
SHERLOCK SECURITY REVIEW FOR

Prepared for: CovalentPrepared by: SherlockLead Security Expert: cergykDates Audited: January 22 - January 26, 2024Prepared on: March 1, 2024
1

https://github.com/CergyK


Introduction
The Ethereum Wayback Machine - Discover how the Covalent Network issafeguarding and enhancing Ethereum’s historical data availability.
ScopeRepository: covalenthq/cqt-stakingBranch: eth_migration2Commit: 80a254a3a57e6cb7983aa057d2f77877e296806e
For the detailed scope, see the contest details.
FindingsEach issue has an assigned severity:• Medium issues are security vulnerabilities that may not be directly exploitableor may require certain conditions in order to be exploited. All major issuesshould be addressed.• High issues are directly exploitable security vulnerabilities that need to befixed.
Issues found

Medium High8 0
Issues not fixed or acknowledged

Medium High0 0

1

https://github.com/sherlock-audit/2023-11-covalent/blob/main/README.md#audit-scope


IssueM-1: Validator cannot set newaddress ifmore than300 unstakes in it's array
Source: https://github.com/sherlock-audit/2023-11-covalent-judging/issues/25The protocol has acknowledged this issue.
Found byPUSH0, SadBase, alexbabits, bitsurfer, nobody2018, thank_you, yujin718
SummaryIf a validator has more than 300 accumulated unstakes associated with it, then itcannot set a new address for itself. The only way to decrease the length of the
Unstaking array is through the setValidatorAddress() function, but will revert if it'sarray is longer than 300 entries. A malicious delegator could stake 1,000 tokens,and then unstake 301 times with small amounts to fill up the unstaking array, andthere is no way to remove those entries from the array. Every time _unstake() iscalled, it pushes another entry to it's array for that validator.A malicious validator could also set it's new address to another validator, forcing amerge of information to the victim validator. The malicious validator can do thiseven when it's disabled with 0 tokens. So it could get to 300 length, and then sendall those unstakes into another victim validators unstaking array. This is the samekind of attack vector, but should be noted that validators can assign their addressto other validators, effectively creating a forceful merging of them.The README.md suggests there is a mechanism to counteract this: "In case if thereare more than 300 unstakings, there is an option to transfer the address withoutunstakings." But there appears to be no function in scope that can transfer theaddress of the validator without unstakings, or any other function that can reducethe unstakings array at all.
Vulnerability DetailSee Summary
ImpactValidator can be permanently stuck with same address if there are too many entriesin it's Unstaking array.

2

https://github.com/sherlock-audit/2023-11-covalent-judging/issues/25


Code SnippetValidator & Unstaking Structs: https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L35-#L51
setValidatorAddress() length check: https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L702 deletion ofarray inside setValidatorAddress(): https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L707
Tool usedManual Review
RecommendationConsider having a way to set a new address without unstakings, or allow forsmaller batches to be transferred during an address change if there are too many.Consider disallowing validators from changing their address to other validators.
Discussionsudeepdino008This is interesting. I do have few questions though
A malicious validator could also set it's new address to another validator, forcing amerge of information to the victim validator. The malicious validator can do thiseven when it's disabled with 0 tokens. So it could get to 300 length, and then sendall those unstakes into another victim validators unstaking array. This is the samekind of attack vector, but should be noted that validators can assign their addressto other validators, effectively creating a forceful merging of them.How is setValidatorAddress operates within a Validator storage struct, which isretrieved from a query _validators[validatorId]. So each validatorId maintains itsown unstakings etc. Even if a malicious validator sets its validator address toanother validator, the new unstakings are maintained within the currentvalidatorId's Validator instance (which is different from the victim validatorId andtherefore victim's Validator instance and its unstakings).Furthermore setting the newAddress to an existing validator address wouldtypically mean that the attacker doesn't own private key of the victim validator.This would cause loss of funds for the attacker, as the validator needs the privatekey corresponding to its address to retrieve the funds via redeeum ortransferUnstakedOut etc.

3

https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L35-
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L35-
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L702
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L702
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L707
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L707


sherlock-admin21 comment(s) were left on this issue during the judging contest.takarez commented:valid: there is no function for that unstaking if its more than 300 in thearray; medium(1)noslavpartially fixed byignore 0 amount unstakings and require unstaking length < 300 - sa46,nevillehuang@sudeepdino008 @noslav• What is the purpose of setValidatorAddress()? Is it simply to a feature to allowcurrent validator to operate with another address (given they would have tocall themselves, so I believe this does not cater to a private key loss scenario)• Can the validator still perform regular functionalities such as redeemingrewards, commissions submit proofs with no issue?If above scenarios are true, I believe this issue is low severitynoslav@sudeepdino008 @noslav• What is the purpose of setValidatorAddress()? Is it simply to afeature to allow current validator to operate with another address(given they would have to call themselves, so I believe this does notcater to a private key loss scenario)• Can the validator still perform regular functionalities such asredeeming rewards, commissions submit proofs with no issue?If above scenarios are true, I believe this issue is low severity@nevillehuang This is indeed true, the function does not cater to the private keyloss scenario but rather a private key leak scenario where an unknown entity hastaken hold of the private key, the action required is for the original owner entity toquickly switch the validator staking address to another address they control tothereby save the stake also from being stolen. This function now has the checkthat it's not another existing address in the system that belongs to a delegator or avalidator.In the case of a complete loss of private key, the validator is responsible for anysuch full loss and has to deal with the "not your keys not your crypto" essentiallyhaving no recourse to _unstake _stake or _redeemRewards with the same address
4

