
April 6th 2021 — Quantstamp Verified

Covalent Query Token

This security assessment was prepared by Quantstamp, the leader in blockchain security

Executive Summary

Type ERC20

Auditors Leonardo Passos, Senior Research Engineer
Poming Lee, Research Engineer
Ed Zulkoski, Senior Security Engineer

Timeline 2020-10-05 through 2020-10-22

EVM Muir Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional
Testing, Computer-Aided Verification, Manual
Review

Specification Vesting Google Doc Spreadsheet

Documentation Quality Low

Test Quality Medium

Source Code
Repository Commit

covalent-query-token a4e4b73

None 4cd2968

None 500ac62

Total Issues 8 (3 Resolved)

High Risk Issues 3 (2 Resolved)

Medium Risk Issues 0 (0 Resolved)

Low Risk Issues 0 (0 Resolved)

Informational Risk Issues 4 (1 Resolved)

Undetermined Risk Issues 1 (0 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://docs.google.com/spreadsheets/d/1vvL-zWD913d73a1-wO20uO56srNLQyBqE92BhyfYinE/edit#gid=1901698388
https://github.com/covalenthq/covalent-query-token
https://github.com/covalenthq/covalent-query-token/commit/a4e4b7316ed550b27181817a573fae1334754480
https://github.com/covalenthq/covalent-query-token/commit/4cd29687734c257aa4dee289740ab46e0449eb92
https://github.com/covalenthq/covalent-query-token/commit/500ac62bc5cf1266dda1d0f6fbf7414c499f571c

Summary of Findings

We have found three high severity issues in the audited code base, specifically: two issues related to undocumented privileged roles on the token vesting code that could potentially affect
token holders, and one issue related to a mismatch between the implementation and the given specification. All other issues (5), are either undetermined (1) or informational (4). Last, but
not least, we found the test branch coverage to be not ideal (currently at around 73%) - it should be as close as possible to 100%. Altogether, we recommend prompt attention from
developers to address all the issues herein reported prior to deployment of the audited contracts.

ID Description Severity Status

QSP-1 Privileged roles: Vesting can be unilaterally revoked High Mitigated

QSP-2 Privileged roles: Vesting balance can be defunded High Mitigated

QSP-3 Vesting values do not match the "Vesting Contract" spreadsheet spec High Acknowledged

QSP-4 External and public functions are not fully annotated using the Natspec
format

Informational Unresolved

QSP-5 Clone-and-Own Informational Acknowledged

QSP-6 Allowance Double-Spend Exploit Informational Mitigated

QSP-7 Use of early draftERC20Permit Informational Acknowledged

QSP-8 Privileged roles: Tokens may not be rescued upon ownership
renouncement

Undetermined Acknowledged

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.6.12• Slither

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

3. Filter out false-positives (manual step)

https://github.com/crytic/slither

Findings

QSP-1 Privileged roles: Vesting can be unilaterally revoked

Severity: High Risk

MitigatedStatus:

File(s) affected: contracts/CovalentQueryTokenVesting.sol

The same way the contract owner can grant vesting to an address, it can unilaterally revoke it by calling . However, there is no documentation stating under what
conditions should a vesting be removed.
Description: removeVesting

Provide user facing documentation stating under what conditions is called. Alternatively, rely on a multisig wallet to perform the operation.Recommendation: removeVesting

: It was confirmed that a multisig wallet will be used for handling owner-only operations.Update

QSP-2 Privileged roles: Vesting balance can be defunded

Severity: High Risk

MitigatedStatus:

File(s) affected: contracts/CovalentQueryTokenVesting.sol

According to the deployment scripts, the address is given 836458333 tokens, which corresponds to the vesting supply. However, the owner of
could transfer that fund to any address he so chooses. Then, any user given a vesting will not be able to release his tokens after the corresponding release

time.

