Francesco Romani

Software Engineer

IN THE BEGINNING
IT WAS ABOUT THE

METAL Now IS ABOUT
THE CLOUD: EXPLORING |
WEBASSEMBLY IN CLOUD Vg ¢
ENVIRONMENTS Y 4

GOLAB The International Conference on Go in Florence November 19th, 2023 > November 21st, 2023

Francesco Romani

Software Engineer

WALL OF
TEXTTITLE

Seriously, it was a pretty \Q /

long talk title &
/\kfu /

SETTING EXPECTATIONS

Exploring from the system/platform angle
Fast moving target - solutions get obsolete fast

WASI pulling WASM (kinda opposite direction)

Fixes and suggestions welcome! :)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

golang, meet WASM/WASI
WASM in the cloud: is it just me?

Practical applications of WebAssembly

The survey asked what are you using WebAssembly for at the moment?,
allowing people to select multiple options and add their own suggestions.
Here are all of the responses, with ‘Other’ including everything that only

has a single response:
WebAssembly applications (n=303)

Web development
> As a plug-in environment
Backe!

d services (excluding Serverless)

Containerisation

Game Development
Serverless

Internet of Things

Audio / Video Processing
Cryptography

Scientific

Artificial Intelligence
Blockchain

Other

0% 20% 40% 60% 80%

the state of wasm 2023

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

https://blog.scottlogic.com/2023/10/18/the-state-of-webassembly-2023.html

WHOAMI?

Software Engineer @ Red Hat ‘
Kubernetes/Openshift contributor

Mostly kubelet/runtime - optimizations for low-latency
workloads

Thoughts, opinions and mistakes are mine only!

Outside computing: running, climbing, tabletop
gaming

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

TALK OUTLINE

1. golang, meet WASM/WASI
a. Web ASseMbly

b. Web Assembly System Interface

2. extending a golang project with WASM/WASI

3. WASM/WASI in the cloud orchestrator (kubernetes)

GOLAB The International Conference on Go 1in

e | November 19th, 2023 > November 21st, 2023

Title

golang, meet
WASM/WASI

Our journey begins getting to know WASM
and WASI, the toolchain, and how to run
WASM workloads inside containers and not.

We’'re in for a fun start.

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

TALK OUTLINE

1. golang, meet WASM/WASI

2. extending a golang project with WASM/WASI

3. WASM/WASI in the cloud

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

golang, meet WASM/WASI
Toolchain: just set GOOS and GOARCH

new in golang >= 1.21
see: https://go.dev/blog/wasi

$ GOOS=wasipl GOARCH=wasm go build -o main.wasm main.go
$ file main.wasm

main.wasm: WebAssembly (wasm) binary module version 0x1
(MVP)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

golang, meet WASM/WASI
Running WASM files

We need a runtime

wasmtime
wasmer
wasmedge #
wasirun (wazero) #!!
many others

“Far. far too much choice", Trish Steel. CC BY-SA 2.0, via Wikimedia Commons

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

10

https://github.com/appcypher/awesome-wasm-runtimes
https://commons.wikimedia.org/wiki/File:Far,_far_too_much_choice,_Ballyvaughan-Baile_ui_Bheachain_-_geograph.org.uk_-_1268283.jpg

golang, meet WASM/WASI

Runtime == VM namespaces

cgroups

n X nvironmen
sandboxed e onment orocess

WASM
runtime

WASM code

AN

OS resources (files...)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

1

golang, meet WASM/WASI
Building a WASM container

$ podman build \

-—-annotation "run.oci.handler=wasm" \
--annotation "module.wasm.image/variant=compat" \
-t quay.io/fromani/hello-wasi-go:latest

—-f Dockerfile.wasm

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

12

golang, meet WASM/WASI

Running a WASM container

$ podman run --annotation "module.wasm.image/variant=compat"
quay.io/fromani/example-wasi-go:latest

Random number: -963697005

Random bytes: [32 120 210 127 207 206 192 144 247 122 87 155 144 27 204 127 7 53 106 185
134 66 242 46 12 18 42 40 155 113 92 215 24 167 123 158 16 232 216 154 229 211 48 30 139
57 54 2 167 95 104 185 72 40 34 17 37 190 246 246 183 6 116 234 190 247 174 125 241 166
1 252 108 52 169 253 42 55 85 254 230 58 245 60 227 118 83 39 9 163 129 38 66 103 103 14
125 108 164 0 91 79 200 236 99 30 113 145 248 14 240 87 28 178 25 204 112 73 120 214 85
65 38 220 100 118 128 150]

Printed from wasi: This is from a main function

This is from a main function

The env vars are as follows.
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

container=podman

HOME=

HOSTNAME=a1487872fe9%a

The args are as follows.