https://github.com/covalenthq/cqt-staking/pull/125/commits/63dae4a54c022b8d16e1df6467d98f2b998a1365


sherlock-adminEscalatethis issue should be Invalid.This is already a known issue by the team, and was described in thereadMeWhen changing its address a validator cannot transferunstakings if there are more than 300 of them. This is to ensurethe contract does not revert from too much gas used. In case ifthere are more than 300 unstakings, there is an option totransfer the address without unstakings.https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/README.mdscroll down to the Staking Explained section to find it.You've deleted an escalation for this issue.midori-fuseI disagree with the escalation.The first part (cannot transfer unstakings) is known, but the "In case if there aremore than 300 unstakings..." part is not. Report #67 proves that it is not possibleeven for an admin to transfer the validator address without unstakings, so thequoted README part actually confirms that a core contract functionality is broken.ArnieGod@midori-fuse i agree with you removing escalation.ArnieGod@midori-fuse escalation removed thanks for pointing out my misjudgment.CergyKFix LGTMMLON33The protocol team has acknowledged the issue.

5

https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/README.md
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/README.md


Issue M-2: OperationalStaking may not possess enoughCQT for the last withdrawal
Source: https://github.com/sherlock-audit/2023-11-covalent-judging/issues/39
Found byaslanbek, bitsurfer, cheatcode, dany.armstrong90
SummaryBoth _sharesToTokens and _tokensToShares round down instead of rounding offagainst the user. This can result in users withdrawing few weis more than theyshould, which in turn would make the last CQT transfer from the contract revertdue to insufficient balance.
Vulnerability Detail1. When users stake, the shares they will receive is calculated via

_tokensToShares:
function _tokensToShares(

uint128 amount,
uint128 rate

) internal view returns (uint128) {
return uint128((uint256(amount) * DIVIDER) / uint256(rate));

}

So the rounding will be against the user, or zero if the user provided the rightamount of CQT.2. When users unstake, their shares are decreased by
function _sharesToTokens(

uint128 sharesN,
uint128 rate

) internal view returns (uint128) {
return uint128((uint256(sharesN) * uint256(rate)) / DIVIDER);

}

So it is possible to stake and unstake such amounts, that would leave dust amountof shares on user's balance after their full withdrawal. However, dust amounts cannot be withdrawn due to the check in _redeemRewards:
6

https://github.com/sherlock-audit/2023-11-covalent-judging/issues/39


require(
effectiveAmount >= REWARD_REDEEM_THRESHOLD,
"Requested amount must be higher than redeem threshold"

);

But, if the user does not withdraw immediately, but instead does it after themultiplier is increased, the dust he received from rounding error becomeswithdrawable, because his totalUnlockedValue becomes greater than
REWARD_REDEEM_THRESHOLD.So the user will end up withdrawing more than their initialStake +
shareOfRewards, which means, if the rounding after all other operations staysnet-zero for the protocol, there won't be enough CQT for the last CQT withdrawal(be it transferUnstakedOut, redeemRewards, or redeemCommission).Foundry PoC
ImpactVictim's transactions will keep reverting unless they figure out that they need todecrease their withdrawal amount.
Code Snippethttps://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L386-L388https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L393-L395
Tool usedManual Review
Recommendation
_sharesToTokens and _tokensToShares, instead of rounding down, should alwaysround off against the user.
Discussionsherlock-admin21 comment(s) were left on this issue during the judging contest.

7

https://gist.github.com/aslanbekaibimov/e0962c60213ac460c8ea1c3b013e5537
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L386-L388
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L386-L388
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L393-L395
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L393-L395


takarez commented:valid: watson explained how rounding error would prevent the the last towithdraw the chance to unless there are some changes in place;medium(5)noslavThe issue lies in this check
require(

effectiveAmount >= REWARD_REDEEM_THRESHOLD,
"Requested amount must be higher than redeem threshold"

);

where the value by default for REWARD_REDEEM_THRESHOLD is 10*8 and henceredemption below that value is not possible leading to the build up of dust as theissue describes until that threshold is crossednoslavfixed by round up sharesToBurn and sharesToRemove due to uint258 to uint128 corogarciacorrect PR commit https://github.com/covalenthq/cqt-staking/pull/125/commits/5a771c3aa5f046c06bd531f0f49530fb7d7bfdeeCergyKFix LGTMsherlock-adminThe protocol team fixed this issue in PR/commit https://github.com/covalenthq/cqt-staking/pull/125/commits/1f957c05aacfb765d751a5ec3cbfd1798e1fae15.sherlock-adminThe Lead Senior Watson signed off on the fix.

