Understanding the Successes and

Testing Strategies

Benjamin Bryant

Organiser of London Gophers

Go Developer Advocate @JetBrains

Prologue

This Talk Was A
Dilly of a Donut To Write

“This Is Fire!”

- & e | 3
s
SR !

V»‘;iéf-;zﬁm:er;‘-:*“":t.- 3 !
e e VS d ‘

“This isn’t it...”

“Screw It.. The Sky is Blue!”

What Is This Talk About?

Chatted to People of Varying Skill Levels for About
30-60 Minutes.

Asked “Do You Enjoy Testing?”

wWhat To Expect?

Part 1: Testing Overview

Part 2: Thoughts and Observations

Part 1
Testing Overview

Successes = What People Enjoy
Pain Points = What People Don’t Enjoy

Remedies = Things to Ease The Pain

Unit Testing

v

func Add(a int, b int) int { 1usage
return a + b

func TestAdd(t *testing.T) {
type args struct {
a int
b int
}
tests := []struct {
name string
args args
want int

H

name: "3 add 5",

args: argsq{

iy
b =5
by
want: 8,
7
I
for _, tt := range tests {
t.Run(tt.name, func(t *testing.T) {
if got := Add(tt.args.a, tt.args.b); got != tt.want {
t.Errorf(format: "Add() = %v, want %v", got, tt.want)

Unit Testing

Successes

Successes - Unit Testing

Simple and Fast, In
Theory

Successes - Unit Testing

Local, Low Setup Costs

Unit Testing

Pain Points

Pain Points - Unit Testing

Can Easily Become Too
Numerous and Too Brittle

Pain Points - Unit Testing

It Can Be Difficult To Write
Them Well

Unit Testing

Remedies

Remedies - Unit Testing

Reducing Unnecessary
Tests and Putting Time Into
Choosing What To Test

Remedies

Try Not To Test
Everything In One,
Keep Tests Focussed

8 simple.go
simple_test.go
£ verbose.go

#, verbose_test.go

Integration Testing/
End-To-End Testing

Integration Test

Sammemmm 8 SERVICE >

_

End-to-End Test

—> —>

Integration/E2E Testing

Successes

Successes - Integration/E2E Testing

Highest Amounts of
Assurance.

Integration/E2E Testing

Pain Points

Pain Points - Integration/E2E Testing

Depending on the System,
Incredibly Difficult To Write

Pain Points - Integration/E2E Testing

Complicated To Set Up and
Maintain The Testing
Environment

—> —>

SERVICE —>

*

—> —>

SERVICE mmmmd SERVICE

Pain Points - Integration/E2E Testing

Third-Party
Dependencies

Pain Points - Integration/E2E Testing

The More Complicated The
System The More Brittle
The Testing Can Get

Integration/E2E Testing

Remedies

Remedies - Integration/E2E Testing

Allocate Resources To
Asses and Figure out How
To Reduce The Pain

Remedies - Integration/E2E Testing

Reducing Quantity,
Increasing Impact

Mock Testing/
Contract Testing

Mock

Mock P
UI

SERVICE >

DB

Unit Testing

Mock Testing

/Contract
Testing

func TestFoo(t xtesting.T) {
ctrl := gomock.NewController(t)
defer ctrl.Finish()

m := NewMockFoo(ctrl)

// Does not make any assertions. Executes the anonymous functions and returns
// its result when Bar is invoked with 99.
m.
EXPECT().
Bar(gomock.Eq(99)).
DoAndReturn(func(_ int) int {
time.Sleep(1xtime.Second)
return 101
i
AnyTimes ()

// Does not make any assertions. Returns 103 when Bar is invoked with 101.
ml

EXPECT().

Bar(gomock.Eq(101)).

Return(103).

AnyTimes()

SUT(m)
}

‘= README.md

gomock ~

Update, June 2023: This repo and tool are no longer maintained. Please see go.uber.org/mock for a
maintained fork instead.

‘ Testcontainers

HOW IT WORKS

Test dependencies as code

No more need for mocks or complicated
environment configurations. Define your test
dependencies as code, then simply run your
tests and containers will be created and then
deleted.

With support for many languages and testing
frameworks, all you need is Docker.

Y

4>

USE CASES

How Testcontainers can help you

S

Data access layer integration tests

Use a containerized instance of your database
to test your data access layer code for
complete compatibility, without requiring a
complex setup on developer machines. Trust
that your tests will always start with a known
state.

Ul/Acceptance tests

Use containerized web browsers, compatible
with Selenium, to run automated Ul tests.
Each test gets a fresh, clean instance of the
browser, without having to worry about
variations in plugins or required updates.

&

Application integration tests

Run your application in a short-lived test
mode with dependencies, such as databases,
message queues or web servers, to give you a
rich interactive and explorative testing
environment.