/example-wasi-go.wasm

Working directory is "/"

File content is This is in a file

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

golang, meet WASM/WASI

Access control

capabilities-based
access control

sandbox needs to be
granted access to
filesystem

require some language
support

no changes expected in
application code

namespaces

cgroups

process

WASM
runtime

WASM code

AN

OS resources (files...)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

14

golang, meet WASM/WASI
“C" in "WASI Preview 1" stands for “Complete”

WORK IN PROGRESS

https://qo.dev/blog/wasi - limitations

no parallelism (more on this later)
no wasm export (wasm import OK!)

language support (preview1 !)

"Widok Towers. Warsaw under construction". Wistula, CC BY-SA 4.0, via Wikimedia Commons

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

15

https://go.dev/blog/wasi
https://commons.wikimedia.org/wiki/File:Far,_far_too_much_choice,_Ballyvaughan-Baile_ui_Bheachain_-_geograph.org.uk_-_1268283.jpg

Title SN 2

extending with
WASM/WASI

Extending our golang application with
WASM/WASI plugins is an appealing
prospect. Let's see what we can do.

A good story is never without challenges.

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

16

TALK OUTLINE

1. golang, meet WASM/WASI

2. extending a golang project with WASM/WASI

3. WASM/WASI in the cloud

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

17

extending with WASM/WASI

The example application

Processing HTTP requests with WASM plugins
WASM plugins configured at startup
Golang host application is a web server (framework)

WASM plugin do all the processing (business logic)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

18

extending with WASM/WASI

GO wasm runtime

:= README.md

wazero: the zero dependency WebAssembly runtime
for Go developers

) WebAssembly Core Specification Test passing License Apache 2.0

WebAssembly is a way to safely run code compiled in other languages. Runtimes execute WebAssembly
Modules (Wasm), which are most often binaries with a .wasm extension.

wazero is a WebAssembly Core Specification 1.0 and 2.0 compliant runtime written in Go. It has zero
dependencies, and doesn't rely on CGO. This means you can run applications in other languages and still keep
cross compilation.

Import wazero and extend your Go application with code written in any language!

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

extending with WASM/WASI

Host vs Guest

l Host application

Golang application

Wazero runtime (module)

/ ([memory]\\

Compiled
module

k \ Y

Guest WASM binary

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

extending with WASM/WASI
Running WASM files

func (wh *wasmHandler) ServeHTTP (
w http.ResponseWriter,
r *http.Request
) |
// create runtime
// load module
// instantiate module - run entry point

// process request - process by side effect

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

2]

extending with WASM/WASI
Running WASM files: create runtime

ctx := context.Background()

rt := wazero.NewRuntime (ctx)
defer rt.Close(ctx)

wasi_ snapshot previewl.MustInstantiate(ctx, rt)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

22

extending with WASM/WASI
Running WASM files: load module

// a smarter io.ReadAll
wasmObj, err := wh.loadModule (wh.moduleName)

var stdout bytes.Buffer

cfg := wazero.NewModuleConfig()
.WithName (wh.moduleName)
.WithStdout (&stdout)
.WithStderr (os.Stderr)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

23

extending with WASM/WASI

Running WASM files: instantiate module

mod, err := rt.InstantiateWithConfig(ctx, wasmObj, cfqg)
if err '= nil {

mod.Close (ctx)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

24

extending with WASM/WASI

Running WASM files: instantiate module (take 2)

for more details: wazero docs

~

Source code
(golang, rust, C...)

compiler [WASM blob (file)

compile time

Y

Data (memory et. al.)]

runtime 0s.ReadAll()
[code } |
InstantiateModule() Uinishil ollolo
[Data (memory et. al.) ([byte)

|
—

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

https://wazero.io/docs/#components

extending with WASM/WASI

Exposing functions

process
explicitly!