8

https://github.com/covalenthq/cqt-staking/pull/125/commits/1f957c05aacfb765d751a5ec3cbfd1798e1fae15
https://github.com/covalenthq/cqt-staking/pull/125/commits/5a771c3aa5f046c06bd531f0f49530fb7d7bfdee
https://github.com/covalenthq/cqt-staking/pull/125/commits/5a771c3aa5f046c06bd531f0f49530fb7d7bfdee
https://github.com/covalenthq/cqt-staking/pull/125/commits/1f957c05aacfb765d751a5ec3cbfd1798e1fae15
https://github.com/covalenthq/cqt-staking/pull/125/commits/1f957c05aacfb765d751a5ec3cbfd1798e1fae15


Issue M-3: New staking between reward epochs will di-lute rewards for existing stakers. Anyone can then front-run OperationalStaking.rewardValidators() tosteal rewards
Source: https://github.com/sherlock-audit/2023-11-covalent-judging/issues/47
Found byAtharv, Bauer, PUSH0, alexbabits, aslanbek, cawfree, cergyk, hunter_w3b, ljj,petro1912, thank_you
SummaryIn the Covalent Network, validators perform work to earn rewards, which isdistributed through OperationalStaking. The staking manager is expected toregularly invoke rewardValidators() to distribute staking rewards accordingly tothe validator, and its delegators.However, the function takes into account all existing stakes, including new ones.This makes newer stakes being counted equally to existing stakes, despite newerstakes haven't existed for a working epoch yet.An attacker can also then front-run rewardValidators() to steal a share of therewards. The attacker gains a share of the reward, despite not having fully stakedfor the corresponding epoch.
Vulnerability DetailThe function rewardValidators() is callable only by the staking manager todistribute rewards to validators. The rewards is then immediately distributed to thevalidator, and all their delegators, proportional to the amount staked.However, any new staking in-between reward epochs still counts as staking. Theyreceive the full reward amount for the epoch, despite not having staked for the fullepoch.An attacker can abuse this by front-run the staking manager's distribution with astake transaction. The attacker stakes a certain amount right before the stakingmanager distributes rewards, then the attacker is already considered to have ashare of the reward, despite not having staked during the epoch they were entitledto.This also applies to re-stakings, i.e. unstaked tokens that are re-staked into thesame validator: Any stake recovers made through recoverUnstaking() is

9

https://github.com/sherlock-audit/2023-11-covalent-judging/issues/47


considered a new stake. Therefore an attacker can use the same funds torepeatedly perform the attack.
Proof of concept0. Alice is a validator. She has two delegators:• Alicia delegating 5000 CQT.• Alisson delegating 15000 CQT.• Alice herself stakes 35000 CQT, for a total of 50000.1. The staking manager distributes 1000 CQT to Alice. This is then distributedproportionally across Alice and her delegators.2. Bob notices the staking manager, and front-runs with a 50000 CQT stake intoAlice.• Alice now has a total stake of 100000, with half of it belonging to Bob.• Bob's staking tx goes through before the staking manager's tx.3. Bob now owns half of Alice's shares. He is distributed half of the rewards,despite having staked into Alice for only one second.4. Bob can repeat this attack for as often as they wish to, by unstaking thenrestaking through recoverUnstaking().
ImpactUnfair distribution of rewards. New stakers get full rewards for epochs they didn'tfully stake into.
Code Snippethttps://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L262
Tool usedManual Review
RecommendationUse a checkpoint-based shares computation. An idea can be as follow:• For new stakings, don't mint shares for them right away, but add them into a"pending stake" variable.

10

https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L262
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L262


• For unstakings, do burn their shares right away, as with the normal setting.• When reward is distributed, distribute to existing stakes first (i.e. increase theshare price only for the existing shares), only then mint new shares for thepending stakes.
Discussionsudeepdino008• there is a bit of unpredictability with which rewardValidators is called. It mightnot be possible to ascertain when it will be called.• What value does Bob get by getting in just before the reward distribution, andthen getting out afterwards? Why would he not simply remain staked?• Note that for each quorum, the stake states (needed for reward calculation) isfetched for the block height (in which that particular quorum was emitted).Even though rewardValidators is called every 12 hours, the offchain system isdoing a lot more frequent stake state checks.sherlock-admin21 comment(s) were left on this issue during the judging contest.takarez commented:valid: users that stakes immediately will be accounted for during thereward distribution; medium as there is no loss of funds; medium(4)nevillehuang1. This can be done by observing the mempool for calls to rewardValidators()given staking contract is deployed on mainnet2. I believe the PoC in #34 can help you understand a possible impact:In the simple demonstration below, we show that an attacker _BOB maysteal ~66% of Validator _ALICE's rewards by frontrunning an incomingcall to [rewardValidators(uint128,uint128],uint128[]):3. How does this prevent rewards siphoning stated in this issue?sudeepdino0081. you can observe the mempool for rewardValidators, but by that point, theoffchain system has already calculated the validator rewards by taking thestake states into account i.e. when the call is made for rewardValidators, therewards for each validator is already decided. Front running this call wouldn'tchange anything.

