
Simeon Yordanov Grancharov
Senior Software Engineer

Go & Redis:
More than a love
story

A little bit about
me

● I’m a backend engineer currently working at EF

● I have been working with Golang for the past 3 years

● I have been coding for around 10 years using C#, Python and
Java.

● Non professional runner, football lover and gym rat.

● I also enjoy reading fantasy, mainly Brandon Sanderson and
George RR Martin

● When I’m not coding, I blog about coding

Some things just fit together….

What “spiked” my curiosity?

https://redis.com/blog/go-redis-official-redis-client/

● What is Redis?
○ Open source
○ NonSql
○ Key - Value storage

● Why use Redis?
○ It’s faaaaaaast
○ Data is organized in simple DS
○ Simple set of features

● What’s the catch?
○ no secondary storage = less

capacity
○ It makes you think a little more

Go-Redis

https://github.com/redis/go-redis

https://redis.uptrace.dev/

● Officially promoted by Redis itself
● +18k stars on Github

● Automatic connection pooling
● Redis cluster and sentinel clients
● Type safe
● Allows custom commands

https://github.com/redis/go-redis
https://redis.uptrace.dev/

How to create a GoRedis client?

import (
"context"
"time"

goRedis "github.com/redis/go-redis/v9"
)

type RedisRepository struct {
client goRedis.Client

}

func NewRedisRepository(address string) RedisRepository {
return RedisRepository{

client: *goRedis.NewClient(&goRedis.Options{
Addr: address,
}),

}
}

How to call a Redis
command

● GoRedis contains specific
functions (type safe API).

● Context is required.
● We need to read the result

func (repo *RedisRepository) HashGetAll(key string) (map[string]string, error) {

ctx := context.Background()

val, err := repo.client.HGetAll(ctx, key).Result()

return val, err

}

RediGo
https://github.com/gomodule/redigo

● It came first
● Print like API
● Allows custom commands
● Manual connection pooling
● Redis sentinel and cluster

https://github.com/gomodule/redigo

How to create a Redigo client?

package redisgo

import (

redigo "github.com/gomodule/redigo/redis"

)

type RedisRepository struct {

conn redigo.Conn

}

func NewRedisRepository(address string) RedisRepository {

connection, err := redigo.Dial("tcp", address)

if err != nil { panic(err) }

return RedisRepository{

conn: connection,

}

}

How to call a Redis
command

● Redigo uses one specific
function (print like API).

● No context is required.
● We need to read the result

func (repo *RedisRepository) HashGetAll(key string) (map[string]string, error) {

val, err := redigo.StringMap(repo.conn.Do("HGETALL", key))

return val, err

}

Package
Comparing

● We will use the Go Benchmarks from the common library

● Functions that will be compared
○ SET, GET and combined
○ HGETALL, HSET and combined
○ LRANGE, LPUSH and combined

● Both operation execution time and memory storage will be
evaluated

How do the benchmarks look like?

import (

"testing"

)

var redisRepo = NewRedisRepository("0.0.0.0:20003")

func BenchmarkGoRedisGet(b *testing.B) {

for i := 0; i < b.N; i++ {

_, err := redisRepo.Get(testKey)

if err != nil {

panic(err)

}

}

}

Enough talking, let’s run the benchmarks and see the
results….

In conclusion

- Prod may differ

- Not all functionalities were tested

- RediGo offers a slightly better performance

- I would use Go redis

Thank you all!

Simeon Yordanov
Grancharov