From the other side
of the screen it looks
SO easy

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

& (@)

-0

<> Code

QO 8 https://github.com/golang/go/

golang / go

Q Ty

[Ato search

> +-]on|lla(

© Issues 5k+ 11 Pullrequests 400 O Discussions @ Actions [Projects 4 O wiki @ Security |~ Insights

proposal: cmd/compile: go:wasmexport directive #42372
slinkydeveloper opened this issue on Nov 4, 2020 - 35 comments

slinkydeveloper commented on Nov 4,

The goal of this proposal is to add a new directive, called go:wasmexport , in a similar fashion to the go:wasmimport
directive proposed in #38248. This proposal is a first step towards #25612 and #41715.

With this directive a user can export a function, so the engine that runs the module can invoke it:

go:wasmexport hello_worlc

func helloWorld() {
printin("Hello world!")

(master)# % wasm-nm -e sample/main.wasm
e run

e resume

e getsp

e hello_world

B

In this proposal I won't modify the actual Golang ABL. In fact, thanks to this feature, users will be able to define their own
extensions to the existing ABI. This is already supported by tinygo too https://tinygo.org/webassembly/webassembly/

Like #38248, The go:wasmexport directive will not be covered by Go's compatibility promise as long as the wasm

architecture itself is not considered stable.

(®) 17 96

Assignees

No one assigned

Labels

Proposal | Proposal-Hold

Projects

[Pproposals

Status: Hold

ed project ~

Milestone
—_—————————=
Proposal

Development

No branches or pull requests

Notifications Cus

2 subscribe

You'e not receiving notifications from this thr

26

extending with WASM/WASI

Exposing functions

golang 1.21
(fetched:
20231022)
Pass data

Retrieve data

(multi-value?)

#42372

go:wasmimport

Assignees

No one assigned

Labels

Proposal ' Proposal-Hold

Projects

<

(B Proposals
Status: Hold
1 closed project «

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

27

https://github.com/tinygo-org/tinygo/issues/3254

extending with WASM/WASI

Complex parameters, complex solutions

Pass complex parameters to WASM
functions

An issue with the WebAssembly spec is that it only supports a very limited number of data types. If you want to embed a WebAssembly
function with complex call parameters or return values, you must manage memory pointers on Go SDK and WebAssembly function

sides.
Complex call parameters and return values include dynamic memory structures such as strings and byte arrays.

In this section, we will discuss several examples.

source

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023 28

https://wasmedge.org/docs/embed/go/passing_data/

extending with WASM/WASI
Meet TinyGO

TinyGo is a new compiler for [...] the Go programming
language.

TinyGo focuses on compiling code written in Go, but for
smaller kinds of systems:

[...]

However, TinyGo uses a different compiler and tools to
make it suited for embedded systems and
WebAssembly.

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

29

https://tinygo.org/getting-started/overview/
https://tinygo.org/getting-started/overview/
https://tinygo.org/getting-started/overview/

extending with WASM/WASI

Caveats

https://tinygo.org/docs/reference/lang-support/

e limited reflection support (thus)
e limited stdlib

tinygo + WASM caveats
e no parallelism (yet)
e GC tuning required

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

30

https://tinygo.org/docs/reference/lang-support/
https://github.com/WebAssembly/wasi-threads

extending with WASM/WASI

(TinyGO) guest module layout

package main
// imports snipped

func main() {} // tinygo needs this

//go:wasm-module httpwasmguest
//go:export run

func run() { // real entry point
got := gets() // imported
msg := "hello, " + got + "\n"
puts (msqg) // imported

}
// helpers follows
// importing functions: see next slides

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

extending with WASM/WASI

Host vs Guest

l Host application

Golang application

Wazero runtime (module)

/ ([memory]\\

Compiled
module

k \ Y

Guest WASM binary

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

extending with WASM/WASI

WASM memory layout overview

e address space: 32 bits
e pages of 64 KiB

e guest memory managed
automatically

e host/guest interaction

-

=~

2

- Memory (overly simplified)
PTR LEN

WASM compiled code

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023 33

extending with WASM/WASI

rolling our own |/0: output

//go:wasmimport httpwasm oputs
func putStringStdout (bufPtr, buflLen uint32)

func puts(s string) {

ptr, size := stringToPtr(s) // determine ptr + len
putStringStdout (ptr, size) // call host function
runtime.KeepAlive (s) // need this