11

https://github.com/sherlock-audit/2023-11-covalent/blob/218d4a583286fa0d3d4263151a927f6cc9465b62/cqt-staking/contracts/OperationalStaking.sol#L40
https://github.com/sherlock-audit/2023-11-covalent/blob/218d4a583286fa0d3d4263151a927f6cc9465b62/cqt-staking/contracts/OperationalStaking.sol#L262C14-L262C101


2. a cooldown for recoverUnstaking is implemented which prevents delegatorsfrom entering and exiting staked positions with the same validator.3. BOB really doesn't "steal" the rewards; He entered the staking position at aparticular time and was part of the staking pool. Surely we can make itdifficult for them to re-enter after exiting, which is what 2. achieves.https://github.com/covalenthq/cqt-staking/pull/125/commits/a609cca0426cb22cbf5064212341c14c288efeda for 2.CergyKFix LGTMsherlock-adminThe protocol team fixed this issue in PR/commit https://github.com/covalenthq/cqt-staking/commit/a609cca0426cb22cbf5064212341c14c288efeda.sherlock-adminThe Lead Senior Watson signed off on the fix.

12

https://github.com/covalenthq/cqt-staking/pull/125/commits/a609cca0426cb22cbf5064212341c14c288efeda
https://github.com/covalenthq/cqt-staking/pull/125/commits/a609cca0426cb22cbf5064212341c14c288efeda
https://github.com/covalenthq/cqt-staking/commit/a609cca0426cb22cbf5064212341c14c288efeda
https://github.com/covalenthq/cqt-staking/commit/a609cca0426cb22cbf5064212341c14c288efeda


IssueM-4: Frontrunning validator freeze towithdraw to-kens
Source: https://github.com/sherlock-audit/2023-11-covalent-judging/issues/50
Found byPUSH0
SummaryCovalent implements a freeze mechanism to disable malicious Validators, thisallows the protocol to block all interactions with a validator when he behavesmaliciously. Covalent also implements a timelock to ensure tokens are onlywithdraw after a certain amount of time. After the cooldown ends, tokens canalways be withdrawn.Following problem arise now: because the tokens can always be withdrawn, amalicious Validator can listen for a potential "freeze" transaction in the mempool,front run this transaction to unstake his tokens and withdraw them after thecooldown end.
Vulnerability DetailAlmost every action on the Operational Staking contract checks if the validator isfrozen or not:
require(!v.frozen, "Validator is frozen");

The methods transferUnstakedOut() and recoverUnstaking() are both not checkingfor this, making the unstake transaction front runnable. Here are the only checks oftransferUnstakedOut():
require(validatorId < validatorsN, "Invalid validator");

require(_validators[validatorId].unstakings[msg.sender].length >
unstakingId, "Unstaking does not exist");,!

Unstaking storage us =
_validators[validatorId].unstakings[msg.sender][unstakingId];,!

require(us.amount >= amount, "Unstaking has less tokens");

https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L559-L572This makes following attack possible:
13

https://github.com/sherlock-audit/2023-11-covalent-judging/issues/50
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L559-L572
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L559-L572


1. Validator cheats and gets rewarded fees.2. Protocol notices the misbehavior and initiates a Freeze transaction3. Validator sees the transaction and starts a unstake() transaction with highergas.4. Validator gets frozen, but the unstaking is already done5. Validator waits for cooldown and withdraws tokens.Now the validator has gained unfairly obtained tokens and withdrawn his stake.
ImpactMalicious validators can front run freeze to withdraw tokens.
Code Snippethttps://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L559-L572
Tool usedManual Review
RecommendationImplement a check if validator is frozen on transferUnstakedOut() and
recoverUnstaking(), and revert transaction if true.If freezing all unstakings is undesirable (e.g. not freezing honest unstakes), thesponsor may consider storing the unstake timestamp as well:• Store the unstaking block number for each unstake.• Freeze the validator from a certain past block only, only unstakings that occurfrom that block onwards will get frozen.
Discussionsherlock-admin21 comment(s) were left on this issue during the judging contest.takarez commented:invalid: this is theoretically not possile due to the cooldown time; thetime will allow the governance to pause the contract/function

14

https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L559-L572
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L559-L572


noslavfixed by check validator not frozen for recoverUnstaking transferUnstakedOutnevillehuangInvalid, both are user facing functions, not validators.Oot2kEscalateI believe this issue was mistakenly excluded, the frontrunning of freeze transactionis indeed a problem like described in the Report.The impact described is clearly medium, because this attack makes the freezefunction almost useless. Also it generates clear loss of funds for the protocol,because in most cases a malicious validator might accrue rewards which do notbelong to him.This issue can not really be fixed by governance pausing the contract, this wouldpause the contract for everyone else aswell and cause even more damage.The fix by protocol teams looks good.To summarize: Issue is fixed, impact is High, issue should be open and valid.sherlock-adminEscalateI believe this issue was mistakenly excluded, the frontrunning of freezetransaction is indeed a problem like described in the Report.The impact described is clearly medium, because this attack makes thefreeze function almost useless. Also it generates clear loss of funds forthe protocol, because in most cases a malicious validator might accruerewards which do not belong to him.This issue can not really be fixed by governance pausing the contract,this would pause the contract for everyone else aswell and cause evenmore damage.The fix by protocol teams looks good.To summarize: Issue is fixed, impact is High, issue should be open andvalid.You've created a valid escalation!To remove the escalation from consideration: Delete your comment.You may delete or edit your escalation comment anytime before the 48-hourescalation window closes. After that, the escalation becomes final.
15

https://github.com/covalenthq/cqt-staking/pull/125/commits/de86308999d093a3f4553aa7094ed4d29be8beb0