Description: CovalentQueryTokenVesting
CovalentQueryTokenVesting

Use a multisig wallet to mitigate the potential centralization of a single person having access to all the vesting funds. Any operation required or needed by the owner should
then meet the quorum requirements of the multisig wallet.
Recommendation:

: It was confirmed that a multisig wallet will be used for handling owner-only operations.Update

QSP-3 Vesting values do not match the "Vesting Contract" spreadsheet spec

Severity: High Risk

AcknowledgedStatus:

File(s) affected: contracts/CovalentQueryTokenVesting.sol

The vesting schedule as set in the contract does not match the Google Doc Spreadsheeet. A spec not matching the code can lead to a deployed contract that does not match the
expected behavior. For example, the value after 90 days is 63541667 in the spreadsheet, but 54166667 in the code.
Description:

We recommend reviewing the spreadsheet spec against the implemented vesting contract, making sure both are in synch.Recommendation:

: According to developers, the vesting is still subject to change and updates can occur in the code, which may not be necessarily reflected across the board (e.g.,
spreadsheets).
Update

QSP-4 External and public functions are not fully annotated using the Natspec format

Severity: Informational

UnresolvedStatus:

File(s) affected: contracts/*

External and public functions are not fully annotated using the format; lacking detailed documentation could impair users of the purpose of each function and its usage.Description: Natspec

Fully annotate public and external functions using NatSpec.Recommendation:

QSP-5 Clone-and-Own

Severity: Informational

AcknowledgedStatus:

File(s) affected: contracts/ERC20Permit/*

The implementation is a clone from Openzeppelin’s . Cloning requires one to monitor the cloned code for potential issues, as well as manually
merging fixes and patches. If not managed properly, it could lead to outdated and vulnerable code being pushed to production.
Description: ERC20Permit draft implementation

At the very least, document that the code was copied from Openzeppelin, as well as indicating the commit hash adding/changing the implementation in
Openzeppelin’s repository.
Recommendation: ERC20Permit

QSP-6 Allowance Double-Spend Exploit

Severity: Informational

MitigatedStatus:

File(s) affected: contracts/CovalentQueryToken.sol

As with any other ERC20 contract, is vulnerable to the allowance double-spend exploit.Description: CQT

Exploit Scenario:

The issue can be mitigated through the use of functions that increase/decrease the allowance relative to its current value, such as andRecommendation: increaseAllowance

https://solidity.readthedocs.io/en/v0.6.2/natspec-format.html
https://github.com/OpenZeppelin/openzeppelin-contracts/pull/2237

(already the case for the token contract).decreaseAllowance CQT

QSP-7 Use of early draftERC20Permit

Severity: Informational

AcknowledgedStatus:

File(s) affected: contracts/ERC20Permit/*

The implementation is a clone from Openzeppelin’s . It should be used with caution, as that code, as it stands, does not have a comprehensive test suite.
According to its author, the given implementation is not yet mature:
Description: ERC20Permit draft code

This adds support for the ERC20 Permit extension, tentatively called ERC2612 and based on the discussion in ethereum/EIPs#2612. The EIP is still in draft status: we'll need to monitor
it for any changes, and will likely not want to publish this code until it is more mature / finalized

As of this audit, we did not find any vulnerability in . Nonetheless, a comprehensive test suite (currently lacking) could evidence issues that
could be lingering around and/or that could be missed by a manual audit. Hence, we suggest monitoring the cloned code for potential bugs and/or issues, having an upgrade plan in case the
code is found to be prone to any attack and/or issues.

Recommendation: contracts/ERC20Permit/*.sol

QSP-8 Privileged roles: Tokens may not be rescued upon ownership renouncement

Severity: Undetermined

AcknowledgedStatus:

File(s) affected: contracts/CovalentQueryToken.sol

The function seems to exist as a means to aid users to recover their tokens in case they inadvertently transfer tokens to the contract . As
acknowledged by the comments in the code, this function can be disabled by destroying ownership, i.e., when the owner invokes the function. Hence, its disabling is
permanent. However, it is unclear under what circumstances this function should be disabled.