}

func stringToPtr (s string) (uint32, uint32) {
ptr := unsafe.Pointer (unsafe.StringData(s))
return uint32 (uintptr (ptr)), uint32(len(s))

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

34

extending with WASM/WASI

rolling our own |/0: input

//go:wasmimport httpwasm igets
func getStringStdin() uinté64

func gets () string {

ret := getStringStdin/() // call host function
ptr := uint32(ret >> 32) // decode ptr..

size := uint32(ret) // ...and len

data := ptrToBytes(ptr, size) // convert to []byte
return string(data) // usable at last

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

35

extending with WASM/WASI

rolling our own |/0: input pt 2

func ptrToBytes (ptr, size uint32) []byte {
var b []byte
s := (*reflect.SliceHeader) (unsafe.Pointer (&b))
s.Len = uintptr(size)
s.Cap = uintptr(size)
s.Data = uintptr (ptr)
return b

}

// TL;DR: unsafe-ly create a []byte from ptr, size

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

36

extending with WASM/WASI
The host side

GOLAB

The Rose and Crown pub by JThomas. CC BY-SA 2.0

International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

37

https://commons.wikimedia.org/wiki/File:The_Rose_and_Crown_pub_-_geograph.org.uk_-_4015642.jpg

extending with WASM/WASI

Host vs Guest

l Host application

Golang application

Wazero runtime (module)

/ ([memory]\\

Compiled
module

k \ Y

Guest WASM binary

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

extending with WASM/WASI

new references needed

const moduleEntryPointName = "run"

type wasmEngine struct {
code wazero.CompiledModule
rt wazero.Runtime
hostMod api.Module // closed when we close the runtime
guestMod api.Module // closed when we close the runtime
stack [Juint64
mallocFn api.Function
freeFn api.Function
runFn api.Function

}

// need to store module function references (post-instantiate)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023 39

extending with WASM/WASI

register host functions

hostMod, err := rt.NewHostModuleBuilder ("httpwasm") .

NewFunctionBuilder () .WithFunc (igets) .Export("igets") .
NewFunctionBuilder () .WithFunc (eputs) .Export ("eputs") .
NewFunctionBuilder () .WithFunc (oputs) .Export ("oputs") .

Instantiate (ctx)

// will peek at the code later

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

40

extending with WASM/WASI

instantiate and lookup guest functions

cfg := wazero.NewModuleConfig() .WithName ("httpwasmguest")
// also invokes the _start function, empty now

guestMod, err := rt.InstantiateModule(ctx, code, cfqg)
runFn := guestMod.ExportedFunction (moduleEntryPointName)
// omitted: check if == nil - error

// rinse and repeat for malloc and free

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

4]

extending with WASM/WASI
before to run: callData

// pass data through context to host functions

type callData struct {
stdin bytes.Buffer
stdout bytes.Buffer
stderr bytes.Buffer
mallocFn api.Function
freeFn api.Function
allocs [Juint32

}

type callDataKey struct{}

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

extending with WASM/WASI
before to run: callData /2

func putCallData(ctx context.Context, we *wasmEngine)

(context.Context, *callData) {
cdata := callData({
mallocFn: we.mallocFn,
freeFn: we.freeFn,

}
ctx = context.WithValue (ctx, callDataKey{}, &cdata)

return ctx, &cdata

func getCallData (ctx context.Context) *callData {
return ctx.Value (callDataKey{}) . (*callData)

}

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

43

extending with WASM/WASI

let it run

func (we *wasmEngine) Run (ctx context.Context, name string, stdin
io.Reader, env map[string]string) (string, string, error) {

guestCtx, cdata := putCallData(ctx, we)

stdinData, err := io.ReadAll (stdin)

stdinData = append(stdinData, byte('\n'))

_, err = cdata.stdin.Write(stdinData)

err = we.runFn.CallWithStack (guestCtx, we.stack) // reuse stack
dealloc(cdata) // manual memory management, keepalive

return cdata.stdout.String(), cdata.stderr.String(), err

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

44

extending with WASM/WASI

guest module refresher

func run() {
got := gets()
msg := "hello, " + got + "\n"
puts (msqg)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

45

extending with WASM/WASI

host output is easy (is it?)

func oputs(ctx context.Context, mod api.Module, bufPtr
uint32, buflen uint32) {

cdata := getCallData (ctx)
bytes, ok := mod.Memory () .Read(bufPtr, buflen)
if 'ok {

// TODO

}

cdata.stdout.Write (bytes)
}

// eputs is (almost) the same on stderr

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

46

extending with WASM/WASI

how does it fit together?

