
Smart Contract Code

Review And Security

Analysis Report

Customer: Covalent

Date: 04/07/2024

We express our gratitude to the Covalent team for the collaborative engagement that enabled

the execution of this Smart Contract Security Assessment.

Document

Name

Smart Contract Code Review and Security Analysis Report for

Covalent

Audited By Carlo Parisi, Viktor Raboshchuk

Approved By Przemyslaw Swiatowiec

Website https://www.covalenthq.com/

Changelog 27/06/2024 - Preliminary Report, 04/07/2024 - Final Report

Platform EVM

Language Solidity

Tags ERC20

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/covalenthq/covalent-x-token

Commit 3c3db2841fcd77415c42413feabe483f9b8a8881

2

https://www.covalenthq.com/
https://hackenio.cc/sc_methodology
https://github.com/covalenthq/covalent-x-token

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

0 0 0 0
Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 0

Medium 0

Low 0

Documentation quality

Functional requirements are mostly missed.

The technical description is not provided.

NatSpec is sufficient.

Code quality

No code quality issues were found.

Test coverage

Code coverage of the project is 93.10% (branch coverage).

Deployment and basic user interactions are covered with tests.

3

Table of Contents

System Overview 5

Privileged Roles 5

Risks 6

Findings 7

Vulnerability Details 7

Observation Details 7

Disclaimers 12

Appendix 1. Severity Definitions 13

Appendix 2. Scope 14

System Overview

CovalentMigration - is a smart contract that is designed for the initial migration of Covalent

Network Tokens. It has a setToken function to set a new token, and batchDistribute function to

distribute tokens to multiple recipients in one transaction.

CovalentXToken - is a ERC20 token with additional functionalities. It inherits from ERC20Permit

and AccessControlEnumerable, and implements ICovalentXToken. The mint function allows

token minting within a capped rate, updateMintCap changes the minting cap,

updatePermit2Allowance manages permit2's allowance. The token has the following

attributes:

Name: Covalent X Token

Symbol: CXT

Decimals: 18

DefaultEmissionManager - is a contract designed for managing the emissions of the Covalent

ERC20 token on Ethereum L1. It uses Ownable2StepUpgradeable for ownership management

and SafeERC20 for safe token operations. The mint function calculates the new supply based

on the elapsed time and mints the required amount to maintain the target inflation rate,

transferring minted tokens to the treasury. The inflatedSupplyAfter function calculates the

expected supply after a given time period using the PowUtil library.

Privileged roles

The owner of the CovalentMigration contract can set new tokens, and distribute the

tokens to the users.

The DEFAULT_ADMIN_ROLE of the CovalentXToken contract can grant and revoke any

roles.

The EMISSION_ROLE of the CovalentXToken contract can mint new tokens using the mint

function, within the constraints of the minting cap.

The CAP_MANAGER_ROLE of the CovalentXToken contract can update the minting cap

using the updateMintCap function.

The PERMIT2_REVOKER_ROLE of the CovalentXToken contract can update the allowance

for the PERMIT2 address using the updatePermit2Allowance function.

The deployer (set during the contract deployment) of the DefaultEmissionManager.sol

contract is the only entity allowed to initialize the contract

5

Risks

The project utilizes Solidity version 0.8.20 or higher, which includes the introduction of the

PUSH0 (0x5f) opcode. This opcode is currently supported on the Ethereum mainnet but

may not be universally supported across other blockchain networks. Consequently,

deploying the contract on chains other than the Ethereum mainnet, such as certain Layer

2 (L2) chains or alternative networks, might lead to compatibility issues or execution

errors due to the lack of support for the PUSH0 opcode. In scenarios where deployment on

various chains is anticipated, selecting an appropriate Ethereum Virtual Machine (EVM)

version that is widely supported across these networks is crucial to avoid potential

operational disruptions or deployment failures.

The project has minimal documentation. This lack of comprehensive comments and

explanations can lead to misunderstandings about the contract's functionality and

intended behavior. It also makes the contract harder to maintain and audit, as future

developers or auditors may not fully understand the contract's logic or the implications of

its functions. This could potentially lead to overlooked bugs or security vulnerabilities.