Description: rescueToken CovalentQueryToken
renounceOwnership

Properly document under what conditions disabling is deemed safe. Additionally, make sure that if such disabling requirements do not hold, the function will
continue enabled.
Recommendation: rescueToken

: Disabling will be controlled by a multisig wallet that (hopefully) should be given control to the community. It is up to them when to disable .Update rescueToken

Automated Analyses

Slither

CovalentQueryToken.constructor(string,string,uint256).name (CovalentQueryToken.sol#13) shadows:•
ERC20.name() (openzeppelin-solidity/contracts/token/ERC20/ERC20.sol#66-68) (function)•

CovalentQueryToken.constructor(string,string,uint256).symbol (CovalentQueryToken.sol#13) shadows:•
ERC20.symbol() (openzeppelin-solidity/contracts/token/ERC20/ERC20.sol#74-76) (function)•

CovalentQueryToken.constructor(string,string,uint256).totalSupply (CovalentQueryToken.sol#13) shadows:•
ERC20.totalSupply() (openzeppelin-solidity/contracts/token/ERC20/ERC20.sol#98-100) (function)•

IERC20.totalSupply() (openzeppelin-solidity/contracts/token/ERC20/IERC20.sol#12) (function)•

ERC20.constructor(string,string).name (openzeppelin-solidity/contracts/token/ERC20/ERC20.sol#57) shadows:•
ERC20.name() (openzeppelin-solidity/contracts/token/ERC20/ERC20.sol#66-68) (function)•

ERC20.constructor(string,string).symbol (openzeppelin-solidity/contracts/token/ERC20/ERC20.sol#57) shadows:•
ERC20.symbol() (openzeppelin-solidity/contracts/token/ERC20/ERC20.sol#74-76) (function) token() should be declared external:•

CovalentQueryTokenVesting.token() (CovalentQueryTokenVesting.sol#105-107)•

beneficiary(uint256) should be declared external:•
CovalentQueryTokenVesting.beneficiary(uint256) (CovalentQueryTokenVesting.sol#114-116)•

releaseTime(uint256) should be declared external:•
CovalentQueryTokenVesting.releaseTime(uint256) (CovalentQueryTokenVesting.sol#123-125)•

vestingAmount(uint256) should be declared external:•
CovalentQueryTokenVesting.vestingAmount(uint256) (CovalentQueryTokenVesting.sol#132-134)•

removeVesting(uint256) should be declared external:•
CovalentQueryTokenVesting.removeVesting(uint256) (CovalentQueryTokenVesting.sol#140-147)•

release(uint256) should be declared external:•
CovalentQueryTokenVesting.release(uint256) (CovalentQueryTokenVesting.sol#175-187)•

retrieveExcessTokens(uint256) should be declared external:•
CovalentQueryTokenVesting.retrieveExcessTokens(uint256) (CovalentQueryTokenVesting.sol#193-196)•

setCompleted(uint256) should be declared external ermit(address,address,uint256,uint256,uint8,bytes32,bytes32) should be declared external:•
ERC20Permit.permit(address,address,uint256,uint256,uint8,bytes32,bytes32) (ERC20Permit/ERC20Permit.sol#45-72)•

nonces(address) should be declared external:•
ERC20Permit.nonces(address) (ERC20Permit/ERC20Permit.sol#77-79)•

Adherence to Best Practices

The function exists to recover tokens that users may inadvertently transfer to the contract (such transfer cause users to• rescueTokens CovalentQueryToken

https://github.com/OpenZeppelin/openzeppelin-contracts/pull/2237

effectively lose their tokens). At first, the purpose of appears unclear, as the documentation is rather short. We suggest having improved
documentation stating the functions purpose. Example: "This function allows rescuing funds that users may inadvertently transfer to the CovalentQueryToken
contract".

• rescueTokens

Not fixed

In , the constructor does not check if the given contract address is a contract or not. Add such a check (e.g., using
the library).

• contracts/CovalentQueryTokenVesting.sol
Address Not fixed

In (L42) the message "CovalentQueryToken token address is not valid" covers more cases that the check being done:
. Hence, we suggest changing it to “CovalentQueryToken token address is not different from 0x0”.