JSON/HTTP JSON/HTTP

JSON/HTTP

v

G A ||

I . .
 Microservice A

JSON/HTTP

JSON/HTTP

Contract Testing

Source: https://docs.pact.io/

Contract Testing

Contract is shared amongst teams to enable
collaboration, using tools like Pactflow

Required interactions are % Requests in contract replayed

captured into a contract 2 4 against provider APl and verified

between systems against consumer(s) expectations
Contract

Provider

Consumer unit tests Provider tests mock out
its behaviour against any other systems, so it
provider mock can be tested in isolation

Source: https://docs.pact.io/

Mock/Contract Testing

Successes

Successes - Mock/Contract Testing

Provides a Way to Run
‘Integration Tests’ With The
Same Ease As Unit Testing

Successes - Mock/Contract Testing

Reduces Reliance on Other
Services In Order To Test
Your Service

Mock/Contract Testing

Pain Points

Pain Points - Mock/Contract Testing

Over Reliance on Mocks
Could Lead To False
Confidence

Pain Points - Mock/Contract Testing

Ultimately You Still Need A
Way To Check the Plumbing
Between System

Pain Points - Mock/Contract Testing

Setup Could Be Just As
Long As Integration
Testing

Mock/Contract Testing

Remedies

Remedies - Mock/Contract Testing

View These Tools As Ways
To Reduce, But Not
Completely Replace
Integration Testing

Code Coverage

[codecoverage 100% files, 50% statements

@ example.go 50% statements
example_test.go

41

func MultipleErrorPaths(i int) (*Thing, error) { 1usage
switch {
case 1 <= 5:
return NewThing(i), nil
case i <= 10:
return nil, NewMyCustomError(i)
default:
return nil, NotFoundError{}

Code Coverage

Successes

Successes - Code Coverage

It Is A Good Confidence
Builder

Successes - Code Coverage

It Can Help Highlight Areas
That Are Missable Or
Difficult To Test

Successes - Code Coverage

On A Personal Level, It Can
Be A Feel-Good Statistic

Code Coverage

Pain Points

Pain Points - Code Coverage

It Can Easily Be A False
Confidence

Pain Points - Code Coverage

It Is Easy For It To Become
An Annoying Blocker

Pain Points - Code Coverage

Can Lead To Bad Testing
Practices If It Needs To Be
Circumvented

Goodhart's Law -
“When a measure becomes a target,
It ceases to be a good measure”

Code Coverage

Remedies

Remedies - - Code Coverage

Make It Less of a ‘Hard’
Requirement

server requests Memory / CPU

150
100
50
09:50 09:55 10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 09:50 10:00 10:10 10:20 10:30 10:40
== web_server 01 == web_server_02 web_server_03 web_server_04 = Ccpu = memory
client side full page load logins
b Mean

upper_25 1.77 ms
upper_50 183 ms
upper.75 717 ms
upper_90 133s

3s 1"
2s ' | A ‘ '
1s 2!

Dms 09:50 10:00 10:10 10:20 10:30 10:40

upper_95 182s

09:50 10:00 10:10 10:20 10:30 10:40 == logins == logins (-1 hour)

Traffic In/Out

3kB avg current

2kB - upper25 173B 2B
T = upper.50 180B 252B
S == upper_75 7158 8198
== upper 90 1.33kB 1.35kB

-1kB
== upper 95 1.82kB 1.96kB

2kB
= cpul -1.8kB -2.0kB

-3kB

09:50 09:55 10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 = cpu2 7158 8198

Remedies - Code Coverage

Try To Take It Back To
Being a ‘Personal Win’

CI/CD
(Continuous Integration/
Delivery)

() Summary
build

succeeded 3 days ago in 36s

Q Search logs
Jobs

@ build

@ deploy

Set up job

Install Hugo CLI

Run details
Checkout

9 Usage

&9 Workflow file
Build with Hugo

Upload artifact

Post Checkout

o
o
o
@ Setup Pages
©
©
©
©

Complete job

Continuous Integration/Delivery

Successes

Successes - Continuous Integration/Delivery

It Is Magic <

Successes - Continuous Integration/Delivery

It Can Help To
Standardise A Workflow

Continuous Integration/Delivery

Pain Points

Pain Points - Continuous Integration/Delivery

If It Breaks, It Is Magic

Continuous Integration/Delivery

Remedies

Remedies - Continuous Integration/Delivery

Demystification

Part 2
Observations

Observation #1
It Takes A Village To
Test An Add Function

Unit Testing
Integration/E2E Testing
Mock/Contract Testing
Code Coverage

CIl/CD

Efcetera

Observation #2
Your Journey Through Tech, Has a Big
Influence When It Comes to Developing a
‘Testing Is Good’ Mentality

N—m=5)

[9-~9] Learn Go with tests
‘."’ '-@ o

! B
A

W

Chris James
quii

Observation #3
There Is Correlation Between a
Good Testing Experience and a
Good Developer Experience

Observation #4
In Software Engineering Testing Is @
Second Class Citizen, but I Think That’s
Changing

8 simple.go
simple_test.go
8 verbose.go
verbose_test.go

Conclusions

There Is A Lo'r I [o Talk About

Ultimately Testing

Is A Part Of The Framewor
That Is Software Development

So If You Can,

Try Not To Forget About It
And Try To Make It Fun!

I’ve Been Me

Thank You For Your Time