Furthermore, it may not meet the functional requirements if they are not clearly

documented and understood.

In the DefaultEmissionManager.sol contract, the exp2 function from the PowUtil library

is called with a potentially large argument. The exp2 function expects an unsigned

192.64-bit fixed-point number, and returns a 60.18 unsigned fixed-point number. If the

argument passed to exp2 exceeds the precision of a 192.64-bit fixed-point number, it

could result in precision loss and inaccurate calculations.

The DefaultEmissionManager.sol contract uses the safeApprove function from the

OpenZeppelin library, which has been deprecated due to potential security risks. The

safeApprove function can potentially lead to a race condition where someone may use

both the old and the new allowance due to unfortunate transaction ordering. This could

result in unauthorized or unexpected token transfers. OpenZeppelin recommends first

reducing the spender's allowance to 0 and then setting the desired value to mitigate this

risk.

The CovalentXToken.sol contract forces users to grant infinite approval to the PERMIT2

address from Uniswap when the permit2Enabled variable is set to true. This could

potentially expose users to unnecessary risks, as it allows the PERMIT2 address to spend

an unlimited amount of tokens from the user's account at any time. While this might be

intended to facilitate transactions with PERMIT2, it could be seen as an overreach, as

users could simply approve to PERMIT2 when they want to use it, rather than being forced

to grant infinite approval. This practice could potentially lead to misuse or unintended

token transfers if the PERMIT2 address is compromised.

The DefaultEmissionManager.sol contract's constructor is initializing immutable

variables. This practice is generally discouraged because immutable variables are set at

contract creation and cannot be changed afterwards. In the context of upgradeable

contracts, this means that all proxies that share the same implementation contract will

also share the same values for these immutable variables. If this is not the intended

behavior, it could lead to unexpected results and potential security risks.

6

Findings

Vulnerability Details

Observation Details

F-2024-4072 - Missing Zero Address Check in setToken Function -

Info

Description: In Solidity, the Ethereum address

0x00 is known as the

"zero address". This address has significance because it is the

default value for uninitialized address variables and is often used to

represent an invalid or non-existent address. The "

Missing zero address control" issue arises when a Solidity smart

contract does not properly check or prevent interactions with the

zero address, leading to unintended behavior.

For instance, a contract might allow tokens to be sent to the zero

address without any checks, which essentially burns those tokens as

they become irretrievable. While sometimes this is intentional,

without proper control or checks, accidental transfers could occur.

The following methods should introduce zero address checks:

CovalentMigration: setToken()

Assets:

CovalentMigration.sol [https://github.com/covalenthq/covalent-x-

token]

Status: Fixed

Recommendations

Remediation: It is strongly recommended to implement checks to prevent the zero

address from being set during the initialization of contracts. This can

be achieved by adding require statements that ensure address

parameters are not the zero address.

Resolution: Fixed in the commit

89025dca19300daadcb50dc279685deece3d5d5e: The check

against zero address was introduced in the setToken function.

7

https://portal.hacken.io/App/Projects/Details/23ea38c6-08d7-4f98-a5f1-367d2944389d/Finding/009118a6-abcd-417c-bd4e-0314c0f7b489

F-2024-4073 - Floating Pragma Statement in CovalentXToken.sol -

Info

Description: The CovalentXToken.sol file uses a floating pragma statement

pragma solidity ^0.8.21;. This means that the contract can be

compiled with any compiler version from 0.8.21 and newer. This

could potentially introduce unexpected behavior if the contract is

compiled with a newer, backwards-incompatible compiler version.

Assets:

CovalentXToken.sol [https://github.com/covalenthq/covalent-x-

token]

Status: Fixed

Recommendations

Remediation: It is recommended to lock the pragma to a specific compiler version

to ensure that the contract behaves as expected. This can be done

by removing the caret (^) from the pragma statement.

Resolution: Fixed in the commit

5865ae70525e1c5eea66889c40961ea2d63ef662: The exact

compiler version (Pragma statement) was defined.