/ Golang host application

Instantiated module

[loyte

AN

~

WASM compiled code

=

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

47

extending with WASM/WASI

host input, and the joys of manual memory management

func igets(ctx context.Context, mod api.Module) uint64 ({
cdata := getCallData (ctx)

stdinData, err := cdata.stdin.ReadBytes('\n')

// when to free() ?
results, err := cdata.mallocFn.Call(ctx, uint64 (len(stdinData)))

ptr := results[0]
size := uint64 (len(stdinData))

mod .Memory () .Write (uint32 (ptr), stdinData)

return (uinté64 (ptr) << uint64(32)) | uinté64(size) // encode block

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

extending with WASM/WASI

how does it fit together?
/ Golang host application X
1 L2 \\ Instantiated module
AN

Memory

free

(overly simplified)

il
T

WASM compiled code

e
o

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

49

extending with WASM/WASI

when to free? and how?

func dealloc(cdata *callData) error {
ctx := context.TODO()
for len(cdata.allocs) > 0 {
ptr := cdata.allocs[0]

cdata.allocs = cdata.allocs|[1l:]
~, err := cdata.freeFn.Call(ctx, uinté4 (ptr))
if err '= nil {

return err
}
}

return nil

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

50

extending with WASM/WASI

avoiding self inflicted pain

// out gets turns out to be a pretty weird case
// so let’s just avoid it?

// host uses malloc to prepare the message,
// so it becomes trivial to free. And then:

func run(ptr uintpr, len uint32) {
got := tinymem.PtrToString(ptr, len)
msg := "hello, " + got + "\n"
puts (msqg)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

5]

extending with WASM/WASI

wrapping up

tinygo for the guest side
pass complex data - check tinymem

review AP

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

52

extending with WASM/WASI

manual memory management essentials

READ THIS FIRST! https://wazero.io/lanquages/tinygo/

memory ownership

https://qgithub.com/tetratelabs/tinymem

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

53

https://wazero.io/languages/tinygo/
https://github.com/tetratelabs/tinymem

Title

WASM/WASI in
the clouds

We’re not alone trying out WASM. Cloud
infra projects are actively planning or
experimenting about extending their
components with WASM/WASI. Let’s see
what and why

When the least expected, cloud connected!

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

54

TALK OUTLINE

1. golang, meet WASM/WASI

2. extending a golang project with WASM/WASI

3. WASM/WASI in the cloud

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

55

WASM/WASI in the clouds

WASI in the cloud: selling points

e safe execution (sandbox)
e fast (enough, or in general)

o benchmark: spawning processes
e write once, run everywhere

o polyglot programming

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

56

WASM/WASI in the clouds

the kubernetes scheduler

assign pods to nodes
resource allocation

high demand of custom policy
e wildly different definitions of “good”

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

Y/

WASM/WASI in the clouds

the kubernetes scheduler extensions

scheduler extender Pod Scheduling Context
e webhook e

\
Pick a Pod from Reserve a
:Zf;icéuling Nodg for the
scheduler framework oot
e rich set of

extension points
e “builtin” plugins

PreScore
Normalize
Score

\

Scheduling Cycle

(Run#1]
Run#2_;

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st,

2023

WASM/WASI in the clouds

WASM in kubernetes scheduler: sharing state (explained)

the kubernetes scheduler provides CycleState to share
state across a scheduling cycle

in some cases checking a condition requires computing

which can be reused later (overly simplified example):

PreFilter: do the affinity rules make sense?
VS

Filter: do the affinity rules match any node?