midori-fuseAdding to the escalation point, there is no way for governance to forcefully claim anunstaking (or any rewards that has been distributed). Therefore eventually thecontract must be unpaused to avoid locking of existing funds, and the maliciousactor fully gets away.Oot2kAdditionally I think this issue should be judged as HIGH severity based on followingfacts:• it create a clear loss of funds for the protocol (The main reason to freeze avalidator is to penalize him for malicious behavior, this can include stealingfunds / rewards)• there is no way to prevent this behavior without causing more damage• attack cost is really low -> just transaction feenevillehuang@Oot2k @midori-fuse @noslav Could you shed more details on how the validatorcan cheat and get rewarded fees and in what scenarios is a freeze initiated. Itseems to me like a hypothetical scenario given my understanding is validator is stillunstaking amounts that belongs to him, but could be significant.1. Validator cheats and gets rewarded fees.Additionally, this issue seems to be dependent on a front-running attack vector, so:• If flashbots are considered similar to issue here to mitigate front-running, Ibelieve this could be low severity• If not, if it is true that the freeze mechanism can be bypassed, then I believethis is medium severity, since it is dependent on a hypothetical scenario thatvalidators turn malicious.Additionally, is there any mechanisms in place to mitigate malicious validators?midori-fuseProviding evidence for the bypassing of freeze mechanism. Search the followingphrase within the contract:
require(!v.frozen, "Validator is frozen");

It appears 6 times throughout the contract, and covers all entry points except
transferUnstakedOut() (except admin and reward manager functions). Eyeballingall other external functions (except the ones mentioned) will show that they all gothrough _stake() or _unstake(), which has the appropriate check.

16

https://github.com/sherlock-audit/2023-11-convergence-judging/issues/165#issuecomment-1884638007


For transferUnstakedOut(), there is no check for whether the validatorcorresponding to that unstake has been frozen or not, neither is there in_transferFromContract().The flow for an unstaking to happen (for delegators or validators alike) is that:• The user calls unstake() or unstakeAll().• Wait for the cooldown.• Call transferUnstakedOut() to actually receive those tokens.Then the freeze is bypassed if the user is able to call unstake before the validator isfrozen. Front-running is only required to maximize the getaway amounts bysqueezing some extra rewards, you can just unstake before getting freeze and youbypass the freeze already. Therefore this is just a bypassing of freeze, and notdependent on front-running. We simply show the scenario which has the maximumimpact.midori-fuseFor the scenario where a validator cheats, there are certain ways for it to happen:• Two or more validators collude and are able to force quorum on certainsessions, earning them rewards on an incorrect block specimen.• A validator finds a systemic exploit and/or simply not doing work correctly(e.g. admin determined them to repeatedly copy-paste other validators' worksby watching the mempool or copying existing submissions, despite it beingwrong or not). Note that a disabled validator can still unstake and get awaywith funds, unlike the frozen scenario (without the current bypassing issue).The freeze is there to protect against these kind of situations.nevillehuangI personally am not convinced of this issue because the admins can always performa system wide contract pause before freezing validators in separate transactionsvia flashbots (which pauses all actions, including transferUnstakedOut), whichpossibly mitigates this issue. This is in addition to the fact that there is a 28 dayunstaking cooldown period which is more than sufficient time to react to maliciousvalidators by admins (which in itself is a mitigation).So I will leave it up to @Czar102 and sponsors to decide validity.midori-fuse28 day unstaking cooldown does not mitigate this. As soon as the unstaking isdone, the amount can be transferred out after 28 days (and the admin unpausesthe system). Even if the system is paused, there are no admin actions that canrevoke an unstaking that's on cooldown.
17

https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L559-L572
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L379-L381


Keeping the system paused equates to locking all funds, including other validators'funds and their respective delegators, and the admin still cannot take over thestolen funds.Furthermore the issue shows that freezing can be bypassed, and front-running isnot a condition. The validator can just unstake right after the exploit, and the adminis already powerless before noticing the issue.Just adding some extra points. As part of the team making the escalation, we havethe responsibility to provide extra information and any context the judges' mighthave missed, but we respect the judges' decision in any case.Oot2kAgree with @midori-fuse here. Cooldown -> does not do anything because themalicious user still transfers tokens out (this is the root cause of this issue) Admincan pause protocol -> this will pause all actions for other users as well, as soon asthe protocol is unpaused funds can be withdrawn again Malicious funds -> yes thisreport assumes there is a way to get funds maliciously and for this reason the teamimplemented the freeze mechanismI think this summarizes the issue pretty well and should be enough for Sherlock tovalidate.nevillehuangIf the hypothetical scenario of a way to cheat funds/validators being malicious isconsidered as a valid reason that break admin initiated pause mechanism, I canagree this is a valid medium since I believe the only way to resolve the issue is forthe owner to perform an upgrade to the contract.Although I must say, the whole original submission is only presenting afront-running scenario, and the watsons only realized after that front-running is notnecessary but did not include it in the original submission, and hence myarguments.Czar102Great points made, the frontrunning argument is also not convincing to me since it'squite clear that this race condition is by design and it's admin's responsibility tokeep the information about the freeze private until confirmation.But, this issue can also be considered a loss of functionality (freezing stakes) dueto the existence of a beneficial optimal game-theoretic behavior of the attacker.I'm currently inclined to accept this as a Medium severity issue.Czar102Result: Medium Unique
18



sherlock-admin2Escalations have been resolved successfully!Escalation status:• Oot2k: acceptedsherlock-adminThe protocol team fixed this issue in PR/commit https://github.com/covalenthq/cqt-staking/pull/125/commits/de86308999d093a3f4553aa7094ed4d29be8beb0.CergyKFix LGTMsherlock-adminThe Lead Senior Watson signed off on the fix.

