
✓ Should change balances of the contract and delegator
✓ Should revert with nothing to redeem
✓ Should revert with invalid beneficiary

Redeem Commission
✓ Should CommissionRewardRedeemed event with correct number of rewards when there are no delegators
✓ Should emit CommissionRewardRedeemed event with correct number of rewards when there are delegators
✓ Should change balances of the contract and delegator
✓ Should revert with nothing to redeem
✓ Should revert with invalid beneficiary when trying to redeem some commmission
✓ Should revert with invalid beneficiary when trying to redeem all commmission
✓ Should revert with invalid validator when trying to redeem
✓ Should revert with invalid validator when trying to redeem
✓ Should revert when delegator trying to redeem some commission
✓ Should revert when delegator trying to redeem all commission

Redeem Rewards
✓ Should revert when requested amount 0
✓ Should revert when requested amount is too high
✓ Should revert when trying to redeem from invalid validator
✓ Should revert when redeem amount is too small

Redelegate Unstaked
✓ Should redelegate partially and emit Redelegated and Staked events
✓ Should redelegate fully and emit event
✓ Should not be able to redelegate the same unstake fully twice
✓ Should change number of staked tokens under new validator
✓ Should revert when redelegating with enabled validator
✓ Should revert when validators attempt to redelegate
✓ Should revert when redelegate greater than unstake
✓ Should revert when redelegating from invalid validator
✓ Should revert when redelegating invalid unstaking

✓ Should not change contract balance
✓ Should revert when redelegating from enabled validator that was disabled

Set max cap multiplier
✓ Should not change the owner if owner is renounced.

Reward validator
✓ Should change reward pool
✓ Should commission available to redeem
✓ Should emit Rewarded event with correct validatorId, commission paid and amount emitted
✓ Should emit Rewarded failed due to low pool event with correct validatorId and amount
✓ Should emit Rewarded failed due to zero stake event with correct validatorId and amount
✓ Should revert when given uneven number of ids and reward amounts

Set max cap multiplier
✓ Should change max cap multiplier.
✓ Should emit StakingManagerAddressChanged event with correct address.
✓ Should be able to delegate more if multiplier increases and should revert when attempted to delegate above max cap.
✓ Should revert if set to 0.

Set staking manager address
✓ Should change staking manager address.
✓ Should emit StakingManagerAddressChanged event with correct address.
✓ Should revert when set to zero address.

Set validator address
✓ Should change staking validator address.
✓ Should transfer rewards.
✓ Should transfer stakings.
✓ Should transfer unstakings.
✓ Should emit ValidatorAddressChanged event with correct address.
✓ Should not access setValidatorAddress by not validator.
✓ Should revert when the new address is 0.
✓ Should revert when the new address is the old one.
✓ Should revert when the validator id is invalid.
✓ Should transfer unstakings when the max amount is used.
✓ Should revert when more than the max amount of unstakings is used.
✓ Should transfer and merge rewards.
✓ Should transfer and merge stakings.
✓ Should transfer and merge unstakings.
✓ Should not transfer and merge unstakings.

Set validator commission rate
✓ Should change validator commission rate.
✓ Should emit ValidatorCommissionRateChanged event with correct validator id and amount.
✓ Should emit correct amount of validator commission rewards.
✓ Should emit correct amount of delegator rewards.
✓ Should revert with invalid validator id.
✓ Should revert if set to >= 10^18.

Set validator max stake
✓ Should change validator max stake amount.
✓ Should emit ValidatorMaxCapChanged event with correct amount.
✓ Should revert when max stake is set to 0.

Staking
✓ Should stake when validator is disabled
✓ Should revert when transfer not approved
✓ Should stake 1 token and emit event with correct number
✓ Should return correct delegated #
✓ Should revert when stake by validator is more than stake max cap
✓ Should revert when stake to invalid validator
✓ Should change contract balance
✓ Should change delegator balance
✓ Should succeed when stake by validator is at max cap
✓ Should revert when stake amount is too small

Take out reward Tokens
✓ Should change balance of the contract and the owner.
✓ Should revert with wrong inputs.
✓ Should change rewardPool.
✓ Should emit AllocatedTokensTaken event with correct amount.
✓ Should revert when reward pool is too small.