8

https://portal.hacken.io/App/Projects/Details/23ea38c6-08d7-4f98-a5f1-367d2944389d/Finding/fad67d86-1dfa-4d03-b120-af7206ff5ded

F-2024-4075 - Incomplete Initialization of

DefaultEmissionManager.sol Contract - Info

Description: The DefaultEmissionManager.sol contract inherits from the

Ownable2Step contract but does not call the Ownable2Step initializer

in its initialize function. This is a deviation from best practices,

which recommend initializing all inherited contracts to ensure proper

contract behavior and avoid potential security risks.

The initialize function sets the token and startTimestamp

variables, approves the migration contract to spend the maximum

possible amount of tokens, and transfers ownership to the owner_

address. However, it bypasses the two-step ownership transfer

process defined in the Ownable2Step contract by directly calling the

_transferOwnership function.

function initialize(address token_, address owner_) external initializer {

 // prevent front-running since we can't initialize on proxy deployment

 if (DEPLOYER != msg.sender) revert();

 if (token_ == address(0) || owner_ == address(0)) revert InvalidAddress();

 token = ICovalentXToken(token_);

 startTimestamp = block.timestamp;

 assert(START_SUPPLY == token.totalSupply());

 token.safeApprove(address(migration), type(uint256).max); //@todo: uncomment t

 // initial ownership setup bypassing 2 step ownership transfer process

 transferOwnership(owner);

}

Assets:

DefaultEmissionManager.sol

[https://github.com/covalenthq/covalent-x-token]

Status: Fixed

Recommendations

Remediation: Add a call to the Ownable2Step initializer in the initialize function

of DefaultEmissionManager.sol. This will ensure that the

Ownable2Step contract is properly initialized and the two-step

ownership transfer process is respected.

Resolution: Fixed in the commit

7fc7cc3b628bc58fa35d2595823571deee85db5c: The

Ownable2Step initializer was added to the initialize function of

DefaultEmissionManager.sol.

9

https://portal.hacken.io/App/Projects/Details/23ea38c6-08d7-4f98-a5f1-367d2944389d/Finding/13933452-0345-4e53-9643-1a29fbbb51c3

F-2024-4076 - Inefficient Token Minting Process in

DefaultEmissionManager.sol - Info

Description: In the DefaultEmissionManager.sol contract, tokens are first

minted to the contract's address and then transferred to the

treasury address. This two-step process is Gas-inefficient as it

involves an unnecessary transfer operation after the minting

operation. Optimizing this process can save gas, making the contract

more efficient and cost-effective.

function mint() external {

...

ICovalentXToken _token = token;

_token.mint(address(this), amountToMint);

_token.safeTransfer(treasury, amountToMint);

}

Assets:

DefaultEmissionManager.sol

[https://github.com/covalenthq/covalent-x-token]

Status: Fixed

Recommendations

Remediation: Mint the tokens directly to the treasury address. This will eliminate

the need for a transfer operation, saving gas.

Resolution: Fixed in the commit

760556f219260569c5cc1cd351853c6322d462a8: tokens are

minted directly to the treasury address.

10

https://portal.hacken.io/App/Projects/Details/23ea38c6-08d7-4f98-a5f1-367d2944389d/Finding/b8c21d18-d993-4362-b8ab-3a1f6fdd06fe

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

11

Appendix 1. Severity Definitions

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low

Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution, do not affect security score but

can affect code quality score.

12

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/covalenthq/covalent-x-token

Commit 3c3db2841fcd77415c42413feabe483f9b8a8881

Whitepaper

Requirements https://covalentnetwork.mintlify.app/introduction

Technical Requirements https://covalentnetwork.mintlify.app/introduction

Contracts in Scope

CovalentMigration.sol

CovalentXToken.sol

DefaultEmissionManager.sol

lib/PowUtil.sol

interfaces/ICovalentMigration.sol

interfaces/ICovalentXToken.sol

interfaces/IDefaultEmissionManager.sol

13

https://github.com/covalenthq/covalent-x-token
https://covalentnetwork.mintlify.app/introduction
https://covalentnetwork.mintlify.app/introduction

