§ safepress

Smart Contract Audit

For smart contract vulnerabilities,
security exploits and attack vectors



safepress
3 FRASER STREET #05-25 DUO TOWER SINGAPORE

Code Review And Security Report

Important: This document likely contains critical information about the Client’s software and
hardware systems, security susceptibilities, descriptions of possible exploits and attack
vectors. The document shall remain undisclosed until any significant vulnerabilities are

remedied.
CLIENT: CovalentHQ
START DATE: 23rd August 2022
END DATE: 13th September 2022
TYPE, SUBTYPE: Staking
Scope
Repository: https://github.com/covalenth -stakin
Commit hashes: cbbe03cabc4ef0a2d32516¢252f30c72ed991a20 (incl.)
Documentation: bsp-staking readme, Covalent Whitepaper May 2022 v1.1,
Branded, Block Specimen Whitepaper V1.2
Tests: Passing
Auditors: Alex, Rony
Review & Approval: Ruby

Smart Contract Audited: contracts/OperationalStaking.sol



safepress
3 FRASER STREET #05-25 DUO TOWER SINGAPORE

Definitions of vulnerability classification

Severity Definition

High Difficult to exploit problems which could result in elevated privileges, data
loss etc.
Medium Bug / Logic failures in the code which need to be fixed but cannot lead to

loss of assets / data manipulation.

Low Mostly related to unused code, style guide violations, code snippets with
low effect etc.




safepress
3 FRASER STREET #05-25 DUO TOWER SINGAPORE

The smart contracts were found with the following
vulnerabilities:

(] None



safepress
3 FRASER STREET #05-25 DUO TOWER SINGAPORE

High-level Vulnerabilities

Highly permissive owner access.

Function (s): setMaxCapMultiplier, setValidatorMaxStake, setValidatorCommissionRate
Description: The owner can reset maxCapMuiltiplier, validator MaxStake and validator
commission rate. The owner should not have the ability to reset these values after they

have been initialized.

Recommendation: remove the functions that give access to the owner to reset the
values after they have already been initialized.

Status: Design Choice
Update Note:

Validator commision rate’s initial value is set by the Staking Manager. To change the
commission rate, the validator should contact the Staking Manager and not the owner.

Similarly, the owner can change the multiplier and the max stake.

This centralizes a lot of authority with the owner. It is recommended to introduce a
system where these values are set by the community through voting as planned for
Proof Chain (Covalent Whitepaper May 2022 v1.1 Branded.pdf, page 7, Governance) or
through some other method.

Update Note: The issue has been acknowledged by the Covalent team and has been
ignored as it is a design choice.

Possibility of initializing invalid values.
Function (s): initialize

Description: There is a chance of initializing maxCapMultiplier and validatorMaxStake
to wrong values in the initialize function

Recommendation: add require statements in the initialize function to ensure that
maxCapM and vMaxStake are always greater than 0.

Status: Design Choice

Update Note: The require statement should still be added as the change is minimal and
the issue would persist when the contract is deployed again or to other chains.

Update Note: The issue has been acknowledged by the Covalent team and has been
ignored as it is a design choice.



safepress
3 FRASER STREET #05-25 DUO TOWER SINGAPORE

Medium-level Vulnerabilities

Possible invalid validatorld.

Function (s): getValidatorStakingData, getValidatorCompoundedStakingData,
getDelegatorMetadata, setValidatorAddress.

Description: It is possible to pass invalid validatorld.

Recommendation: Add require statements to ensure that validator/d is always valid.
Refer to line 464 where this require statement is already being used.

Status: Partially Done
Update Note: The require statement needed to check if an invalid id has been
accidentally sent should still be added as the gas consumed for this simple check is

minimal.

Update Note: The require statement has not been added for
getValidatorCompoundedStakingData

Possible invalid argument address.
Function (s): setValidatorAddress, setStakingManagerAddress, getDelegatorMetadata

Description: It is possible to pass invalid argument of type address to functions
setValidatorAddress, setStakingManagerAddress and getDelegatorMetadata.

Recommendation: Add a require statement to ensure that it is always valid. Refer to
line 465 where such require statement is already being used.

Status: Partially Done

Update Note: The require statements have not been added for
setStakingManagerAddress and getDelegatorMetadata

Update Note: The require statement has not been added for getDelegatorMetadata



safepress
3 FRASER STREET #05-25 DUO TOWER SINGAPORE

Low-level Vulnerabilities

Unused imports and variables in tests.

Description: There is a large number of unused imports and variables in test files.
Recommendation: remove unused imports and variables in test files

Status:

Improper function documentation.

Description: function documentation is very brief and lacks explanation for function
parameters.

Recommendation: make function documentation more descriptive and add variable
descriptions e.g

[
* function description comes here

* @param _param1: param1 explanation that explains what it is for
* @param _param2: param2 explanation that explains what it is for
*/

function test(uint _param1, uint _param2) external {

require(_param1 == 1 && param2 == 2); }

Status:



safepress
3 FRASER STREET #05-25 DUO TOWER SINGAPORE

Informational

(] None



safepress
3 FRASER STREET #05-25 DUO TOWER SINGAPORE

Executive Summary

Based on the audit findings the Client's contracts are: Not Secure

Not Secure Insufficiently Secured Secured -



safepress
3 FRASER STREET #05-25 DUO TOWER SINGAPORE

Disclaimers

SafePress Disclaimer

The smart contracts given for audit have been analyzed by the best industry practices at the
date of this report, with cybersecurity vulnerabilities and issues in smart contract source code,
the details of which are disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions). The audit makes no
statements or warranties on the security of the code. It also cannot be considered a sufficient
assessment regarding the utility and safety of the code, bug-free status, or any other contract
statements. While we have done our best in conducting the analysis and producing this report, it
is important to note that you should not rely on this report only — we recommend proceeding
with several independent audits and a public bug bounty program to ensure the security of
smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its
programming language, and other software related to the smart contract can have vulnerabilities
that can lead to hacks. Thus, the audit cannot guarantee the explicit security of the audited
smart contracts.



