LogD Cheat Sheet

influence of substituents on Δ LogD and expected "lipophilic potency"

$\begin{gathered} \text {-H changed } \\ \text { to }-R \\ R= \end{gathered}$	median Δ LogD* (\# of matched pairs)	x-fold change in affinity/potency expected from lipophilicity alone
Me	0.30 (8458)	2 x gain
Et	0.72 (634)	5 x gain
$n-\mathrm{Pr}$	1.05 (66)	11x gain
$i-\mathrm{Pr}$	1.10 (419)	13x gain
t-Bu	1.30 (88)	20x gain
CHF_{2}	0.40 (260)	$3 x$ gain
CF_{3}	0.90 (899)	8 x gain
Ph	1.40 (570)	25 x gain
CN	-0.28 (1092)	2 x loss
F	0.2 (4249)	2 x gain
Cl	0.6 (7782)	4 x gain
Br	0.9 (356)	8 x gain
1	1.1 (35)	13x gain
Δ	0.9 (586)	8 x gain
0	1.30 (88)	20x gain
OH	-0.70 (1224)	$4 \times$ loss
\% OH	-0.60 (560)	$3 \times$ loss
	-2.98 (106)	1000x loss
	-1.90 (62)	100x loss

$\begin{gathered} \text {-H changed } \\ \text { to -R } \\ R= \end{gathered}$	median Δ LogD* (\# of matched pairs)	x-fold change in affinity/potency expected from lipophilicity alone
OMe	-0.05 (1579)	Insignificant
OEt	0.40 (100)	$3 x$ gain
SMe	0.45 (30)	$3 x$ gain
Oi-Pr	0.85 (76)	7 x gain
OCF_{3}	1.00 (138)	10x gain
OCHF_{2}	0.50 (88)	3 x gain
苂	-1.00 (76)	10x loss
$\stackrel{H}{N}_{0}^{K}$	-0.60 (139)	$3 \times$ loss
oivi	-0.90 (192)	10x loss
	-1.10 (269)	$13 \times$ loss
	-0.50 (140)	$3 \times$ loss
	-0.98 (148)	10x loss
	-1.90 (53)	100x loss
	-0.20 (278)	2 x loss
NH_{2}	-2.33 (72)	200x loss
- ${ }^{\text {N }}$	-1.10 (57)	$13 \times$ loss

*data reported in M. Landry and J. Crawford, ACS Med. Chem. Lett. 2020, 11, 1, 72-76
expected changes to LogD from phenyl-group replacements

$$
\Delta \Delta \log D=\left(\Delta \log D_{\text {H-to-R }}-\Delta \log D_{\text {H-to-Ph }}\right)
$$

Heterocycle	$\begin{aligned} & \Delta \text { LogD* } \\ & (\Delta \Delta \text { LogD }) \end{aligned}$	expt'd Δ potency H to R (Ph to R)	Heterocycle	$\begin{aligned} & \Delta \text { LogD* } \\ & (\Delta \Delta \text { LogD }) \end{aligned}$	expt'd Δ potency H to R (Ph to R)
	$\begin{aligned} & -0.80 \\ & (-2.20) \end{aligned}$	$\begin{aligned} & 6 x \text { loss } \\ & \text { (160x loss) } \end{aligned}$		$\begin{gathered} 0.20 \\ (-1.20) \end{gathered}$	1.6x gain (16x loss)
	$\begin{gathered} 0.50 \\ (-0.90) \end{gathered}$	$3 x$ gain ($8 \times$ loss)		$\begin{gathered} 0.70 \\ (-0.70) \end{gathered}$	5x gain ($5 \times$ loss)
	$\begin{gathered} 0.90 \\ (-0.50) \end{gathered}$	$\begin{gathered} 8 x \text { gain } \\ (3 x \text { loss }) \end{gathered}$		$\begin{array}{r} 0.05 \\ (-1.35) \end{array}$	$\begin{gathered} \text { similar } \\ (22 \times \text { loss }) \end{gathered}$
	$\begin{aligned} & -0.20 \\ & (-1.60) \end{aligned}$	$\begin{aligned} & 1.6 x \text { loss } \\ & (40 x \text { loss }) \end{aligned}$		$\begin{gathered} 1.20 \\ (-0.20) \end{gathered}$	16x gain (1.6x loss)
	$\begin{gathered} 0.50 \\ (-0.90) \end{gathered}$	$\begin{gathered} 3 x \text { gain } \\ \text { (8x loss) } \end{gathered}$		$\begin{gathered} 0.70 \\ (-0.70) \end{gathered}$	$5 x$ gain ($5 \times$ loss)
drug hunter			*data reported in M. Landry and J. Crawford, ACS Med. Chem. Lett. 2020, 11, 1, 72-76 drughunter.com		