Transfer Unstaked
✓ Should transfer out after cool down ends, delegator
✓ Should transfer out after cool down ends, validator
✓ Should transfer out partially
✓ Should change balance of the contract and the owner.
✓ Should transfer out after cool down ends, validator
✓ Should revert with wrong unstaking id
✓ Should revert when the transfer amount is higher than unstaked
✓ Should revert when trying to attempt transfer the same unstake twice
✓ Should revert when cool down did not end, delegator
✓ Should revert when cool down did not end, validator
✓ Should revert when given invalid validator id

Unstaking
✓ Should revert when unstake is more than staked
✓ Should revert when unstake is too small
✓ Should revert when unstake beyond max cap
✓ Should unstake with safe max cap
✓ Should unstake beyond max cap when validator is disabled
✓ Should emit event when unstaked successfully
✓ Should not change balance of contract or delegator
✓ Should revert when validator is invalid

Tests addAuditor()
✓ Lets governor add an auditor and emits OperatorAdded event with correct args
✓ Reverts when non-governance address adds an auditor
✓ Should set correct role
✓ Should be able to add multiple auditors
✓ Should revert when trying to add auditor who is an operator

Tests addGovernor()
✓ Lets owner add a governor and emits OperatorAdded event with correct args
✓ Reverts when non-owner address adds a governor
✓ Should set correct role
✓ Should be able to add multiple governors
✓ Should revert when trying to add a governor who is an operator

Tests addBSPOperator()
✓ Lets governance address add bsp operator
✓ Emits OperatorAdded event
✓ Reverts when non-governance address preapproves an address for a role type
✓ Reverts when adds the same operator twice
✓ Sets operators under correct validator
✓ Operator is disabled after being added
✓ Should set correct validator id
✓ Should set correct operator role
✓ Should set correct validator id

Tests addValidator()
✓ Lets a governance role add a new validator to the staking contract
✓ Emits ValidatorAdded when a new validator is added to the staking contract
✓ Reverts when non-governance tries to add a validator

Block Specimen Arbitration Tests
✓ Reverts if non AUDITOR_ROLE to call the function
✓ Reverts if the block specimen session has not started
✓ Reverts if the deadline has not been reached
✓ Reverts when arbitration happens before finalize
✓ Allows arbitration after finalize
✓ Emits BlockSpecimenSessionFinalized after deadline arbitration
✓ Should emit BlockSpecimenRewardAwarded with correct args when quorum not reached
✓ Should emit BlockSpecimenRewardAwarded with correct args when correct hash was not submitted by anyone

Tests disable operator

✓ Lets a validator disable their operator
✓ Does not let a non-validator to disable an operator
✓ Emits OperatorDisabled
✓ Does not let an operator disable an operator
✓ Does not let a validatorID be used by a different validator
✓ Does not let disable an operator that does not exist or performs a different role
✓ Does not let disable a disabled operator
✓ Should return false when called isEnabled
✓ Should disable validator with correct block number
✓ Should not disable a validator when there are other enabled operators
✓ Should remove operator from active operators

Tests disableValidator()
✓ Lets a governance role disable a validator after they are added
✓ Emits ValidatorDisabled when a validator is disabled
✓ Reverts when non-governance tries to disable a validator

Tests startOperatorRole()
✓ Lets a validator enable an operator if the validator is preapproved
✓ Reverts when an operator enables an operator if the validator is preapproved
✓ Reverts when a non-validator enables an operator
✓ Emits OperatorEnabled event
✓ Does not let a validatorID be used by a different validator
✓ Does not let enable an operator that does not exist or performs a different role
✓ Does not let enable an enabled operator
✓ Should return true when called isEnabled
✓ Should enable validator with correct block number
✓ Should not enable a validator when it is already enabled
✓ Should add operator to active operators

Block Specimen Session finalization Tests
✓ Reverts if the block specimen session has not started
✓ Reverts if the deadline has not been reached
✓ Changes require audit to true when not enough participants submitted, emits event and reverts if called again
✓ Changes require audit to true when quorum was not reached, emits event and reverts if called again
✓ Emits specimen hash reward awarded event with the correct args when quorum is achieved
✓ Emits specimen hash reward awarded event with the correct args when quorum is achieved
✓ Emits specimen hash reward awarded event with the correct args when quorum is achieved

Tests remove auditor
✓ Lets Governance remove an audior
✓ Emits OperatorRemoved
✓ Does not let a non-governance role call remove auditor
✓ Should revert when trying to remove an auditor that does not exist or has a different role

Tests remove governor
✓ Lets Governance remove an audior
✓ Emits OperatorRemoved
✓ Does not let a non-owner role call remove governor
✓ Should revert when trying to remove an governor that does not exist or has a different role

Tests Governance control: removeBSPOperator()
✓ Lets Governance remove an operator
✓ Emits OperatorRemoved
✓ Does not let a non-governance role call removeBSPOperator()
✓ Emits ValidatorDisabled on staking contract when count is 0
✓ Does not emit ValidatorDisabled on staking contract when count is > 0
✓ Removes bsp role
✓ Removes from bsps
✓ Removes operator from validator ids
✓ Should revert when trying to remove an operator that does not exist or has a different role