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

549

WASM/WASI in the clouds
WASM in kubernetes: sharing state (refresh)

kubernetes Pod Scheduling Context
scheduler plugins /~)
WANT to share Bl
state across gy
extension points

Reserve a
Node for the
Pod in Cache

19}j1d3sod

PreScore
Normalize
Score

PreFilter

(Run#1)
Run#2_|

Scheduling Cycle /

A

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023 60

WASM/WASI in the clouds
kubernetes (scheduler) meet WASI

kube-scheduler-wasm-extension ¢

WebAssembly is a way to safely run code compiled in other languages. Runtimes execute WebAssembly
Modules (Wasm), which are most often binaries with a .wasm extension. This project allows you to extend the

kube-scheduler with custom scheduler plugin compiled to a Wasm binary. It works by embedding a
WebAssembly runtime, wazero, into the scheduler, and loading custom scheduler plugin via configuration.

This project contains everything needed to extend the scheduler:

e Documentation describing what type of actions are possible, e.g. Filter .
e Language SDKs used to build scheduler plugins, compiled to wasm.
e The scheduler plugin which loads and runs wasm plugins

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023 6]

WASM/WASI in the clouds
WASM in kubernetes scheduler: large data model (1/2)

kubernetes objects (nodes, pods) are big and nested
how to pass the sandbox boundary?

e per-field accessors
o gets out of hand too easily
e host marshals the full object, pass as blob,
guest unmarshals
o path of least resistance
o lots of garbage on guest side

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

62

WASM/WASI in the clouds
WASM in kubernetes scheduler: large data model (2/2)

mitigating memory pressure on guest side
e l|azy decoding

e update only if necessary*
e just use better unmarshaller?

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

63

WASM/WASI in the clouds
changing APIs to reduce friction

func NewStatus (code Code, reasons ...string) *Status {
s := &Status{
code: code,

Yeasons: reasons,

}
if code == Error {
s.err = errors.New(s.Message())

}

return s

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

64

WASM/WASI in the clouds

changing APlIs to reduce friction (/2)

func (tm *TopologyMatch) Filter(...) *framework.Status {
if nodeInfo.Node() == nil {
return framework.NewStatus (
framework.Error,
"node not found",

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

65

WASM/WASI in the clouds
changing APIs to reduce friction (/3)

func StatusToCode (s *api.Status) uint32 {
if s == nil || s.Code == api.StatusCodeSuccess {

return uint32 (api.StatusCodeSuccess)

}

if reason := s.Reason; reason !'= "" {

setStatusReason (reason)

}

return uint32 (s.Code)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

66

WASM/WASI in the clouds

WASM in kubernetes scheduler: the next steps

Some highlights

e support multiple wasm plugins
e better event notifications

e cover all the extension points

open points:
e toolchain maturity
e distribution/deployment

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

67

https://github.com/kubernetes-sigs/kube-scheduler-wasm-extension/pull/58
https://github.com/kubernetes-sigs/kube-scheduler-wasm-extension/issues/71
https://github.com/kubernetes-sigs/kube-scheduler-wasm-extension/issues/72

WASM/WASI in the clouds
WASM in kubernetes scheduler: operations

deploying the scheduler

kubernetes
shipping the WASM scheduler
plugins WASM plugin

securing the flow: “just”
fetch the data from a

configmaps:
° size limit!
° access control

trusted source?

e
trusted pod
serving over

https

A8

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

68

TL;DR: promising, but rough edges

e WASI PREVIEW 1
e golang 1.21 support
o lack of go:wasmexport [1][2]
e sharing data between host and guest
e tinygo
o incomplete reflection
o hit/miss package support

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023 69

https://github.com/golang/go/issues/42372
https://github.com/tetratelabs/wazero/issues/1550

THE END

fromani@redhat.com
https:/github.com/ffromani

fromani@gmail.com

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November :

mailto:fromani@redhat.com
https://github.com/ffromani
mailto:fromani@gmail.com

Thanks for
attending!
Questions?

GOLAB The International Conference on Go in

Flor

ence | November 19th, 2023 > November 21st, 2023

71

golang, meet WASM/WASI

Reading non-owned files

func main () {
fmt.Printf ("running as uid=%v gid=%v\n", os.Getuid(), os.Getgid())

fi, err := os.Stat("/proc/cpuinfo")
fmt.Printf ("cpuinfo stat err = %v\n", err)
if err == nil {

// TODO
}
stat, ok := fi.Sys (). (*syscall.Stat t)
if l'ok { -

// TODO

}

fmt.Printf ("stat: uid=%v gid=%v\n", stat.Uid, stat.Gid)