19

https://github.com/sherlock-audit/2023-11-covalent-judging/issues/50/#issuecomment-1940886577
https://github.com/covalenthq/cqt-staking/pull/125/commits/de86308999d093a3f4553aa7094ed4d29be8beb0
https://github.com/covalenthq/cqt-staking/pull/125/commits/de86308999d093a3f4553aa7094ed4d29be8beb0


Issue M-5: No cooldown in recoverUnstaking(), opens upseveral possible attacks by abusing this functionality.
Source: https://github.com/sherlock-audit/2023-11-covalent-judging/issues/52
Found byPUSH0
SummaryThe function recoverUnstaking() allows a user to recover any of their unstaking tothe same validator.However, the function has no cooldown, i.e. a user can unstake and restake to thesame validator at any time they prefer.We describe several attack vectors that may arise from this issue.
Vulnerability DetailWhen a user unstakes, they must wait for a cooldown of 28 days (180 days ifvalidator) before being able to withdraw. The user also has the choice to revert theaction, and re-stake said amount back to the same validator by calling
recoverUnstaking().However, the function recoverUnstaking() has no cooldowns. In other words, auser can re-stake as many times as they like, at any time they prefer, without beingsubject to the unstaking cooldown.This opens up several possible attack vectors by abusing the lack of cooldown ofthis functionality.Next section we describe some of the possible attack vectors.
Denying delegators for any validatorsAn attacker with a large enough capital can do the following to deny a targetvalidator from getting delegated stakings:• Max stake to the target validator, up to staked * maxCapMultiplier, butimmediately unstake.• Whenever someone stakes, front-run them with a recoverUnstaking(),re-staking their max stake.

20

https://github.com/sherlock-audit/2023-11-covalent-judging/issues/52


• The user's stake tx fails, as the attacker has taken up the maximum possiblestake.• The attacker then unstakes, able to repeat the attack when necessary.The impact is that a validator can be denied from getting delegators.
Stealing of rewardsThis attack vector builds upon a separate issue we have submitted, about unfairdistribution of rewards for mid-epoch stakers.An attacker can perform the following, while greatly de-risking themselves fromstaking.• Stake an amount they want, but unstake.• Listen to the staking manager's rewardValidators() with the intent offront-running.• If the attacker choose to, front-run rewardValidators() calls, unfairly taking ashare of the rewards.• Unstake.The attacker benefits from the following:• While unstaking, their 28-day cooldown still counts. They greatly de-riskthemselves by being able to choose whether or not to steal rewards (andreset countdown), or to take profits.• Unstakings from frozen validators can still be withdrawn once the cooldownhas passed. By keeping themselves in an unstaking state, they bypass thefreezing mechanism.• They eliminate the risk from other standard staking mechanism, should theybe implemented in the future (e.g. slashing).
Impact
recoverUnstaking() can be abused, opens up several possible attack vectors, withvarying impacts (shown above).
Code Snippethttps://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L542

21

https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L542
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L542


Tool usedManual Review
RecommendationImplement a cooldown for recoverUnstaking(). A short cooldown (e.g. a few days)is sufficient.
Discussionsherlock-admin21 comment(s) were left on this issue during the judging contest.takarez commented:invalid: the coolDown is in place for withdrawing tokens not for reStaking'emnoslavfixed byimplement recoverUnstakingCoolDown period for recoverUnstaking levera. . .noslavsupporting fixes by https://github.com/covalenthq/cqt-staking/commit/a609cca0426cb22cbf5064212341c14c288efedaCergyKFix LGTMsherlock-adminThe protocol team fixed this issue in PR/commit https://github.com/covalenthq/cqt-staking/pull/125/commits/e7ab9ab7eb89f47669dfc0c4ef175f6ca074328b.sherlock-adminThe Lead Senior Watson signed off on the fix.

22

https://github.com/covalenthq/cqt-staking/pull/125/commits/e7ab9ab7eb89f47669dfc0c4ef175f6ca074328b
https://github.com/covalenthq/cqt-staking/commit/a609cca0426cb22cbf5064212341c14c288efeda
https://github.com/covalenthq/cqt-staking/commit/a609cca0426cb22cbf5064212341c14c288efeda
https://github.com/covalenthq/cqt-staking/pull/125/commits/e7ab9ab7eb89f47669dfc0c4ef175f6ca074328b
https://github.com/covalenthq/cqt-staking/pull/125/commits/e7ab9ab7eb89f47669dfc0c4ef175f6ca074328b


Issue M-6: validatorMaxStake can be bypassed by using
setValidatorAddress()

Source: https://github.com/sherlock-audit/2023-11-covalent-judging/issues/66
Found byAl-Qa-qa, PUSH0, SadBase, aslanbek, cergyk, petro1912, qmdddd, zach223
Summary
setValidatorAddress() allows a validator to migrate to a new address of theirchoice. However, the current logic only stacks up the old address' stake to the newone, never checking validatorMaxStake.
Vulnerability DetailThe current logic for setValidatorAddress() is as follow:
function setValidatorAddress(uint128 validatorId, address newAddress) external

whenNotPaused {,!