Tests all setters
✓ Lets Governance change the blockSpecimenRewardAllocation
✓ Emits BlockSpecimenRewardChanged
✓ Does not let non-governance change the blockSpecimenRewardAllocation
✓ Tests the getter for blockSpecimenRewardAllocation
✓ Lets Governance change the blockSpecimenSessionDuration
✓ Emits SpecimenSessionDurationChanged
✓ Does not let non-governance change the blockSpecimenSessionDuration
✓ Tests the getter for blockSpecimenSessionDuration
✓ Lets Governance change the blockSpecimenQuorum
✓ Emits SpecimenSessionQuorumChanged
✓ Does not let non-governance change the blockSpecimenQuorum
✓ Tests the getter for blockSpecimenQuorum
✓ Sets the required stake for the roles
✓ Emits MinimumRequiredStakeChanged
✓ Does not let non-governance change minimum stake required
✓ Lets a governance role set the staking contract address to a new address
✓ Emits StakingInterfaceChanged and successfully executes when governance calls
✓ Changes staking interface
✓ Reverts when non-governance sets staking contract address to a new address
✓ Lets Governance change the minSubmissionsRequired
✓ Emits SpecimenSessionMinSubmissionChanged
✓ Does not let non-governance change the minSubmissionsRequired
✓ Tests the getter for minSubmissionsRequired
✓ Lets Governance change the minSubmissionsRequired
✓ Emits NthBlockChanged
✓ Does not let non-governance change the nthBlock
✓ Tests the getter for nthBlock
✓ Lets Governance change the setSecondsPerBlock
✓ Emits SecondsPerBlockChanged
✓ Does not let non-governance change the maxNumberOfHashesPer24H
✓ Tests the getter for maxNumberOfHashesPer24H
✓ Lets Governance change the maxSubmissionsPerBlockHeight
✓ Emits BlockSpecimenMaxNumberOfHashesPer24HChanged
✓ Does not let non-governance change the maxSubmissionsPerBlockHeight
✓ Tests the getter for maxSubmissionsPerBlockHeight
✓ Lets Governance change the chainSyncData and emits event with correct args
✓ Does not let non-governance change the chainSyncData
✓ Reverts when seconds per block is 0
✓ Tests the getter for maxSubmissionsPerBlockHeight
✓ Lets Governance change the allowedThreshold and emits event with correct args
✓ Does not let non-governance change the allowedThreshold
✓ Tests the getter for allowedThreshold

Tests submitBlockSpecimenProof()
✓ Lets a BSP role submit a specimen proof
✓ Reverts when a non-BSP submits a specimen proof
✓ Reverts when invalid chain ID is provided
✓ Emits BlockSpecimenProductionProofSubmitted event with correct args
✓ Reverts when trying to submit out of bounds of live sync
✓ Should revert when attempt to submit after session has closed (reached its deadline)
✓ Should revert when attempt to submit after session has closed reached its deadline and being finalized
✓ Should revert when attempt to submit specimen hash for the same block height and block hash twice
✓ Should revert when attempt to submit when operator did not stake sufficiently when session has not been started
✓ Should revert when attempt to submit when operator did not stake sufficiently when session has already been started
✓ Does same block height on different chain IDs without collision
✓ Reverts when trying to submit for invalid block height
✓ Reverts when trying to submit more than max number of submissions allowed per block height
✓ Reverts when trying to submit for the same block hash per block height twice

Initialize contract
ProofChain upgraded to: 0x0affCff6f052dAD0f12e56E4fbC105811220642a

✓ works before and after upgrading

Code Coverage

Coverage was run with .npx hardhat coverage

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 98.59 96.46 95.95 99.08

CovalentQueryTokenFaucet.sol 0 0 0 0 21,37,38,42

IOperationalStaking.sol 100 100 100 100

OperationalStaking.sol 99.15 98.63 100 100

ProofChain.sol 100 97.37 100 100

contracts/ERC20Permit/ 0 0 0 0

ERC20Permit.sol 0 0 0 0 … 69,71,72,81

IERC2612Permit.sol 100 100 100 100

All files 96.33 94.78 92.21 96.62

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

0ff9167a39efd487d28570bfacb6076c615eddfafe8c7d6a74c5399f7029d191 ./contracts/OperationalStaking.sol

Tests

aa2bc6642f52635d986cf4c3a1d4d66d97cd5a36607c2148ea3129e2bc40ccdf ./test/operational-staking/integration-tests/all.js

c2705ef1250378aec1518c30c8ecadec939bd1f90f03e119d35deb82ee20ea94 ./test/operational-staking/integration-tests/RewardsCalculator.js

a7940ed0b7755c26788da02d5e7b04e6d6bad809fdf4c74743a9df2fac96b675 ./test/operational-staking/unit-tests/renounceOwnership.js

d7a4591fb3ec1542000a26e9fae2bdf983cb52e28faef5e577751fa6402b912a ./test/operational-staking/unit-tests/setValidatorMaxStake.js