, err = os.ReadFile("/proc/cpuinfo")
fmt.Printf ("cpuinfo read = %v\n", err)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

golang, meet WASM/WASI

Reading non-owned files

$ wasmedge --dir /:/ --dir .:. cpuinfo-wasi-go.wasm
running as uid=1 gid=1

cpuinfo stat err = <nil>

stat: mode=-rw—-------

stat: uid=0 gid=0

cpuinfo read = open /proc/cpuinfo: Permission denied #
EERRR!

cpuinfo data = 0

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

73

golang, meet WASM/WASI

Reading non-owned files

$ wasirun --dir / cpuinfo-wasi-go.wasm
running as uid=1 gid=1
cpuinfo stat err = <nil>

stat: mode=-rw—------—-
stat: uid=0 gi1d=0

cpuinfo read = <nil>
cpuinfo data = 25159

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

golang, meet WASM/WASI
Reading non-owned files in a container

$ podman run \

-—annotation "module.wasm.image/variant=compat" \

-v /proc:/proc quay.io/fromani/cpuinfo-wasi-go:latest
running as uid=1 gid=1

cpuinfo stat err = <nil>

stat: mode=-rw—-------

stat: uid=0 gid=0

cpuinfo read = open /proc/cpuinfo: Permission denied #!!!

no wasirun bindings : (

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

745

extending with WASM/WASI
TinyGO & WASI

$ tinygo build -o main.wasm -target=wasi main.go

$ stat -c '%n %s' example-wasi-*.wasm
example-wasi-go.wasm 2375217
example-wasi-tinygo.wasm 740301

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

76

extending with WASM/WASI

how to improve?

func (wh *wasmHandler) ServeHTTP (
w http.ResponseWriter,
r *http.Request

)

// load module -> extract: loader
// create runtime -> extract: engine
// instantiate module -> extract: engine

// process request -> orchestrate

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

extending with WASM/WASI
the engine

// xref: https://github.com/tetratelabs/wazero/issues/985
type wasmEngine struct {

code wazero.CompiledModule
rt wazero.Runtime

func newWasmEngine (ctx context.Context, wasmObj []byte) (*wasmEngine, error) ({
rt := wazero.NewRuntime (ctx)

wasi_snapshot_ previewl.MustInstantiate(ctx, rt)

code, err := rt.CompileModule (ctx, wasmObj)
if err '= nil {

return nil, err
}

return &wasmEngine({
rt: rt,
code: code,
}, nil

}

func (we *wasmEngine) Close(ctx context.Context) error { return we.rt.Close(ctx); }

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

/8

extending with WASM/WASI

the engine - part 2

func (we *wasmEngine) Run(ctx context.Context, name string,

{

//

conf := wazero.NewModuleConfig () .WithName (name) //

mod, err := we.rt.InstantiateModule(ctx, we.code, configqg)
if err !'= nil {

//
}

mod.Close (ctx)

return stdout.String(), stderr.String(), nil

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

)

79

extending with WASM/WASI
the handler, revisited

type wasmHandler struct {
engine *wasmEngine
name string

}
func (wh *wasmHandler) ServeHTTP(w http.ResponseWriter, r *http.Request) {

ctx := context.Background/()

stdout, stderr, err := wh.engine.Run (
ctx,
wh.name,
r.Body,

wh.makeEnviron(r),

)
//
fmt.Fprint(w, stdout)

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

80

extending with WASM/WASI

manual memory management: wazero docs

Guest passes a string to an imported Host function

Guest [...] gets the memory offset needed by the Host
function.

The host reads that string directly from Wasm memory.

The original string is subject to garbage collection on
the Guest [...].

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

81

extending with WASM/WASI

manual memory management: wazero docs /2

Host allocates a string to call an exported Guest
function

Host calls the built-in export malloc [...].
The host owns that allocation, so must call the built-in
export free when done.

The Guest [...] retrieves the string from the Wasm
parameters.

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023

82

extending with WASM/WASI

manual memory management: wazero docs /3

Guest returns a string from an exported function

Guest [...] gets the memory offset needed by the Host,
and returns it and the length.

This is a transfer of ownership, so the string won’t
be garbage collected on the Guest.

The host reads that string directly from Wasm memory
and must call the built-in export free when complete.

GOLAB The International Conference on Go in Florence | November 19th, 2023 > November 21st, 2023 83