// ...
v.stakings[newAddress].shares += v.stakings[msg.sender].shares;
v.stakings[newAddress].staked += v.stakings[msg.sender].staked;
delete v.stakings[msg.sender];
// ...

}

The old address' stake is simply stacked on top of the new address' stake. Thereare no other checks for this amount, even though the new address may alreadyhave contained a stake.Then the combined total of the two stakings may exceed validatorMaxStake. Thisaccordingly allows the new (validator) staker's amount to bypass said threshold,breaking an important invariant of the protocol.
Proof of concept0. Bob the validator has a self-stake equal to validatorMaxStake.1. Bob has another address, B2, with some stake delegated to Bob's validator.2. Bob migrates to B2.3. Bob's stake is stacked on top of B2. B2 becomes the new validator address,but their stake has exceeded validatorMaxStake.

23

https://github.com/sherlock-audit/2023-11-covalent-judging/issues/66


4. B2 can then repeated this procedure to addresses B3, B4, ..., despite B2already holding more than the max allowed amount.Bob now holds more stake than he should be able to, allowing him to earn an unfairamount of rewards compared to other validators.We also note that, even if the admin tries to freeze Bob, he can front-run the freezewith an unstake, since unstakes are not blocked from withdrawing (after cooldownends).
Impact• Breaking an important invariant of the protocol.• Allowing any validator to bypass the max stake amount. In turn allows them toearn an unfair amount of validator rewards in the process.• Allows a validator to unfairly increase their max delegator amount, as an effectof increasing (validator stake) * maxCapMultiplier.
Code Snippethttps://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L689-L711
Tool usedManual Review
RecommendationCheck that the new address's total stake does not exceed validatorMaxStakebefore proceeding with the migration.
Discussionsherlock-admin21 comment(s) were left on this issue during the judging contest.takarez commented:valid: user can exceed max deposit and potentially increase his maxdelegator amoun; high(1)noslavfixed by prevent new validator address stake from exceeding max stake - sa66/s. . .

24

https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L689-L711
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L689-L711
https://github.com/covalenthq/cqt-staking/pull/125/commits/0eba6b318b9400e4a5d6511ba4c96922b83b9abd


CergyKFix LGTMsherlock-adminThe protocol team fixed this issue in PR/commit https://github.com/covalenthq/cqt-staking/pull/125/commits/0eba6b318b9400e4a5d6511ba4c96922b83b9abd.sherlock-adminThe Lead Senior Watson signed off on the fix.

25

https://github.com/covalenthq/cqt-staking/pull/125/commits/0eba6b318b9400e4a5d6511ba4c96922b83b9abd
https://github.com/covalenthq/cqt-staking/pull/125/commits/0eba6b318b9400e4a5d6511ba4c96922b83b9abd


IssueM-7: OperationalStaking::_unstake Delegators canbypass 28 days unstaking cooldown when enough re-wards have accumulated
Source: https://github.com/sherlock-audit/2023-11-covalent-judging/issues/78
Found bycergyk, irresponsible, qmdddd
SummaryWhen rewards are distributed, they are distributed evenly accross all of the sharesheld for a validator. However participants collecting rewards burn shares, and thusreceive less rewards in subsequent rounds, compared to participants which haveleft rewards in the contract. This means that delegators can unstake instead ofredeeming rewards, which will progressively replace the initial staked amount withclaimable rewards.
Vulnerability DetailWe can see in the function redeemRewards that the equivalent amount of shares isburned to redeem: https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L616-L631This means that by redeeming rewards a validator will receive less of the futurerewards than the stake he invested.Conversely, this means that delegators can progressively derisk their stakingposition by burning small quantity of shares from their stake (by calling unstake)instead of claiming rewards. When enough rewards accumulated, they have theequivalent of their initial amount in the contract, but it is less risky, since asrewards, they are not subject to the unstaking cooldown of 28 days and can betransferred out immediately.
ScenarioAlice is a validator staking 35 000 CQT. Bob delegates 35 000 CQT to Alice.Shares distribution:• Alice owns 35 000e18 shares• Bob owns 35 000e18 shares

26

https://github.com/sherlock-audit/2023-11-covalent-judging/issues/78
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L616-L631
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/OperationalStaking.sol#L616-L631


Owner distributes rewards to the tune of 70000 CQT (an exaggerated amount tomake the point here)Alice withdraws all her rewards, and burning half of her shares Bob unstakes all ofhis position, but does not redeem his rewardsShares distribution:• Alice owns 17 500e18 shares• Bob owns 17 500e18 sharesAlice and Bob still have the same number of shares, and have the same claim tofuture rewards. However Bob's position has less risk compared to a normaldelegator, since he can get all of his funds out anytime by calling redeemRewards,and does not have to wait a cooldown period.
ImpactCode SnippetTool usedManual Review
RecommendationUse a claimedRewards mapping to track already claimed rewards instead of burningshares when redeeming rewards
Discussionsherlock-admin21 comment(s) were left on this issue during the judging contest.takarez commented:invalid: should provide a POCnoslavfixed partially byprevent bypassing cooldown with redelegateUnstaked - sa78/sa68/sa76rogarciaPR: https://github.com/covalenthq/cqt-staking/pull/125 commit:https://github.com/covalenthq/cqt-staking/pull/125/commits/5bf8940c8d5642652b1987cc74cb2f6780b06b08