0bef0ceff2df6c7e6007b4f6465f6b4bfa779287933a60eb68d158ddf9e487b5 ./test/operational-staking/unit-tests/depositRewardTokens.js

cf6a483843dd93d35608c4faceb0df4cb4b033413a6d28283f02b6759ab6e929 ./test/operational-staking/unit-tests/access.js

166df24fc3a673797b3345c777008d6aeabaf25bfc98ebb60382ce756ebafcf6 ./test/operational-staking/unit-tests/addValidator.js

54f5bccd5a1e9c235733445b1f02d48ea13741328f8fd0a937d3d0a03ec33d70 ./test/operational-staking/unit-tests/setValidatorCommissionRate.js

2f191a2fe546a867553c75b88bb775f88ded4d7a90ae49a91550e973c3ced47f ./test/operational-staking/unit-tests/redelegateUnstaked.js

06f3c2282e66ff1fbbce5ca6cc6583d12635c490c16bfa3292c6d81737452000 ./test/operational-staking/unit-tests/initialize.js

ecba2a2158623d1789b909d17005abb603c208e4ea7fcba19ab3ca55dceec2a4 ./test/operational-staking/unit-tests/stake.js

c7f3adc12cb311b0322df8f903f3d70294618cf5bc828e871e4c3d8df1f296a4 ./test/operational-staking/unit-tests/getDelegatorMetadata.js

ecc8ffa86699d741c84eb8d4b29e493759810cf015e5ed95444377becdb95669 ./test/operational-staking/unit-tests/redeemAllRewards.js

703197a152514961348aec45f96b74552a8b4e1e2c1dc49ca069a871afc0a614 ./test/operational-staking/unit-tests/disableValidator.js

98c5b0edeb0a6ed30c96891c3c8fdce5574f05c8eea70853c51a03bd65b13e15 ./test/operational-staking/unit-tests/redeemRewards.js

01ccf2f38388feff6da5678c2d164f17db9902f9f28191f69440c15a9a7edda1 ./test/operational-staking/unit-tests/takeOutRewardTokens.js

dd88e461cdadc75d556161801d610ca832e457ce1215e86346ddf91adebf87fe ./test/operational-staking/unit-tests/unstake.js

3d2526a173533cd3e335a95e11e0a5bd93478608db3268b088854caef4fd31ce ./test/operational-staking/unit-tests/enableValidator.js

9ae4372440939f79b6c95a36f5050c4e248e2e67fb717f74c626a201c3a130f9 ./test/operational-staking/unit-tests/getValidatorCompoundedStakingData.js

d19a4949739dff8e968d881194913cf1051e3d3761986b8db8c4516707b13ff6 ./test/operational-staking/unit-tests/getMetadata.js

5e1735493dcf569b1e53bce010a883dcc0d3b4f194cc508ddf98f2bfcae46dcc ./test/operational-staking/unit-tests/transferUnstakedOut.js

1e6628e1c15d82d0b37149a92b2be36a5d841183ca195d9c7ca28b3a6dd59df2 ./test/operational-staking/unit-tests/setValidatorAddress.js

b8eb0de542c3f1bcc23ea56872e3c7089078fd9bcd56bc262497ef7a36c98471 ./test/operational-staking/unit-tests/rewardValidators.js

8f8c6da2967b779890e8ea37364824e01957347963990059755733222a03a6f2 ./test/operational-staking/unit-tests/getAllValidatorsMetadata.js

da79d7a73fcd2bed813319b207161d79bf2f1896b4ef2a9e3d17cbb1f9bb216c ./test/operational-staking/unit-tests/getValidatorsMetadata.js

ed063fce05c26c2f82656626ba980d9e1e19813ef20e7b2388f344e61ed06473 ./test/operational-staking/unit-tests/setStakingManagerAddress.js

f226cf49847cb3d803399a4d4de5704cb3c99bdc8cef737200661336ea99c456 ./test/operational-staking/unit-tests/setMaxCapMultiplier.js

f778570aac390086b21843e31310b32eeae335b21547ab8d30dee41e92888834 ./test/operational-staking/unit-tests/gevValidatorStakingData.js

c65fd3eefd0ad0e891a768ba1a844ed016396811cece2fc3bfd9268bcae894ca ./test/operational-staking/unit-tests/recoverUnstaking.js

38c1efd38a9e679712c8e4079537dfa7970b2c55cf2cebdf2c2406d5734a3c9e ./test/operational-staking/unit-tests/redeemCommission.js

1d992f407644e5ae5d34a4a4c17390669b0014b8bb1ea9bc9b12d720ef004ae5 ./test/operational-staking/unit-tests/getValidatorMetadata.js

Changelog

2022-07-12 - Initial report•

2022-08-02 - Re-audit report•

2022-09-03 - Re-audit report•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Covalent Operational Staking Contract Part 2 Audit