• contracts/CovalentQueryTokenVesting.sol
address(_token) != address(0x0) Fixed

Some functions have parameters that shadow state variables. We recommend renaming such parameters. See Slither output.• Not fixed

Following , some functions should be declared as instead of to save gas. See Slither output.• Slither's recommendation external public Not fixed

In the file, document which node version one should be using, as well as updated instructions on how to run the test suite.• README.md Not fixed

Test Results

Test Suite Results

Overall, the test suite has been found to cover many test case scenarios, although not necessarily covering all possible code paths (see coverage info).

Contract: Token
Setup: totalsupply, permit

✓ returns the total amount of tokens (77ms)
✓ returns correct permit hash

transfer
✓ should successfully transfer 1 wei (81ms)
✓ should successfully transfer full balance (72ms)
✓ should fail to transfer amount exceeding balance (71ms)

Rescue funds
✓ Should be able to get accidentally sent tokens back (356ms)

permit function
✓ permit (184ms)
✓ permit: wrong data (178ms)

Contract: Token
Token Vesting

✓ should test token vesting for userX (437ms)
✓ should test addVesting data (120ms)
✓ Removing a vesting entry with the owner account (204ms)
✓ Removing a vesting entry with a non-owner account (73ms)
✓ Trying to remove a non-existent vesting entry (58ms)
✓ Trying to remove an already released vesting entry (155ms)
✓ Trying to remove an already removed vesting entry (115ms)
✓ Trying to add a vesting entry from a non-owner account (52ms)
✓ should test token vesting for amount greater then balance of vesting contract (208ms)
✓ Trying to release the tokens associated with existing vesting entry (86ms)
✓ should test token vesting for amount exactly equal to the balance of vesting contract (4174ms)

19 passing (28s)

Code Coverage

Branch coverage is not extensive; around 27% of code branches are left untested, which could hide potential issues and or bugs. We suggest increasing that coverage to as
close as 100%.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

contracts/ 100 73.08 100 100

CovalentQueryToken.sol 100 50 100 100

CovalentQueryTokenVesting.sol 100 77.27 100 100

contracts/ERC20Permit/ 100 75 100 100

ERC20Permit.sol 100 75 100 100

IERC2612Permit.sol 100 100 100 100

All files 100 73.33 100 100

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

65c2fcf6bfd749f781709745d974d5a36a5cc920f496750c22befc8481da6701 ./contracts/CovalentQueryToken.sol

826324acff11e98482f8c42ae6bdc18dd3a592d402eabc0ae2018fa36cc9a78d ./contracts/Migrations.sol

f038e2daa6e29a8c2a03ddeb3674dacfa5a5e2e068b1d69cb38758c44ad77d64 ./contracts/CovalentQueryTokenVesting.sol

ec61823e14f5b2796866dcac4bd13ade1d858583ecbc5e91480786d36b79cfb1 ./contracts/ERC20Permit/ERC20Permit.sol

7fbb3fa5739ba273766081abcb03ff6f3fa15da76ee013436e8d33ad861b6986 ./contracts/ERC20Permit/IERC2612Permit.sol

Tests

17883bb1c939e025db28cf2b70d80fdfbdb66caeba23fc5fcd703ecb10735733 ./test/CovalentQueryToken.test.js

3ffb3eb1307af2923a3f5ddca720b117282347f7de5d5cc22bc6b363b9f437c5 ./test/CovalentQueryTokenVesting.test.js

80a9ab4ec5adc9da3817ecd91eb8ef764070ea8198ceb0da182bb9674998ff4c ./test/utils/permitUtils.js

https://github.com/crytic/slither/wiki/Detector-Documentation#public-function-that-could-be-declared-external

Changelog

2020-10-09 - Initial report•

2020-10-19 - Re-audit•

2020-10-22 - Re-audit (2)•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the
adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,
and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract
security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment
services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum
Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our
commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;
however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes
no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.
These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are
provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the
content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as
described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or
operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.
Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any
associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that
could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the
reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim
all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any
product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications
appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of
products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise
caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR
MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

Covalent Query Token Audit