27

https://github.com/covalenthq/cqt-staking/pull/125/commits/5bf8940c8d5642652b1987cc74cb2f6780b06b08
https://github.com/covalenthq/cqt-staking/pull/125
https://github.com/covalenthq/cqt-staking/pull/125/commits/5bf8940c8d5642652b1987cc74cb2f6780b06b08
https://github.com/covalenthq/cqt-staking/pull/125/commits/5bf8940c8d5642652b1987cc74cb2f6780b06b08


sherlock-adminEscalateissue #68 is not a duplicate of this issue at all and should be its ownissue.You've deleted an escalation for this issue.sherlock-adminThe protocol team fixed this issue in PR/commit https://github.com/covalenthq/cqt-staking/pull/125/commits/5bf8940c8d5642652b1987cc74cb2f6780b06b08.sherlock-adminThe Lead Senior Watson signed off on the fix.

28

https://github.com/covalenthq/cqt-staking/pull/125/commits/5bf8940c8d5642652b1987cc74cb2f6780b06b08
https://github.com/covalenthq/cqt-staking/pull/125/commits/5bf8940c8d5642652b1987cc74cb2f6780b06b08


IssueM-8: BlockSpecimenProofChain::submitBlockSpecimenProofBlockspecimenproducer cangreatly reducesessiondu-ration by submitting fake block specimen in the future
Source: https://github.com/sherlock-audit/2023-11-covalent-judging/issues/79
Found bycergyk
SummaryBlock specimen producers submit specimens for a given block number during alimited time called a session. Any block producer can start a session by calling
submitBlockSpecimenProof for a given block number. This means that a blockspecimen producer can start a session for a block which does not exist yet, andseverily reduce the actual session time, since honest block specimen producer canonly participate between the time the block has been created and the end ofsession.
Vulnerability DetailWe can see that a session is started when the first specimen for the block height issubmitted: https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/BlockSpecimenProofChain.sol#L346-L348This means that if a malicious block specimen producer has sent some invalid datafor a block height which is in the future, the session is still started for that block.The following check ensures that a producer can not call submit for a block too farin the future: https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/BlockSpecimenProofChain.sol#L344But since the default value for cd.allowedThreshold would be 100 blocks, and asession duration would be approximately 240 blocks, we can see that a maliciousblock producer can reduce the actual session duration for honest producers by half.
ImpactThe block specimen production session can be greatly reduced by a maliciousproducer (up to a half with current deploy parameters).
Code Snippet

29

https://github.com/sherlock-audit/2023-11-covalent-judging/issues/79
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/BlockSpecimenProofChain.sol#L346-L348
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/BlockSpecimenProofChain.sol#L346-L348
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/BlockSpecimenProofChain.sol#L344
https://github.com/sherlock-audit/2023-11-covalent/blob/main/cqt-staking/contracts/BlockSpecimenProofChain.sol#L344


Tool usedManual Review
RecommendationPlease consider starting the session at the estimated timestamp of the considered
blockHeight:
- session.sessionDeadline = uint64(block.number + _blockSpecimenSessionDuration);
+ uint64 timestampOnDestChain = (blockHeight-cd.blockOnTargetChain)*cd.secondsPe c

rBlock-cd.blockOnCurrentChain*_secondsPerBlock;,!

+ session.sessionDeadline = uint64(timestampOnDestChain +
_blockSpecimenSessionDuration);,!

Discussionsherlock-admin21 comment(s) were left on this issue during the judging contest.takarez commented:valid: user can submit fake here also; medium(3)noslavwe can mitigate this a bit although not completely as we’re currently tied to thisway of doing things. We use the block numbers on the current chain (aka currentblock number on moonbeam + number of blocks to wait for session duration) todetermine the deadline for any input block specimen number.. there’s currently noway to know the head of the source chain (ethereum) except through theestimated calculation being done in the contract where block time * time diff fromlast chain sync tx and we can use to create a shorted upper bound so blocks toofar in the future cannot be submitted!noslavpartially fixed byimpl proof submission upper bounds to mitigate future block deadlinesCergyKFix LGTMsherlock-adminThe protocol team fixed this issue in PR/commit https://github.com/covalenthq/cqt-staking/pull/125/commits/481fcd4ea97e7f6e998dd30ef15122a8e256e5dc.
30

https://github.com/covalenthq/cqt-staking/pull/125/commits/481fcd4ea97e7f6e998dd30ef15122a8e256e5dc
https://github.com/covalenthq/cqt-staking/pull/125/commits/481fcd4ea97e7f6e998dd30ef15122a8e256e5dc
https://github.com/covalenthq/cqt-staking/pull/125/commits/481fcd4ea97e7f6e998dd30ef15122a8e256e5dc


sherlock-adminThe Lead Senior Watson signed off on the fix.

31



Disclaimers
Sherlock does not provide guarantees nor warranties relating to the security of theproject.Usage of all smart contract software is at the respective users’ sole risk and is theusers’ responsibility.

32


